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Experimental Analysis with Variable 
Neighborhood Search for Discrete 
Optimization Problems

INTRODUCTION

Many problems within the Combinatorial Optimization 
area considered as NP-Complete problems (Papadimi-
triou & Steiglitz, 1998) require the use of heuristics to 
obtain high-quality solutions, due to their complexity 
and nature. One of the most frequently used is local 
search. It starts with an initial solution then applies a 
sequence of local changes in attempt to improve the 
value of the objective function and obtain the local op-
tima. The types of movements applied in local searches 
are called neighborhood functions or neighborhood 
structures because they access to neighboring solutions 
and define the size of the neighborhood.

Sometimes the use of a sole heuristic is not enough 
to find good solutions for hard problems, because the 
solution space is very complex. In such cases, the vari-
able neighborhood structures have demonstrated being 
efficient search methods for these problems.

This article presents two important optimization 
problems undertaken by different neighborhood struc-

tures, the Classical Symmetric Travelling Salesman 
Problem (CSTSP), and the Unrelated Parallel Machines 
Problem (UPMP).

An analysis of efficacy and efficiency is performed 
to identify the best neighborhood structure for each 
problem before its implementation within a heuristic 
or metaheuristic, such as Iterated Local Search, Tabu 
Search (Michaelewicz & Fogel, 2000), Memetic Al-
gorithms (Cruz et al., 2008), Ant Colony (Alba, 2005), 
among others. The hybridization using heuristics and 
local search has been shown to be more efficient and 
effective in searching for solutions to NP problems 
than the heuristic alone.

There is some research in the literature about vari-
able neighborhood search, as they are referred to in this 
article. Arajy y Abdullah (2010a) present a two-phase 
hybrid approach; the structure combines a variable 
neighborhood search (VNS) in the first-phase with an 
iterated local search in the second-phase, while always 
accepting the best solutions. The VNS involves 13 
different neighborhood structures, which are randomly 
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selected during execution. Experimental results show 
the algorithm is competitive with other approaches in 
literature. For nine data sets, it obtained one improved 
and eight equal solutions.

In (Hansen & Mladenović, 1999) a VNS imple-
mented in a local search algorithm is presented. In 
addition, some modifications of this approach are ex-
plained. Variants of VNS were tested in five problems: 
Travelling Salesman Problem (TSP), p-median Problem 
(PM), Multi-source Weber Problem (MW), Minimum 
Sum-of-squares Clustering Problem (MSSCC), and Bi-
linear Programming Problem with Bilinear Constraints 
(BBLP), showing competitive results especially for the 
PM and MW problems. In (Arajy & Abdullah, 2010b) 
a VNS is presented in the first-phase, with an iterated 
local search in the second-phase for the Attribute 
Reduction in Rough Set Theory. The approach was 
tested in over 13 well-known datasets. Experimental 
results demonstrate that the VNS was able to produce 
solutions competitive with the best techniques.

This research was motivated by the continuous 
need to find high-quality solutions for important 
combinatorial problems; such as TSP and UPMP, 
because in Metaheuristics, the local search is the most 
time-consuming procedure. Therefore, in this research 
a VNS is applied to an NP and an NP-Complete prob-
lem to observe its performance in different complexity 
problems, under the same conditions.

Experimental results show that the good perfor-
mance of a VNS depends on the search space complexity 
of the problem. High-quality solutions are obtained 
for CSTSP (classified as NP-Complete problem), but 
poor-quality solutions for UPMP (a less complex NP 
problem). Although in most cases VNS produce very 
good solutions, the results show that this is not a rule 
for all discrete optimization problems. The contribution 
of this research is the finding that the performance of 
local search depends on the hardness of the problem. 
Contrary to what one might expect, the performance 
only is better for the NP-complete problem than for 
the NP problem, both studied in this article.

This article is organized as follows. Section two 
presents an introduction to the complexity problems 
undertaken, which are the CSTSP and the UPMP. 
Section four describes the neighborhood structures 
tested in this research. Section five details the proposed 
VNS and the experimental tests. Section six explains 
the statistical analysis of the obtained results for each 
structure. Finally, section seven presents conclusions.

