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Featured Application: This research allows improving the schedule of jobs in manufacturing
workshops and this increases the amount of products without having the need to increase the
production machines.

Abstract: This paper presents a parallel algorithm applied to the job shop scheduling problem
(JSSP). The algorithm generates a set of threads, which work in parallel. Each generated thread,
executes a procedure of simulated annealing which obtains one solution for the problem. Each
solution is directed towards the best solution found by the system at the present, through a procedure
called effective-address. The cooperative algorithm evaluates the makespan for various benchmarks
of different sizes, small, medium, and large. A statistical analysis of the results of the algorithm
is presented and a comparison of performance with other (sequential, parallel, and distributed
processing) algorithms that are found in the literature is presented. The obtained results show that
the cooperation of threads carried out by means of effective-address procedure permits to simulated
annealing to work with increased efficacy and efficiency for problems of JSSP.
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1. Introduction

The job shop scheduling problem (JSSP) appears in the manufacturing industry and is classified by
the theory of complexity as one of the most difficult problems to solve within the class of NP-complete
problems [1], where NP, indicates non-polynomial behavior problems, that is, problems that do not
have an exact algorithm that can solve them in polynomial time. Due to the difficulty of solving
this problem, it is important to look for new alternatives in the solution thread in order to improve
the cost/performance of the existing algorithms that attempt this type of problem for the purpose of
obtaining better solutions.

