
Variable Neighborhood Search for Non-deterministic

Problems

Marco Antonio Cruz-Chávez
1
, Alina Martínez-Oropeza

1
, Jesús del Carmen Peralta-

Abarca
2
, Martín H. Cruz-Rosales

3
, Martín Martínez-Rangel

4

1Engineering and Applied Science Research Center, 2FCQeI, 3FC,4 FCAeI. UAEM

Av. Universidad 1001, Col. Chamilpa, 62209, Cuernavaca, Morelos, MÉXICO

mcruz
1
,alinam

1
@uaem.mx

Abstract. A comparative analysis of several neighborhood structures is presen-

ted, including a variable neighborhood structure, which corresponds to a com-

bination of the neighborhood structures evaluated in this paper. The performan-

ce of each neighborhood structure was tested using large random instances ge-

nerated in this research and well-known benchmarks such as the Classical

Symmetric Traveling Salesman Problem and the Unrelated Parallel Machines

Problem. Experimental results show differences in the performance of the vari-

able neighborhood search when it is applied to problems with differing comple-

xity. Contrary to reports in literature about variable neighborhood searches, its

performance varies according to the complexity of the problem.

Keywords: Population, Diversity, Hamming Distance, Population-based Algo-

rithm, Individual.

1 Introduction

For many decades, heuristic methods have been widely used to undertake a large

variety of not only theoretical problems, but practical ones too. These problems are

classified by the complexity theory into P (Polynomial time), NP (Non-deterministic

Polynomial time) and NP-Complete based on their characteristics and nature. NP-

Complete problems are the most difficult problems [1], which become intractable in

the worst case for large test problems. Because deterministic methods are not enough

to solve them, it is necessary to use non-deterministic methods to bind the problem, in

an attempt to get high-quality solutions, without the guarantee of optimality.

One of the most frequently used heuristics is local search, which involves the use of

neighborhood structures. Sometimes the use of a sole heuristic is not enough to find

good solutions for hard problems because the solution space is very complex. In such

cases, the neighborhood structures have shown themselves to be efficient search

methods for these problems. Recently, a new type of neighborhood structure, better-

known as the Variable Neighborhood Structure (VNS), has been applied to several

optimization problems because of its good performance. Moreover, it has been shown

to be an efficient method to use when searching for approximated solutions.

There is some research in the literature about variable neighborhood search, as they

are referred to in this paper. In [2], the authors present a two phase hybrid approach;

the structure combines a VNS in the first phase with an iterated local search in the

second phase, while always accepting the best solutions. The variable neighborhood

search involves 13 different neighborhood structures, which are randomly selected

during execution. Experimental results show the algorithm is competitive with other

approaches in literature. For nine data sets, it obtained one improved and eight equal

solutions.

Another approach, proposed by [3], is a VNS which is implemented in a local search

algorithm. Some modifications of this approach are presented. VNS and its variants

were tested in five problems: Travelling Salesman Problem (TSP), p-median Problem

(PM), Multi-source Weber Problem (MW), Minimum Sum-of-squares Clustering

Problem (MSSCC), and Bilinear Programming Problem with Bilinear Constraints

(BBLP). It showed competitive results, especially for the PM and MW problems. In

[2], a hybrid approach is presented that combines a variable neighborhood search in

the first phase with an iterated local search in the second phase, which always accepts

the best solutions for the Attribute Reduction in Rough Set Theory. The approach was

tested in over 13 well-known datasets. Experimental results demonstrate that it pro-

duces solutions competitive with the best techniques.

This research was motivated by the continuous need to find high-quality solutions for

important combinatorial problems, such as TSP and UPMP, because in Meta heuris-

tics, the local search is the most time-consuming procedure. Therefore, in this re-

search, a hybrid local search is applied to an NP and an NP-Complete problem to

observe its performance in different complexity problems, under the same conditions.

Experimental results show that the good performance of a variable neighborhood

search depends on the search space complexity of the problem. High quality solutions

are obtained for CSTSP, which is classified as an NP-Complete problem, but poor

quality solutions are obtained for UPMP, which is a less complex NP problem. The

contribution of this research is the finding that the performance of local search de-

pends on the hardness of the problem. Contrary to what one might expect, the perfor-

mance is better for the NP-complete problem than for the NP problem, both of which

are studied in this paper.