BACKGROUND

This article presents four different neighborhood struc-
tures and a variable one applied to a model of the CSTSP 
and to the UPMP. Each of these problems has different 
complexities between them, being NP-complete the 
first one and NP de second one. A description of the 
characteristics of the undertaken problems is presented. 
All the neighborhood structures, including the variable 
one were applied on the CSTCP and the UPMP. Next, 
the tests run using the Solomon benchmarks are shown. 
Finally the conclusions of this article are presented.

COMPLEXITY PROBLEMS

The Complexity Theory is an important part of compu-
tational sciences; it classifies the combinatorial prob-
lems taking into account their nature and complexity, 
according to time (steps required by an algorithm to 
solve a problem), and the space (amount of memory 
necessary to solve a problem) (Cortéz, 2004). Problems 
are classified as P, NP, and NP-Complete. P problems 
can be solved by exact methods in polynomial time. 
In the case of NP problems, there is no-known exact 
algorithm that solves them in all their instances, thus 
it is necessary to use heuristic methods to find high-
quality solutions in a reasonable computational time. 
Problems classified as NP-Complete are the hardest 
problems.

Classical Symmetric Traveling 
Salesman Problem

The Classical Symmetric Traveling Salesman Problem 
(CSTSP) is a discrete optimization problem classified 
as NP-complete (Papadimitriou & Steiglitz, 1998, 
Ausiello, et al., 1999) due to its complexity and nature. 
The importance of this problem lies on its importance 
in several areas of industry, such as logistics and deliv-
ery, and is reflected in economic losses. This problem 
has been widely studied by means of many different 
optimization methods such as heuristics, including 
local search, which is used to find near-optimal solu-
tions when solving larger instances in a reasonable 
computational time (Ausiello, et al., 1999).

The aim of the CSTSP is to minimize the total 
travel distance when visiting all the cities exactly 
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once and returning to the home town (Liu, et al., 
2007). Considering the complexity of this problem, 
it is necessary to implement heuristics because of the 
size of the solution space as specified by n!, where n 
is the total of cities to visit. Therefore, the complexity 
increases as the input size grows.

This problem is generally modeled by a graph 
(Figure 1) G=(V,E) of a finite set V of vertices, iden-
tifying the cities, and a finite multiset E of edges or 
distances between cities, that is, unordered pairs (i,j) 
of cities, where each city must be visited only once, 
trying to minimize the total travel distance. The tour 
has a beginning city and an ending one. Therefore, E 
= {(i,j): i, j∈V} and cij is the cost (distance) associated 
with the edge (i,j).

The integer linear programming model (Fischetti, 
et al., 1995), shows the objective function as instruc-
tion 1, where the aim is to minimize the total travel 
cost based on the following constraints, which must be 
met to obtain feasible solutions. The set of constraints 
2 specifies that only city i can be reached from city j; 
the set of constraints 3 specifies that only city j can 
be reached from city i and the last one ensures that all 
the cities have been visited.

Integer linear programming formulation for the 
CSTSP (Fischetti, et al., 1995):
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ij ij
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Unrelated Parallel Machines Problem

The Unrelated Parallel Machines Problem (UPMP) is a 
variant of the Classical Job Shop Scheduling Problem 
(CJSSP), where some constraints are relaxed to get a 
mapping of UPMP (Cruz, et al., 2010). This problem 
is classified as NP (Garey et al.,1976) because of its 
complexity. Consequently, it can be formulated by 
Binary Integer Linear Programming (BILP), which 
undertakes the problem by heuristics (Papadimitriou 
& Steiglitz, 1998).

The scheduling of a solution for UPMP is subject 
to the mathematical formulation (Pinedo, 2008), where 
expression 1 specifies the objective function, which 
minimizes the total completion time of processing 
all the jobs. The processing time kPij of job j depends 
on the machine and position where it was assigned, 
contributing to the value of the objective function. The 
set of constraints in expression 2 ensures that each job 
will be processed only once. Expression 3 guarantees 
that each position k processes at most one job j. The 
set of constraints 4 shows that the time of processing 
a certain job depends on the position of a certain ma-
chine, which involves a penalization according to the 
assigned position, where xijk=1 if the job was assigned 
and 0 otherwise.

Binary Integer Linear Programming Model for the 
UPMP (Pinedo, 2008):

min f kP X
ij ikj
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Subject to:

Figure 1. Undirected graph for the CSTSP
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The features mentioned above show many simi-
larities to the requirements of manufacturing systems 
currently used in industry. As demand increases, the 
machinery requirements grow, which is why the enter-
prises have to invest in new equipment, thus machines 
have different capacities.