In the solution of JSSP, very little information exists with regard to algorithms that apply parallel
threading as a form of cooperation in order to accelerate the search for better solutions. In [2], with
their branch and bound algorithm, they generate a search tree through the cooperation of 16 threads,
where each thread is executed by a CPU (central processing unit). In [3], the researchers investigate
the performance with multi-threading using mixed integer programming and parameter tuning with
CPLEX to JSSP of 15 × 15, where CPLEX is a Simplex algorithm written in language C (C-Simplex
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resulted in CPLEX). In [4] with their branch and bound algorithm, the researchers propose a GPU-based
parallelization in which a two level scheme is used, therefore, at each iteration, several search tree
nodes are evaluated on the GPU using several thread-blocks to the blocking job shop scheduling
problem. In [5], the researchers present a parallel branch and bound which is based on implicit
enumeration and parallel particle swarm optimization (PSO). In parallel PSO, the model used is
the master-slave model; each client evaluates its own population at the same time. The master is
responsible for defining the parameters that are necessary for the population in each slave. In each
iteration, each slave sends its best particle back to the master. The master sends the best received
particles to all the slaves to inform them of the best particle in the group. Then each slave updates its
best particle. The parallel branch and bound use the logical ring topology. It involves a simulated
annealing algorithm to improve the upper bound when a timeout controller is used. The results
presented for the parallel branch and bound are for small problems of up to 6 jobs and 15 machines.
They only perform comparative tests of efficiency between the proposed sequential and parallel branch
and bound. The results presented for the PSO are not good, and are only for medium sized problems.
In [6], the researchers use a system of distributed computation compound for 12 personal computers to
execute an algorithm of simulated annealing (SA) and their results are not good. In [7], the researchers
report a parallel version of the simulated annealing algorithm using a procedure for parallelizing the
most difficult calculation. In this case the most difficult calculation is to obtain the critical path in
the disjunctive graph model. In [8], one parallel algorithm of simulated annealing is reported, which
uses a distribution system of 20 computers; this algorithm manages the concept of populations in
genetic algorithms, but without using a genetics operator. Very few investigations of the application of
the cooperation in algorithms for JSSP exist. In [9], a novel concept of island model with islands of
different sizes is proposed to scheduling problems. The proposed multi-size approach to island model
makes the effectiveness of the island-based algorithm independent from the particular population size
which is identical for all islands in the canonical island model, also eliminates the need to tune the
population size of identical islands to ensure high efficiency. In some genetic algorithms, cooperation
is applied by means of crossover of individuals that belongs to a population. This is done within
local search procedures using deterministic algorithms (critical path algorithms) in order to evaluate
the neighborhood function. Satisfactory results can be obtained [10,11]. Some of the algorithms that
have applied cooperation with crossover in problems of JSSP have not given good results [11–13], this
is mainly due to the fact that the methods of crossover used, are based on improving the solution
with the idea of crossed neighbors in order to get better neighbors when comparing neighbors with
the neighborhoods of origin, but not with the best neighbor available in the neighborhoods. The
fact of not considering the best solution available for the crossover causes, that with the passage of
time, the search is not directed toward a space of good solutions. Consequently, the final solution of
the algorithm with cooperation generally is not satisfactory. In [14], the researchers present a hybrid
genetic algorithm (GA) with parallel implementation of simulated annealing (SA) for the JSSP. The
algorithm uses a GA to generate an initial population of solutions within a server machine. Every
solution in the population is then distributed to a client machine. The client machine runs an SA and
sends the best obtained solution to the server machine. The server again uses the GA to improve
the population. This procedure GA-SA is repeated for a number of iterations. The presented results
are for medium-sized benchmarks with relative errors below 3.5%. In [15], the researchers present a
hybrid parallel genetic algorithm for the JSSP. The method deals with concepts of solution backbones
in order to intensify the search in promising regions. They utilize path-relinking and taboo search
in crossover and mutation operators. They also use the island model to store a population on each
island. If after several iterations of the GA the fitness does not improve, then the subpopulations
start to merge, always maintaining the size of the initial population, until in the end there is only one
population. In [16], the researchers present a hybrid parallel genetic micro algorithm. The parallel
implementation considers M independent GAs running M subpopulations with independent memories,
genetic operations, and function evaluation (island models) in each generation. The best individuals
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in each subpopulation are broadcast to the other subpopulations over a communication network.
Each subpopulation consists of small populations, which communicate among themselves and share
information through asynchronous message passing. Although a study is presented on the efficiency
(speedup) of the parallel algorithm, it appears incomplete. The study evaluates the efficiency of the
parallel algorithm for each increase in the number of threads, but the efficiency is averaged and is
therefore not sufficient to evaluate the algorithm. In [17], the researchers present a parallel GA for the
JSSP in which active schedules are created by the priority rules of Giffler and Thompson. The model
used is the master–slave model. The GA works iteratively with distributed slave populations. It does
not apply cooperation between threads and sends the best results only to the master using message
passing interface (MPI). The obtained results are good, and the benchmarks are of small and medium
size. The cooperation with agents in SA for JSSP dynamics has also been applied, but the results
in [18], show that the time consumed in communication between agents is extensive. If the existence
of several agents is considered, SA works more slowly than normal when the size of the problem of
JSSP is medium or bigger. Another application with agents is an agent-based parallel approach with a
genetic algorithm. For this approach, the results for benchmarks of JSSP, which are small and medium,
are very poor [19]. In this study, a layered architecture was used. In the lowest layer, a multi-agent
system using JADE middleware was implemented which facilitated the creation of agents and their
communication using MPI. In [20], the researchers present a genetic hybrid island model algorithm for
JSSP, proposing a strategy based on the self-adaptation phase that generates a better balance between
diversification and intensification. Such algorithm works through pseudo-parallel on a single processor
system. In [21], the researchers present an effective island model genetic algorithm for JSSP, proposing
a mechanism based on natural migratory selection that improves the search and avoids premature
convergence. This algorithm works through pseudo-parallel on a single processor system. In [22],
the researchers present an effective genetic algorithm with a critical-path-guided crossover operator
for JSSP; they use the critical path in the global search method during the crossover operator. In [23],
the researchers present a hybrid simulated annealing for the job shop scheduling problem. It is based
on an ant colony that generates the initial population and a simulated annealing that improves the
population. The algorithm works in a parallel computer with a genetic algorithm, using a crossover
genetic operator inside the cycle of temperature in simulated annealing. In [24], the researchers present
a parallel artificial bee colony algorithm for JSSP with a dynamic migration strategy. It determines
when a colony should communicate with its neighboring colonies. Such algorithm is carried out in
various colonies in parallel. In [25], the researchers present a hybrid micro-genetic multi-population
algorithm with collective communication that uses a set of elite micro-populations with computational
processes and improves individuals with simulated annealing.