This paper is organized as follows. Section two and three present an introduction to

the complexity problems undertaken, which are the Classical Symmetric Traveling

Salesman Problem and the Unrelated Parallel Machines Problem. Section four de-

scribes the neighborhood structures tested in this research. Section five details the

proposed VNS. Section six explains the statistical analysis performed on the obtained

results and compares the results of each structure. Finally, section seven present con-

clusions.

2 Classical Symmetric Traveling Salesman Problem

The Classical Symmetric Traveling Salesman Problem (CSTSP) is a discrete op-

timization problem [1, 4], classified as an NP-complete problem [1] due to its com-

plexity and nature. The aim of the Classical Symmetric Traveling Salesman Problem

is to minimize the total travel distance when visiting all the cities exactly once and

returning to the home town [5]. A graph G = (V, E) consists of a finite set V of verti-

ces, identifying the cities, and a finite multiset E of edges or distances between cities.

The problem involves unordered pairs (i, j) of cities, where the same city must not be

visited more than once and the total travel distance is minimized. The tour has a be-

ginning city and an ending one. Therefore, E = {(i, j): i, j  V,} and cij is the cost

(distance) associated with the edge (i, j). The mathematical formulation of the integer

linear programming model is described in (1 to 4). [6], shows the objective function

in (1), where the aim is to minimize the total travel cost and is based on a set of con-

straints (2 to 4), which must be met to obtain feasible solutions. The set of constraints

in (2) specifies that only city i can be reached from city j. The set of constraints in (3)

specifies that only city j can be reached from city i. The last set of constraints in (4)

ensures that all the cities have been visited.

min 𝑓 = ∑ 𝐶𝑖𝑗𝑋𝑖𝑗

𝑚

(𝑖,𝑗)∈𝐸

(1)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

∑ 𝑋𝑖𝑗 = 1 ∀𝑖 ∈ 𝐸

{𝐶𝑗:(𝑖,𝑗)∈𝐸}

(2)

∑ 𝑋𝑖𝑗 = 1 ∀𝑗 ∈ 𝐸

{𝐶𝑖:(𝑖,𝑗)∈𝐸}

(3)

∑ 𝑋𝑖𝑗 ≤ |𝑆| − 1 𝑡𝑜 𝑆 ⊂ 𝑉, 2 ≤ |𝑆| ≤ |𝑉| − 2 ∀𝑖

{(𝑖,𝑗)∈𝐸,𝑖∈𝑆,𝑗∈𝑆}

(4)

3 Unrelated Parallel Machines Problem

The Unrelated Parallel Machines Problem (UPMP) is a variant of the classical

Job Shop Scheduling Problem (JSSP) relaxed to get a mapping of UPMP [7]. The

UPMP is classified as NP [8]. The UPMP can be described as the set J={1,2,…,n} of

n independent jobs that have to be scheduled in K={1, 2, …, n} positions correspond-

ing to I={1,2,…,m} unrelated parallel machines that process jobs at different rates,

meeting certain constraints to obtain feasible solutions according to the objective

function. It is done with the goal to minimize the total completion time of processing

all the jobs. According to this, any job can be processed in any machine, and any ma-

chine can process any job, but the processing time depends on the machine and posi-

tion of the assigned job. It takes into account the basic constraints of the problem

which are shown in the mathematical formulation (5 to 8) [16], and involves a penali-

zation according to the assigned position. This penalization forces the job j to be

scheduled in the first position, in an attempt to reduce the processing time.

The features mentioned above show many similarities to the requirements of manu-

facturing systems currently used in industry. As demand increases, the machinery

requirements grow, so enterprises have to acquire new equipment. This is the main

reason why machines have different capacities, and it is a central part of the problem.