Neighborhood Structures

Each optimization problem has a set of possible solu-
tions, according to its classification within the Com-
plexity Theory. The problem requires the use of 
techniques that allow better exploitation of the solution 
space, and consequently high-quality solutions. These 
types of techniques applied to local search are better-
known as neighborhood structures, which defines the 
neighborhood and how to access neighboring solutions 
from the initial one. Therefore, any solution s '  is 
directly reachable from s through a movement σ, thus

s N s' ∈ ( )  . Accordingly, the neighborhood is defined 
as N: S→2s. Consequently, the structure and the size 
of a neighborhood are defined by the type of movement 
applied in a local search.

A neighborhood structure is an iterative technique 
implemented with an algorithm, with the intent to 
improve the quality of solutions, according to the 
objective function of the problem. A critical aspect of 
designing some optimization algorithms is choosing 
an appropriate neighborhood structure.

In this research, four different neighborhood 
structures were applied to local search for the CSTSP, 
and the UPMP. The neighborhood structures are very 
similar for both problems, so the used for UPMP are 
explained as follows:

An Adjacent-Pair

Regardless of the problem undertaken, it is necessary 
to find an initial feasible solution s that is randomly 
generated at the beginning of the procedure. This solu-
tion is stored in a bi-dimensional array, so an array 
position num is randomly selected by the neighborhood 
structure. According to the features of the structure, 
that position is permutated with the position num+1, 
and a new neighboring solution s '  (Lin & Kernighan, 
1973 ; González & Bandala, 2009; Pacheco & Del-
gado, 2000) is obtained (Figure 2) for being evaluated. 
If s '  improves the best solution so far, it will replace 

Figure 2. Movement applied in a neighborhood structure of an adjacent-pair for the UPMP
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by the new best solution. This procedure, called local 
search, is performed iteratively until the best solution 
cannot be improved.

In the case of CSTSP, the permutation is performed 
similarly; the difference lies on the representation of a 
solution, which is stored in a one-dimensional array. 
Unlike CSTSP, a solution to UPMP is composed of 
the job j, the machine i and position k, where j was 
processed.

A Random-Pair

Similarly, this neighborhood structure performs a 
single permutation (Figure 3) between two positions 
randomly selected num1 and num2 of a solution. (Pa-
padimitriou & Steiglitz, 1998; González & Bandala, 
2009; Kenneth, 1995). These positions must be different 
and not adjacent.

Figure 3. Movement applied in a neighborhood structure of a random-pair for the UPMP

Figure 4. Movement applied in a neighborhood structure of two-adjacent pairs for the UPMP



Experimental Analysis with Variable Neighborhood SearchCategory: IT Research and Theory

 I

4095

Two-Adjacent Pairs

This technique applies two permutations; contrary to 
the other two structures presented before. Therefore, 
it is necessary to select two random positions num and 
num1 in the current solution; which must be differ-
ent and non-adjacent. Each movement is performed 
with its adjacent position (Lourenço, Martin, 2003); 
num permutes with num+1, and num1 with num1+1 
(Figure 4).

Two-Random Pairs

This neighborhood structure increases in complex-
ity, selecting four different and non-adjacent random 
positions (num1, num2, num3, and num4). After that, 
permutations take place (Figure 5) performing swaps 
in pairs (Kenneth, 1995; Martin et al., 1991; Martin 
et al., 1992).

When applying this neighborhood structure, the 
difference with the previous structures is greater 
between the initial solution and the neighboring one, 
because the neighborhood size is larger than in the 
other cases. As well as the computational complexity, 
this depends directly on the size of the neighborhood, 
and allows obtaining better local minima (Voudouris 
& Tsang, 1998).

Variable Neighborhood Search

A VNS is a technique that incorporates more than 
two different neighborhoods. In the literature, some 
researchers have developed approaches to exploit this 
concept, due to its improved performance as compared 
to basic neighborhood structures.

The development of the VNS in this article was 
based on the research of (Hansen & Mladenović, 1999; 
Cruz et al., 2010; Arajy & Abdullah, 2010a). This 
article presents a more straightforward VNS, which 
incorporates basic and low-complexity structures. 
This change attempts to optimize the time required to 
perform the local search.