In this paper, cooperation is applied in order to direct the search for a solution toward a space
where there are good solutions to the problem. A set of simulated annealing (SSA) is generated with
restart [26], where every time that a simulated annealing (SA) ends, an effective-address procedure
with the solution Si obtained from that SA and the best solution Sbest obtained by the SSA up to that
moment is applied. The search will be directed toward a space where there are good solutions, making
the new solution obtained by the effective-address procedure more similar to the best solution obtained
by the SSA.

Section one gives a brief introduction. Section two describes the formulation of the job shop
scheduling problem. Section three presents the proposed simulated annealing algorithm that applies
cooperative threads (SACT) and the effective-address procedure, where a CREW model (concurrent read,
exclusive write) is used in implementation [27]. Section four shows the experimental results. Finally,
the conclusions drawn by the present work are explained.
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2. Disjunctive Formulation of Job Shop Scheduling Problem

The disjunctive formulation has several sets: A set J of n jobs, where, J = {J1, J2, . . . , Jn}; a set M of
m machines where M = {M1, M2, . . . , Mm}; and a set O of operations where O = {1, 2, 3, . . .}. These
operations form k subsets of operations for each one of the jobs (Jk ⊆ O) and machines (Mk ⊆ O).

Each operation i has a processing time of pi. In a job Jk, each pair of operations i, j possesses a
relationship of precedence (i < j). Only one operation performed by a machine Mk, can be executed
at any given point in time. Given the previously mentioned problem restrictions, the function of the
starting time, s of each operation can be represented in the following manner:

The constraint in (1) indicates that the starting time of the operation j must be greater than or equal
to zero; meaning only positive values are accepted. The constraint in (2) is a precedence constraint.
It indicates that within one job which contains operations i and j, in order for j to begin, i must be
completed. The constraints in (3) are disjunctive. These constraints ensure that two operations, i and j,
which are performed by the same machine Mk are not carried out simultaneously. The constraints in (4)
indicate that the time necessary to complete an operation j must be less than or equal to the makespan
(Cmax). The objective is to minimize the makespan, defined as the maximum time of completion of the
last job, which is determined according to the starting times, and can be expressed as (5). The time
units in the makespan are open, thus they can be assigned as seconds, minutes, hours, and so on, as
long as these are consistent units. In this work the makespan is simply labeled as units of time.

∀i ∈ O, si ≥ 0 (1)

∀(i, j) ∈ O∧ (i ≺ j) ∈ Jk (si + pi) ≤ s j (2)

∀(i, j) ∈ O ∧ (i, j) ∈Mk (si + pi) ≤ s j ∨
(
s j + p j

)
≤ si (3)

∀i ∈ O (si + pi) ≤ Cmax (4)

min( f ) = min
[ max
i ∈ O

(si + pi)
]

(5)

Figure 1 shows the disjunctive graph model G = (A, E, O) for a JSSP of 3 × 3 (three machines and
three jobs). This disjunctive graph is formed by three sets. The operations set, O, is made up of the
nodes in G, numbered one to nine. The processing time appears next to each operation. The beginning
and ending operations (I and * respectively) are fictitious, with processing times equal to zero. The set
A is composed of conjunctive arcs, each one of these arcs unites a pair of operations that belongs to the
same job Ji and each one represents a precedence constraint. The operations 1, 2, and 3 are connected
by these arcs and therefore form job one (J1). Jobs two (J2), and three (J3) are connected in the same
way with operations (4, 5, 6) and (7, 8, 9), respectively. Each clique that belongs to E contains a subset
of operations that are executed by the same machine (Mk). Operations 1, 6, and 7 are executed by M1
and generate a clique. Machines two (M2) and three (M3) generate a clique, each one with operations
(2, 5, 8) and (3, 4, 9), respectively. The resources capacity constraints are represented between each pair
of operations in E.
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Figure 1. Job shop scheduling with three jobs and three machines.