Capacities are considered to try to ensure efficient scheduling while avoiding over-

spending on equipment and machinery.

min 𝑓 = ∑ ∑ ∑ 𝑘𝑃𝑖𝑗𝑋𝑖𝑘𝑗

𝑛

𝑘=1

𝑛

𝑗=1

𝑚

𝑖=1

(5)

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

∑ ∑ 𝑋𝑖𝑘𝑗 = 1 𝑗 = 1, … , 𝑛

𝑛

𝑘=1

𝑚

𝑖=1

(6)

∑ 𝑋𝑖𝑘𝑗 ≤ 1 𝑖 = 1, … , 𝑚 𝑘 = 1, … , 𝑛

𝑛

𝑗=1

(7)

𝑋𝑖𝑘𝑗 ∈ {0, 1} 𝑖 = 1, … , 𝑚 𝑘 = 1, … , 𝑛, 𝑗 = 1, … , 𝑛 (8)

The mathematical formulation presents the objective function in (5), which minimizes

the total completion time of processing all the jobs. The processing time of job j de-

pends on the machine and position where it was assigned, and the processing time

kPij directly contributes to the value of the objective function.

The set of constraints represented by (6) ensures that each job will be processed only

once. Constraint (7) guarantees that each position k processes at most one job j. The

last set of constraints (8) shows that a certain job was scheduled in a certain position

in a certain machine. Therefore, xijk can only take binary values, xijk = 1 if the job

was assigned, and 0 otherwise.

4 Neighborhood Structures

A neighborhood structure is a technique implemented with an algorithm in or-

der to exploit the solution neighborhood, with the intent to improve the quality of that

solution, according to the objective function of the undertaken problem. A critical

aspect of designing some optimization algorithms is choosing an appropriate neigh-

borhood structure. This allows for better exploitation of the solution space, according

to the algorithm and the problem, because the procedure will help search for new and

improved solutions.

A neighborhood structure is determined by the criterion of neighbor selection, that is,

the movement σ carried out to reach a solution s’ from the current solution s. This

procedure is performed iteratively while the selection criterion if fulfilled.

In this research, four different neighborhood structures were applied to local search

for the CSTSP, and the UPMP. The neighborhood structures used for CSTSP and

UPMP are explained as follows:

 An Adjacent Pair. An array position num is randomly selected by the neighbor-

hood structure. According to the features of the structure, that position is permu-

tated with the position num + 1, and a new neighboring solution s’ [9, 10, 11] is

obtained. The new solution is then evaluated, according to the objective function.

 A Random Pair. Similarly, this neighborhood structure performs a single permu-

tation between two different positions of a solution. The difference from the pre-

viously described structure is the type of movement implemented to reach a

neighboring solution. In this case, two positions of the solution array are randomly

selected (num1 and num2) [1, 10, 12]. These positions must be different and not

adjacent. If the condition is fulfilled, the permutation is performed.

 Two Adjacent Pairs. In this case, the complexity of the neighborhood structure

has increased. This technique applies two permutations, unlike the previous two

structures. For this structure, it is necessary to generate two random numbers

which correspond to positions in the current solution. The selected positions, num

and num1, must be different and non-adjacent. The movement is performed with

the position adjacent [13] to the selected one; num permutes with num+1, and

num1 with num1+1. In this case there were two randomly selected jobs j, which

were non-adjacent. The jobs are then placed in the next array position, and they

are permuted in pairs, resulting in a new neighboring solution.

 Two Random Pairs. This neighborhood structure increases in complexity, be-

cause it generates four random numbers (num1, num2, num3, and num4) which

have to meet certain characteristics before being taken. The constraints include the

numbers being different and non-adjacent. Once the positions are selected, permu-

tations take place, performing swaps in pairs [12, 14, 15]. When applying this

neighborhood structure, as compared to the previous structures, the difference is

greater between the initial solution and the neighboring one. This indicates that the

neighborhood size is larger than in the other cases.

5 Variable Neighborhood Search

A variable neighborhood is a technique that incorporates specific characteristics of

more than two different neighborhoods. In the literature, some researchers have de-

veloped approaches to exploit this concept, due to its improved performance in com-

parison to basic neighborhood structures.

The development of the variable neighborhood in this paper was based on the re-

search of [3, 7, 2], their obtained results of the neighborhood structures, and the pre-

vious explanation of the CSTSP. This paper presents a more straightforward variable

neighborhood search, which incorporates basic and low-complexity searches. This

change attempts to optimize the time required to perform the local search, because it

is very time-consuming to conduct a neighborhood search.