The VNS is able to handle variable neighborhood 
sizes, due to the random interaction of the structures 
during the execution time, which improves the exploi-
tation of the solution space. Neighborhood structures 
presented in this research were tested for the CSTSP 
and the UPMP, which are contrasting problems both in 
concept and in complexity. In both cases the neighbor-
hood structures were applied to local search, although 
in the case of UPMP, the local search was implemented 
through the metaheuristic Ant Colony.

Movements performed in the VNS are shown 
below for the UPMP (Figure 6), being very similar 
its application in CSTSP. The only difference is that 
the neighborhood structures applied to UPMP were 

Figure 5. Movement applied in a neighborhood structure of two-random pairs for the UPMP
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implemented when local search was used, in order to 
improve the efficacy of the Ant Colony Algorithm, 
and in CSTSP correspond to a local search.

At the end of the iteration, the Ant Colony obtains 
its best solution so far, which has to be improved. 
Subsequently, the local search applies the structures 
randomly, until the stop criterion is met. The stop cri-
terion could be processing time or a specific number 
of iterations. Local search procedure tries to improve 
the solution by obtaining neighboring solutions, which 
are evaluated according to the objective function and 
the problem constraints. Figure 7 shows the operation 
of the VNS (Cruz et al., 2010).

Experimental Results

Experimental testing was performed according to 
guidelines in (Arajy & Abdullah, 2010b; Barr et al., 
1995), where the authors explain how to design and 
report computational experimental results of algo-
rithms, taking into account a reasonable number of test 
problems executed under the same conditions. Tests 
were performed on a laptop with a Centrino Core2Duo 
2.0 GHz., 3GB RAM, Windows Vista Home Premium.

Neighborhood structures and the Ant Colony algo-
rithm were developed using Visual C 2008 compiler. 
Test problems were randomly generated for 200, 500, 
1000, 2000, 4000, 5000, 6000, 7000, 8000, and 9000 
cities for the CSTSP. In the case of UPMP, test problems 

Figure 6. Random movements applied in the VNS for the UPMP
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were randomly generated for 200, 250, 270, and 300 
jobs to be scheduled on 12 machines.

This research tested the hypothesis: “The improve-
ment in solution quality depends not only on the 
applied VNS, but also on the problem complexity.” 
This research undertook the CSTSP and UPMP, both 
NP problems, but with different hardness. Therefore, 
CSTSP has a more challenging solution space than 
UPMP (Papadimitriou & Steiglitz, 1998).

CSTSP: Experimental Results

According to (Arajy & Abdullah, 2010a; Barr et al., 
1995), both problems were tested in all the neighbor-
hood structures, including the proposed VNS. Each 

neighborhood structure performed 30 executions per 
test problem of 5 minutes each one, obtaining the best 
found solution, and the total iterations conducted dur-
ing the specified time.

It is noteworthy, that problems were randomly 
generated because existing benchmarks are smaller 
than the instances proposed in this research. The test 
problems consist of a symmetric matrix of n*n, where 
n is the total number of cities to be visited in a tour. 
Along with the execution, only the best of the elitist 
solutions were selected, using time as stop-criteria.

This procedure allows for good performance and 
direct comparison among the results obtained for 
the different implemented neighborhood structures, 
enabling a reliable efficacy and efficiency analysis.

Figure 7. VNS for the UPMP and the CSTSP
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Efficacy Testing

To understand the algorithm behavior, an efficacy 
analysis was conducted. This allows examination of 
the dispersion among the obtained solutions. On the 
other hand, the relative standard error is the percent 
error between the best-found solution and the best-
known solution (in some cases, the optimal solution).

Experimental tests were performed using 10 test 
problems randomly generated for the CSTSP (200, 
500, 1000, 2000, 4000, 5000, 6000, 7000, 8000, and 
9000 cities). The problems were evaluated using the 
neighborhood structures explained in Section 5. Each 
neighborhood structure conducted 30 executions of 5 

minutes each per test problem. Average and standard 
deviation of obtained results are shown in Tables 1 and 2.