3. Simulated Annealing Algorithm with Cooperative Threads (SACT)

The SACT algorithm (simulated annealing with cooperative threads) generates threads (H1, . . . ,
Hn) that are administered by the operating system Windows Vista Ultimate 64 bits and which work
in parallel form. Each thread generated Hi by SACT executes and controls one simulated annealing
algorithm (SA) in individual form. A core of CPU carries out the control of each thread Hi. If there are
more threads than cores of CPU’s, then the threads are distributed in a balanced way among the group
of cores of CPU’s that the computer contains. The cooperation among the existing threads, n, allows
each thread, Hi, in which simulated annealing is carried out, to know (in any instant of important time)
the best solution, Sbest that has been found up to that point in time. This makes it possible that a thread
Hi can use the best solution Sbest to realize an effective-address procedure with the solution SHi_c that is
found by executing the SA algorithm. The resulting solution of the effective-address procedure is used
as an initial solution in the restart of SA within the thread Hi. Because SACT constantly needs to know
and upgrade the best solution Sbest. The threads have the advantage of working actively and using the
same memory address space. This makes the communication among them quicker [28]. The threads
are able to work simultaneously.

In SACT, the threads have continuous access to a space of shared memory that stores the best
found solution for the n threads at a time t. This makes it necessary to implement a CREW model,
where the access to this space of shared memory must be synchronized between the threads in order to
avoid conflicts of reading/writing that could cause errors or loss of information. In order to synchronize
the access to this memory, the critical section is used. This guarantees that in any given instant in time,
only one thread can have access to read/write, leaving the others on a waiting list.

In the operating system Windows Vista Ultimate 64 bits, the threads are administrated like objects,
which are created for calling functions to the applications programming interface (API), using the MFC
library [29]. In the SACT algorithm, the functions of the MFC of Microsoft visual C++, 2017, are used
for the creation of the threads in a single process.

Each thread created by SACT works by carrying out the same number of identical activities, but
with different data. Knowing this, a class was created that upon generating n instances for the class, n
objects are generated. Each object represents a thread [30].

SACT has the possibility of generating a parent thread, which in turn generates n offspring threads,
executing them in parallel form.
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The SACT algorithm applies to JSSP when the objective function is minimizing the maximum
time of completion of the last job, this is known as minimizing the makespan. Algorithm 1, presents
the SA algorithm that is executed for each created thread Hi by SACT.

Algorithm 1 Simulated annealing executed in each generated thread Hi by SACT.

1. Obtain SHi, where SHi = f (UB).
2. Give an iteration initial iter = 0, initialize values of Cf, Co, α, f(SHi_c).
3. While (iter < Maxiter)

3.1. iter = iter+1
3.2. C = Co

3.3. While (C < Cf).

3.3.1. While (equilibrium does not exist)

3.3.1.1. S’
Hi = permutation(SHi)

3.3.1.2. If(f(S’
Hi) − f(SHi) ≤ 0) SHi = S’

Hi

3.3.1.3. If(f(S’
Hi) − f(SHi) > 0) the state is accepted with the probability

Paccept = e−(
f (S′Hi)− f (SHi)

C )

3.3.1.4. ρ = random number between (0, 1)
3.3.1.5. If (ρ < Paccept) SHi = S’

Hi

3.3.1.6. If (f(SHi) < f(SHi_c)) SHi_c = SHi

3.3.1.7. If (f(SHi_c) < f(Sbest)) Sbest = SHi_c

3.3.2. C = C*α.

4. SHi = effective-address (SHi_c, Sbest).

The explanation of the algorithm is the following (Algorithm 1):

1. SHi is the schedule (initial solution of JSSP) obtained by the scheduling algorithm [12] using the
disjunctive graph model. The makespan of SHi should not surpass an upper bound (UB) defined
as date of entrance. In order to define this bound see [26].