The variable neighborhood search is able to handle variable neighborhood-sizes, due

to the random interaction of the structures during the execution time, which improves

the exploitation of the solution space. The neighborhood structures presented in this

research, including the variable neighborhood structure, were tested for the CSTSP

and the UPMP, which are contrasting problems both in concept and in complexity. In

both cases the neighborhood structures were applied to local search, although in the

case of UPMP, the local search procedure was implemented to improve the metaheu-

ristic Ant Colony. The structure of the variable neighborhood search is shown in Fig-

ure 1 [7].

All the neighborhood structures and the Ant Colony algorithm for UPMP were devel-

oped using Visual C, 2008 with Windows Vista Home Premium.

Fig. 1. Variable Neighborhood Structure for the UPMP and the TSP.

6 Experimental Results

Tests were performed on a laptop with the following characteristics: Centrino

Core 2Duo processor 2.0 GHz, 3GB RAM memory, Windows Vista Home Premium.

Neighborhood structures and the Ant Colony algorithm were developed using a

Visual C 2008 compiler. Test problems were randomly generated for 200, 500, 1000,

2000, 4000, 5000, 6000, 7000, 8000, and 9000 cities for the TSP, respectively. In the

case of UPMP, test problems were randomly generated for 200, 250, 270, and 300

jobs to be scheduled on 12 machines, respectively.

This research tested the hypothesis: “The improvement in solution quality depends not

only on the applied variable neighborhood structure, but also on the problem com-

plexity”. This research undertook two problems. Although CSTSP and UPMP are

both NP problems, their hardness is different. CSTSP has a more challenging solution

space than UPMP [1].

6.1 Experimental Results for CSTSP

All the problems were tested in all the neighborhood structures, including the

variable neighborhood one. Each neighborhood structure carried out 30 executions

per test problem.

It is noteworthy that problems were randomly generated because existing bench-

marks are smaller than the instances proposed in this research. Test problems used for

this purpose consist of a symmetric matrix of n * n, where n is the number of cities

that have to be visited in a tour. Along with the execution, only the best of the elitist

solutions were selected, using time as stop criteria. All the test problems were evalu-

ated for 5 minutes in each of the neighborhood structures, obtaining the best found

solution, and the total iterations performed during the specified time.

This procedure allows for good performance and direct comparison among the re-

sults obtained for the different implemented neighborhood structures, enabling a reli-

able efficacy and efficiency analysis.

6.2 Efficacy Testing

To understand the algorithm behavior, an efficacy analysis was conducted. Ex-

perimental tests were performed using 10 test problems randomly generated for the

CSTSP (200, 500, 1000, 2000, 4000, 5000, 6000, 7000, 8000, and 9000 cities). The

problems were evaluated using the neighborhood structures explained in Section 5.

Each neighborhood structure conducted 30 executions of 5 minutes each per test

problem. Averages of obtained results are shown in Table 1.

According to calculations presented in Table 1, the most effective neighborhood

structure in almost all cases is the variable neighborhood structure. The test problem

of 500 cities is an exception; the most effective structure was that of two random

pairs, although the difference between the best obtained averages of the two structures

was minimal. This behavior is caused by one of the main features of the use of heuris-

tics, which is that the results are not constant and do not guarantee optimality.

According to the results presented in Table 1, there is a clear improvement when im-

plementing the variable neighborhood structure for CSTSP versus using the single

straightforward neighborhood structures. The improvement was obtained not only for

the best found solution, but for the worst one also, independent of the problem size.

These results are consistent with those reported in literature.

Table 1. Average of the results obtained in experimental testing for different sized problems.

Prob_

Size

Adjacent

Pair

Random

Pair

Two Ad-

jacent Pairs

Two

Random

Pairs

variable

neighborhood

200 2012 1994 1974 1945 1944

500 5161 5118 5124 5057 5098

1000 49661 49375 49202 49166 49128

2000 101075 100617 100467 100856 100232

4000 198292 198092 197373 197524 197280

5000 52345 51885 51762 51831 51742

6000 61216 61173 61178 61228 61168

7000 72036 72100 72030 72078 72014

8000 82539 82617 82284 82482 82238

9000 973283 973009 972938 972947 972930

6.3 Efficiency Testing

The efficiency is a measure of the time required to find a high quality solution. In

this research, efficiency was calculated for 1000 solutions found by each neighbor-

hood structure, and the different sizes of test problems (200, 500, 1000, 2000, 4000,

5000, 6000 cities, respectively) that were studied. Results are shown graphically in

Figure 2.