According to calculations presented in Table 1, 
the most effective neighborhood structure in almost 
all cases is the VNS. The test problem of 500 cities is 
an exception; the most effective structure was that of 
two-random pairs, although the difference between the 
best obtained averages of both structures was minimal. 
This behavior is caused because heuristics do not 
guarantee optimality.

In the case of standard deviation (Table 2), the 
results obtained by the VNS show greater dispersion 
than the results obtained by the other structures. This 
is due to the neighborhood size variations. In this case 
the VNS allows a better exploitation of the solution 
neighborhood.

Table 1. Average of the results obtained in experimental testing for different sized problems 

Prob_Size Adjacent Pair Random Pair Two Adjacent 
Pairs

Two Random Pairs Variable 
Neighborhood

200 2011.87 1994 1974 1945.13 1944.96

500 5161.43 5118.1 5123.6 5057.3 5098.13

1000 49661.27 49374.5 49202.43 49166.06 49128.23

2000 101074.97 100616.90 100466.86 100856.36 100231.90

4000 198292.23 198092.4 197373 197523.46 197280.03

5000 52344.83 51885.2 51761.7 51830.53 51742.43

6000 61215.9 61172.7 61178.2 61227.93 61168.23

7000 72035.5 72100.3 72029.5 72077.73 72014.30

8000 82539.57 82617.4 82283.5 82482.17 82238.10

9000 973283.4 973009.1 972938 972946.80 972929.50

Table 2. Standard Deviation obtained in experimental testing for different sized problems 

Prob_Size Adjacent Pair Random Pair Two Adjacent 
Pairs

Two Random Pairs Variable 
Neighborhood

200 57.9 60.89 48.41 51.17 63.66

500 57.95 69.86 57.38 69.33 70.17

1000 524.69 586.61 578.73 788.93 794.61

2000 519.92 630.07 704.82 818.71 845.60

4000 423.03 575.06 540.39 616.91 874.81

5000 263.7996 277.564 271.6555 292.0796 322.302

6000 171.4664 196.9481 175.9626 215.913 353.9473

7000 168.293 203.0889 209.5244 314.2264 367.5941

8000 377.5554 420.6904 373.8884 439.077 971.8005

9000 219.3942 223.218 207.4521 252.1876 274.8439



Experimental Analysis with Variable Neighborhood SearchCategory: IT Research and Theory

 I

4099

Figure 8. Best/worst solutions obtained for a)200, b)500, c)1000, d)2000, e)4000, f)5000, g)6000, h)7000, i)8000, 
and j)9000 cities, respectively
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The analysis of the obtained results for each test 
problem is shown in the graphs below (Figure 8a-j), 
according to each neighborhood structure.

According to the results presented in graphs 10a–
10j, there is a clear improvement when implementing 
the VNS for CSTSP versus using the single straight-
forward neighborhood structures. The improvement 
was obtained not only for the best found solution, but 
for the worst one also, independent of the problem 
size. These results are consistent with those reported 
in literature.

Efficiency Testing

The efficiency is a measure of the time required to find 
a high-quality solution. In this research, efficiency was 
calculated for 1000 solutions found by each neighbor-
hood structure, and the different sizes of test problems 
(200, 500, 1000, 2000, 4000, 5000, 6000, 7000, 8000, 
and 9000 cities) that were studied. Results are shown 
in Figure 9.

Figure 9 shows the behavior of different structures 
as they find 1000 solutions, independent of the test 
problem’s size. According to the graph, the behavior 
of all the evaluated neighborhood structures is very 
similar for small instances (200-2000 cities). Starting 
at 4000 cities, some neighborhood structures begin to 
require more computational effort to find solutions.

Naturally, the interesting cases are the results ob-
tained for large problems (4000-9000 cities). In these 
cases, there is a clear difference in efficiency under the 
same conditions, when the size of the instance varies. 
Thus, Figure 9 demonstrates that the VNS’s efficiency is 
competitive, because it shows better efficiency than the 
neighborhood structure of two-adjacent pairs and two-
random pairs in most of cases, falling in the middle of 
the efficiency graph. This is a logical behavior because 
it includes the characteristics of the four neighborhood 
structures, which are randomly selected.

UPMP: Experimental Results

Experimental tests for UPMP and CSTSP were con-
ducted equally. Therefore, all the instances were tested, 
and the Ant Colony algorithm was implemented in all 
of the neighborhood structures, including the VNS. 
Each neighborhood structure performed 30 executions 
per instance.