2. iter (global variable known in the n threads) is the variable that counts the number of SA executed
in SACT. The final control coefficient, Cf, the initial control coefficient (temperature), Co, the
control factor α and the best f(SHi_c) (at the beginning this is a very large value) are initialized.

3. If the number of SA (iter) for SACT has not been completed (which is indicated with Maxiter),
then a new SA is begun using the new solution SHi obtained with the effective-address procedure.

3.1. Begin the annealing iter.
3.2. The value of initial control coefficient of the SA is initialized.
3.3. The external cycle begins, which carries out the decrease in control coefficient (3.3.2) of the

SA according to α.

3.3.1. The internal cycle in annealing begins, which executes the Metropolis algorithm
until equilibrium is reached, this depends on the size of the Markov chain (MC)
and that for optimization problems is represented by the neighborhood size of a
solution of the problem.

3.3.1.1.A neighborhood structure is used (explained later on, Section 3.1). This
generates a state in annealing (neighbor S’Hi).

3.3.1.2.S’Hi is accepted as a new configuration if the energy of the system decreases.



Appl. Sci. 2019, 9, 3360 7 of 40

3.3.1.3.If the energy of the system increases, S’Hi is accepted as a new configuration
according to the probability of acceptance Paccept obtained by the function of
Boltzmann, and

3.3.1.4. Comparing this Paccept with ρ, which is a random number uniformly
distributed between (0, 1).

3.3.1.5.If ρ < Paccept the generated state is accepted as the current state.
3.3.1.6.If the new schedule cost f(SHi) is better than the best schedule cost f(SHi_c)

of the thread Hi, then SHi_c is upgraded.
3.3.1.7.If the new schedule cost f(SHi) is better that the best schedule cost f(Sbest)

which has been obtained from all the threads of SACT, then Sbest is upgraded.

3.3.2. The control coefficient is decreased.

3.4. Every time that the thread Hi in execution finishes an SA, an effective-address is carried out
between the best solution SHi_c obtained from the SA and the best existing solution Sbest in
the algorithm SACT. The effective-address mechanism is explained later (Section 3.2).

The final solution of the algorithm SACT is Sbest, which is obtained by the cooperation of the n
threads generated with SACT.

3.1. Neighborhood Generation Mechanism

Figure 2 presents the way to generate new neighbors S’ starting from a schedule S. From S, a
machine Mk is chosen randomly and a pair of adjacent operations i, j is also selected randomly. The
pair is checked to make sure that slack time between i, j does not exist or fictitious slack time exit [30].
This pair of operations is perturbed by exchanging their order of precedence and then the resulting
schedule is checked for feasibility. If the schedule is feasible, it is considered to be a neighbor S’. If the
schedule is not feasible, slack time or fictitious slack time between i, j exist. In this case, the thread is
repeated with a different pair of adjacent operations in a randomly chosen machine until a feasible
neighbor S’ is obtained.
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3.2. Effective-Address Mechanism

The thread Hi carries out the effective-address procedure every time that it finishes the execution of
a SA. This effective-address procedure is carried out between the solution SHi_c of Hi, obtained by the SA,
and the best solution, Sbest, found by the n threads. The effective-address procedure is the following:
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The neighborhood structure N1 [31] is used in order to generate all the neighbors S’best of Sbest.
These neighbors are always feasible because they only involve exchanging a pair of operations that
belong to the critical path [31]. The similarity between each pair of solutions (schedules) SHi_c and a
neighbor S’best is measured based on the Hamming distance. This distance is the number of arcs (in the
digraph for the solution that results from Figure 1) that have different addresses between SHi_c and its
neighbor S’best. In other words, it is the number of differences in the order of execution of operations
on each machine [12]. There is a high probability of choosing an S’best of Sbest that has great similarity
to SHi_c. This probability is generated in the following way. Three lists are created (L1, L2, L3) that store
the S’best neighbors (generated with Sbest) according to the degree of similarity with SHi_c. The size of
each list is different, L1 is the smallest, and thus the most similar to SHi_c whereas L3 has the neighbors
which are less similar to SHi_c. L1 is chosen with more frequency in order to direct the search toward a
good solution space. The size of each list is assigned according to the problem to be solved and it is
defined experimentally (trial and error). In order to select one of the 3 lists, a number α at random
with a value between 1 and 10 is generated. L1 is chosen if α is between 1 and α1. L2 is chosen if α is
between α1 + 1 and α2. L3 is chosen if α is between α2 + 1 and 10. The size of each interval is |1 to α1| >