Figure 2 shows that the behavior of all the evaluated neighborhood structures is very

similar for small instances (from 200 to 2000 cities). Starting at 4000 cities, some

neighborhood structures begin to require more computational effort to find solutions.

Naturally, the interesting cases are the results obtained for large problems (from 4000

to 6000 cities). In these cases, there is a clear difference in efficiency under the same

conditions, when only the size of the test problem varies. According to the calcula-

tions plotted in Figure 8, the behavior of the variable neighborhood structure is con-

stant for large problems. This demonstrates the variable neighborhood structure’s

efficiency as competitive, because it shows better efficiency than the neighborhood

structure of two adjacent pairs and two random pairs in most of cases.

Fig. 2. Time required for five different neighborhood structures to find 1000 solutions for test

problems of different sizes (from 200 – 6000 cities).

6.4 Experimental Results for UPMP

Experimental tests for UPMP were conducted in the same way for the CSTSP.

Therefore, all the test problems were tested, and the Ant Colony algorithm was im-

plemented in all of the neighborhood structures, including the variable neighborhood

one. Each neighborhood structure carried out 30 executions per test problem.

Problems were randomly generated. Test problems used for this problem consist of a

matrix of n * mn, where n is the number of jobs that have to be scheduled in m ma-

chines with k positions each one (k = n). Along with the execution, only the best of

the elitist solutions were selected, using time as stop criteria. The Ant Colony algo-

rithm was executed for 3 hours, obtaining the best found solution, and the total num-

ber of iterations performed during the specified time.

This procedure allows for good performance and direct comparison among the results

obtained for the different implemented neighborhood structures, enabling a reliable

efficacy and efficiency analysis.

6.5 Efficacy Testing

Experimental tests were performed using 4 test problems randomly generated for

the UPMP of 200, 250, 270, and 300 jobs, respectively, which have to be scheduled

on k positions (number of jobs) of 12 machines. The problems were evaluated using

the neighborhood structures explained in Section 5, which were implemented into an

Ant Colony algorithm, in order to get an improvement in the quality of solution. The

enhancement procedure was applied to the neighborhood of the best solution so far.

The Ant Colony algorithm conducted 30 executions per test problem on each neigh-

borhood structure. The executing time was almost 3 hours, depending on the input

size. Averages of obtained results are shown in Tables 2.

According to calculations presented in Table 2, and contrary to results obtained for

CSTSP using the same neighborhood structures, the best solution was found in all

cases by the random pair neighborhood structure, leaving the variable structure in

second place.

Table 2. Average results obtained in experimental testing for different sized problems.

Problem Size

Jobs * Ma-

chine

Adja-

cent Pair

Ran-

dom Pair

Two Ad-

jacent Pairs

Two

Random

Pairs

variable

neighborhood

200*12 2648 2317 2768 2678 2320

250*12 3928 3460 3465 3998 3515

270*12 4908 4279 4389 4986 4582

300*12 5948 5139 5232 5975 5388

This research demonstrates that although CSTSP and UPMP are both NP problems,

their hardness is different. CSTSP has a harder solution space than UPMP [1]. There-

fore, the variable neighborhood structure has more benefits for hard problems, as

opposed to less hard problems where it is easier to find good solutions.

6.6 Efficiency Testing

According to the calculations plotted in Figure 3, the behavior of the variable

neighborhood structure’s efficiency is competitive, because it shows better efficiency

than the neighborhood structure of two adjacent pairs and two random pairs in most

of cases.

Fig. 3. Time required for each neighborhood structure to find a solution.

7 Conclusions

Many experimental tests were performed for two combinatorial problems with

different hardness in their solution space. The problems studied were CSTSP and

UPMP. In both cases, test problems were randomly generated, according to the prob-

lems’ features. Experimental results showed a difference in the variable neighborhood

structure performance, because in the case of CSTSP, excellent quality solutions were

obtained by the variable neighborhood structure. For UPMP, the same structure did

not obtain the best solutions.