Instances were randomly generated based on a 
matrix of n*mn, where n is the number of jobs that 
have to be scheduled in m machines with k positions 
each one (k=n). Along with the execution, only the 
best solution is selected, using time as stop criteria. 
The Ant Colony algorithm was executed for 3 hours, 
obtaining the best-found solution, and the total number 
of iterations performed during the specified time.

This procedure allows for good performance and 
direct comparison among the results obtained for 
the different implemented neighborhood structures, 
enabling a reliable efficacy and efficiency analysis.

Efficacy Testing

Experimental tests were performed using 4 test prob-
lems randomly generated for the UPMP (200, 250, 
270, and 300 jobs), which have to be scheduled on k 
positions of 12 machines. The problems were evalu-
ated using the neighborhood structures explained in 
Section 5, which were implemented into an Ant Colony 
algorithm, in order to get an improvement in the quality 
of solution. The enhancement procedure was applied 
to the neighborhood of the best solution so far. The 
Ant Colony algorithm conducted 30 executions per 
test problem on each neighborhood structure. The 
executing time was almost 3 hours, depending on the 
input size. Average and standard deviation of obtained 
results are shown in Tables 3 and 4.

According to calculations presented in Table 3, 
and contrary to results obtained for CSTSP using the 
same neighborhood structures, the best solution was 
found in all cases by the random-pair neighborhood 
structure, leaving the VNS in second place. With respect 
to standard deviation, as in the CSTSP, the VNS has 
the highest dispersion of solutions.

The optimal solution was obtained using the Sim-
plex algorithm, which spent three days finding the 
optimal. It is noteworthy that the Simplex algorithm 
had to be executed on a workstation with memory of 20 
GB and an Intel Xeón Cuad-Core 3.16 GHz. processor, 
due to the nature of the method.

Standard relative error (Table 5) was calculated 
to determine how close the obtained solution was to 
the optimal.

These results (Figure 10) show clearly that the 
best option for UPMP is a straightforward random-
pair structure, due to its low relative standard error 
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of around 1%, which represents a great improvement 
in the solution quality. The VNS achieved a relative 
standard error of 2%, which is considered slightly high 
within the combinatorial optimization area.

Comparing the obtained results of different neigh-
borhood structures, it can be observed that it is possible 
to obtain better-quality solutions for this problem by 
applying a straightforward structure. These results are 
not consistent with the literature.

This research demonstrates that although CSTSP 
and UPMP are both NP problems, their hardness is 
different. CSTSP has a harder solution space than 
UPMP (Papadimitriou & Steiglitz, 1998). Therefore, 
the VNS has more benefits for hard problems, as op-
posed to less-hard problems, where it is easier to find 
good solutions.

The analysis of the best obtained results for each test 
problem is shown in Figure 11. The behavior of each 
neighborhood structure for some specific problems is 
compared with the optimal solution.

Figure 11 shows the value of the best solutions 
obtained by different neighborhood structures for 
different sized test problems, comparing the results 
with the optimal. According to these results, the high 
improvement was achieved by the random-pair neigh-
borhood structure, leaving the VNS in second place 
with 2% standard relative error.

Efficiency Testing

The efficiency of this algorithm was obtained by com-
paring the time required to find a high-quality solution 
with the time required by the Simplex algorithm. In 
the case of Classical Simplex, the time required to find 
the optimum grows exponentially as the input size 
increases. The comparison between Simplex and Ant 
Colony with a VNS is shown in Figure 12.

To obtain an efficiency analysis, some calculations 
of the required time to find a solution were performed 

Table 5. Relative Standard Error obtained for the evaluated structures using different sized problems 

Prob_Size 
Jobs * Machine

Adjacent Pair Random Pair Two Adjacent 
Pairs

Two Random Pairs Variable 
Neighborhood

200*12 2.26% 0.94% 3.81% 2.35% 1.88%

250*12 3.23% 0.97% 4.14% 3.62% 1.92%

270*12 3.77% 0.99% 5.74% 3.99% 1.97%

300*12 4.00% 1.11% 6.71% 4.11% 2.14%

Table 3. Average results obtained in experimental testing for different sized problems 