| α1 + 1 to α2| > | α2 + 1 to 10|. Once the list is chosen, the neighbor S’ is chosen randomly from the
list. This is the solution that is used in the beginning of the new SA for the thread Hi. The neighbor
selected, S’best, is the result of the effective-address procedure carried out implicitly between SHi_c and
Sbest. Naturally, this effective-address procedure is applied in each one of the n threads.

Figure 3 presents the running threads in SACT. First, a symbolic representation (SR) of the JSSP is
generated. Then, a random solution SHi of SR is generated for each Hi thread. At the beginning of the
algorithm, the best global solution Sbest, has a very large initial value defined with a lower bound (LB),
which is not less than the sum of the processing time of all operations that are executed on the JSSP.Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 41 
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Each thread Hi, independently executes an SA with its own initial solution SHi. The optimized
solution SHi_c of Hi, is obtained by the SA. Through critical sections, there is communication between
threads to share and use the best global solution. There are two critical sections. In the first critical
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section, the information about the best solution for each thread (SHi_c) is selected, and from those best
solutions (SHi_c vs. Sbest), one is chosen as the best global solution and is updated Sbest with the best
solution. This best global solution (Sbest) is updated constantly, every time a thread enters the critical
section with a better solution. The stopping criterion defines a maximum number of iterations with
the Maxiter variable, which indicates the maximum number of SA runs performed by the total of the
threads in the SACT algorithm. The sum of all iterations generated by all threads Hi, ... Hn, is defined
with the IT variable, and this must not be greater than Maxiter. In the second critical section, when
SACT continues execution to evaluate the effective-address in a thread, the best global solution used
is the one being considered at that moment. The next time a thread evaluates the effective-address, it
is possible that an improved global solution (Sbest) is used. This is because the execution of SACT is
asynchronous. The advantage of SACT being asynchronous is that the throughput of the program is
improved, which allows better exploration in the solution space because SACT is not concentrated
only on a better solution (Sbest). When Sbest is improved, it is used for the following threads that require
evaluation of the effective-address. This configuration improves the results obtained by SACT. The
evaluation of the effective-address allows the realization of a search with SA(SHi) in a region of the
solution space which contains good solutions for the problem to be resolved.

4. Experimental Results

For the experimental tests, we used a workstation PowerEdge T320, Intel® Xeon® Processor
E5-2470 v2 (2200 Mission College Blvd. Santa Clara, CA 95054-1549, USA) with 10 cores of 3.10 GHz
each, 24 GB RAM, 167 GB HD, Windows Vista Ultimate 64 bits, Visual C++ 2008, and MFC library to
generate threads.

This type of system employs CISC architecture (Complex Instruction Set Computer) and is the
one currently operating with high-powered applications, such as super-computing. This is unlike
the ARM architecture (Advanced RISC Machines), which is enjoying great popularity and works
better on battery-powered devices nowadays: On mobile phones and tablets, for instance. The ARM
architecture has fewer transistors than CISC architecture processors and significantly reduces costs,
heat, and energy during its operation. ARM architecture is expected to lead its way into creating
super-computing equipment given the great benefits it can bring within this area. Nvidia’s GPUs are
currently used for CUDA-programmed supercomputing and Nvidia is starting to work on supporting
ARM processors to create new high performance computing computers that manage energy more
efficiently, as well as numerical processing from 2020 [32].