According to experimental analysis, the hypothesis presented in this paper is con-

firmed. The contribution of this research is the experimental proof that not all the

variable neighborhood structures work well in all discrete optimization problems

when compared to other straightforward structures. This is seen clearly in the case of

UPMP, where a straightforward structure gets better quality solutions than the varia-

ble neighborhood one.

This research demonstrates that although CSTSP and UPMP are both NP problems,

CSTSP has a harder solution space than UPMP. The variable neighborhood structure

has more benefits for harder problems, as opposed to less hard problems where it is

easier to find good solutions.

8 References

1. Papadimitriou C.H. & Steiglitz K., Combinatorial Optimization, Algorithms and Complex-

ity. Inc. Mineola, New York. USA. Dover Publications, (1998).

2. Arajy Yahya Z. & Abdullah S., Hybrid Variable Neighborhood Algorithm for Attribute

Reduction in Rough Set Theory. Cairo, Egypt. 10th. International Conference on Intelligent

Systems Design and Applications, ISDA. IEEE, (2010).

3. Hansen P. & Mladenović N., Variable Neighborhood Search: Principles and Applications.

pp. 449 – 467. European Journal of Operational Research, (1999).

4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A. & Protasi,

M., Complexity and Approximation: Combinatorial Optimization Problems and their Ap-

proximability Properties. Springer-Verlag, (1999).

5. Liu S. B., Ng K. M. & Ong. H. L., A New Heuristic Algorithm for the Classical Symmet-

ric Traveling Salesman Problem. pp. 267-271. World Academy of Science, Engineering

and Technology, (2007).

6. Fischetti M., Salazar-González J. J. & Toth P., The Symmetric Generalized Traveling

Salesman Polytope. CCC 0028-3045/95/020113-11. pp. 113-123. Vol. 26. Issue. 2. Journal

NETWORKS, (1995).

7. Cruz-Chávez M. A., Martínez-Oropeza A. & Serna-Barquera S. A., Neighborhood Hybrid

Structure for Discrete Optimization Problems. ISBN-13: 978-0-7695-4204-1. pp. 108 –

113. Proceedings IEEE Electronics, Robotics and Automotive Mechanics Conference.

CERMA, (2010).

8. Garey M. R., Johnson, D.S. & Shethi R., The Complexity of Flow Shop and Job Shop

Scheduling. Vol. 1, No.2. pp. 117-129. Mathematics of Operation Research, (1976).

9. Lin S. & Kernighan W., An Effective Heuristic for the Traveling Salesman Problem. Vol.

21, No. 2. DOI: 10.1287/opre.21.2.498. Operations Research, (1973).

10. González-Velázquez R. & Bandala-Garcés M. A., Hybrid Algorithm: Scaling Hill and

Simulated Annealing to Solve the Quadratic Allowance Problem. Guerrero, México. 3th.

Latin-Iberoamerican Workshop of Operation Research, (2009).

11. Pacheco J. & Delgado, C., Different Experiences Results with Local Search Applied to

Path Problem. pp. 54- 81. Vol. 2, No. 1. ISSN: 1575-605X. Electronic Journal of Electron-

ics of Comunications and Works ASEPUMA, (2000).

12. Kenneth D. B., Cost Versus Distance in the Traveling Salesman Problem. Dept. Los Ange-

les. CA 90024 1596. Citeseer. USA. UCLA Computer Science, (1995).

13. Lourenço H. R. & Martin O. C., Iterated Local Search. Vol. 57. pp. 320 -353. Handbook of

Metaheustics. International Series in Operations Research & Management Science.

SpringerLink, (2003).

14. Martin O., Otto S. W. & Felten E. W., Large Step Markov Chains for the Traveling Sales-

man Problem. pp 299-326. Complex Systems, (1991).

15. Martin O., Otto S. W. & Felten E. W., Large Step Markov Chains for the TSP Incorporat-

ing Local Search Heuristics. pp 219-224. Operations Reasearch, (1992).

16. Pinedo M. L., Scheduling Theory, Algorithms, and Systems. Third Edition. New York

University. ISBN: 978-0-387-78934-7, e-ISBN: 978-0-387-78935-4. Ed. Prentice Hall,

(2008).