Prob_Size 
Jobs * Machine

Adjacent Pair Random Pair Two Adjacent 
Pairs

Two Random Pairs Variable 
Neighborhood

200*12 2648.00 2316.60 2768.40 2678.00 2320.00

250*12 3928.60 3460.17 3465.00 3997.70 3515.07

270*12 4907.67 4279.00 4389.34 4986.21 4581.9

300*12 5948.07 5139.00 5232.12 5974.98 5387.87

Table 4. Standard Deviation obtained in experimental testing for different sized problems 

Prob_Size 
Jobs * Machine

Adjacent Pair Random Pair Two Adjacent 
Pairs

Two Random Pairs Variable 
Neighborhood

200*12 59.90 91.41 82.67 112.60 139.32

250*12 68.32 105.03 97.12 129.78 134.43

270*12 79.95 159.86 118.09 339.12 449.04

300*12 95.34 118.34 175.03 253.90 280.48
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Figure 10. Relative Standard Error obtained by evaluated neighborhood structures

Figure 11. Best Solution obtained by evaluated neighborhood structures for test problems of 200, 250, 270, and 
300 jobs with 12 machines



 I

Category: IT Research and TheoryExperimental Analysis with Variable Neighborhood Search

4104

for each neighborhood structure, according to the test 
problem size. Figure 12 shows graphically the con-
ducted calculations. In the case of CSTSP, it shows 
that the efficiency of the VNS is competitive with 
the other structures evaluated for two problems with 
different complexities. The experimental results were 
not as expected, because the VNS behaved differently 
for UPMP than for CSTSP, where the structure dem-
onstrated excellent performance.

CONCLUSION

The most important aspects when evaluating meta-
heuristics are efficacy and efficiency. Efficacy refers 
to quality of solutions compared with the best-known 
bounds. Efficiency refers to the time required for the 
algorithm to find good-quality solutions.

Many experimental tests were performed for two 
problems (CSTSP and UPMP) with different hardness. 
In both cases, test problems were randomly generated, 

according to the problems’ features. Experimental 
results showed a difference in the VNS performance. 
In the case of CSTSP, excellent-quality solutions were 
obtained, but for UPMP the structure did not obtain 
the best solutions.

According to experimental analysis, the hypothesis 
presented at this article is confirmed. The contribu-
tion of this research is the experimental proof that not 
all the VNSs work well in all discrete optimization 
problems versus other straightforward structures. This 
is seen clearly in the UPMP, where a straightforward 
structure gets better quality solutions than the VNS.

This research demonstrates that although CSTSP 
and UPMP are both NP, CSTSP has a harder solution 
space than UPMP (Papadimitriou & Steiglitz, 1998). 
Therefore, the VNS has more benefits for harder 
problems, as opposed to less-hard problems, where 
it is easier to find good solutions. In industry, this is 
shown as savings in time, gas and reducing the quan-
tity of vehicles used for delivery, as well as salary of 
the drivers.

Figure 12. Time required for each neighborhood structure to find a solution
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FUTURE RESEARCH DIRECTIONS

This research is the first step before applying the 
proposed VNS with a heuristic method. In addition, 
the experimental tests will be performed to differ-
ent combinatorial problems, taking into account P 
problems, with the aim of reinforce the hypothesis 
presented in this work.
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KEY TERMS AND DEFINITIONS

Combinatorial Optimization: Area of computer 
science that studies difficult combinatorial problems by 
means of the applications of algorithms theory trying 
to solve them bounding ad exploring their search space.

Heuristics: Computational methods based on ex-
perience applied to tackle difficult combinatorial prob-
lems in a reasonable time without ensure optimality.

Local Search: Method that starts with an initial 
solution then applies a sequence of local changes in 
attempt to improve the value of the objective function 
and obtain the local optima.

Neighborhood: Set of solutions close to a given 
initial solution that could be reached applying a σ 
movement.

Neighborhood Structures: Technique implement-
ed with an algorithm in order to exploit the solution 
neighborhood, with the intent to improve the quality 
of solutions, according to the objective function of the 
undertaken problem. Neighborhood structures define 
the size of the neighborhood.

NP-Complete: Well-known as intractable prob-
lems, are the hardest problems classified by the 
complexity theory. Therefore, there is no known exact 
algorithm that solve them in all their instances, thus 
it is necessary to use heuristic methods to find high-
quality solutions in a reasonable computational time.