4.1. JSSP Instances and Simmulated Annealing Parameters

The instances of job shop used were 48 benchmarks of different sizes from the OR-library [33],
nineteen small-sized instances, fifteen medium-sized instances, fourteen large-size instances.
Additionally, ten large-size benchmarks of [34] were used, DMU-06-DMU10, and DMU46-DMU50.
In this work only square instances are used, considering that square instances are more difficult to
solve [35]. Table A1, presented in Appendix A, shows benchmarks used to evaluate the proposed
SACT algorithm. The names and optimal values or known upper bound of each instance are presented.

For each benchmark, SACT performed 30 executions, with Maxiter = 2500, or less if the
optimal/upper bound value is found and works with 48 threads.

SACT algorithm used SA parameters as C0, Cf, α, MC (Markov chain), and UB (solution at the
beginning, makespan), were obtained with a sensibility analysis, Table 1 shows the results for all
instances. In effective-address mechanism, the size of the three lists was the same for all the instances:
For L1 it was 20%, for L2 it was 30%, and for L3 it was 50%, with regard to the total neighbors S’ in the
neighborhood. α1 = 5, α2 = 8, and α3 = 10. The above are the conditions applied on each of the 30 tests
performed for each benchmark.
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Table 1. Tuned parameters of simulated annealing.

Problem Co Cf α MC UB = f(S)

Size 6 × 6

FT06 800 1.0 0.98 30 80

Size 10 × 10

FT10 25 1.0 0.98 1000 2500
ORB and ABZ 64,000 1.0 0.98 1000 2500

Size 15 × 15

LA16 to LA20 64,000 1.0 0.98 1000 2500
LA36 to LA40 2 1 × 10−6 0.99 300 2500
TA01 to TA10 25 1.0 0.98 800 2500

Size 20 × 20

TA21 to TA30 2 1 × 10−6 0.99 300 3500
YN 2 1 × 10−6 0.99 300 2000

DMU06 to DMU10 2 5 × 10−6 0.99 300 9000
DMU46 to DMU50 100 0.05 0.99 6000 9500

4.2. Effect of Cooperating with Effective-Address

In this paper, two different types of cooperation are utilized. In the first type of cooperation, SACT
uses an effective-address procedure between two solutions with the best global solution Sbest obtained
from all threads. The best solution in the running thread is SHi_c, i.e., SHi = effective-address (SHi_c, Sbest).
With solution SHi obtained in each thread Hi, SA is restarted in each thread Hi. The second type of
cooperation does not use effective-address in the SACT procedure for restarting SA in each thread Hi.
Instead, SHi = SHi_c is used. In addition, in each iteration of SACT, the best solution Sbest is saved.
Cooperation occurs because the n threads working in parallel to find a solution at different points in
the solution space always keep the best solution found in Sbest.

In both types of cooperation, the best global solution Sbest is obtained for each iteration of SACT
because the best solution found in all threads for each SA is compared with the current best global
solution, and the best solution Sbest is saved.

The SACT algorithm was executed with several different numbers of threads and with a maximum
value of 2500 Maxiter SA, which corresponds to about an hour of runtime for a number of threads
SA ≥ 8. Figures 4–12 (Maxiter vs. Sbest), present respectively the performance of the cooperation of
threads in SA for the problems YN1, YN2, YN3, and YN4. These figures present the execution of SACT
for 8, 16, 32, 40, and 48 threads.

Figures 4a, 5a, 6a and 7a show the relationship with efficacy. When there is cooperation without
using the effective-address procedure, it can be observed that the best result obtained when Maxiter
reaches 2500 SA does not depend on the number of threads in execution in SACT. The value of the
makespan is very similar for any number of threads. This may be because there is no direct way to
arrive at the same solution.

Figures 4b, 5b, 6b and 7b show the relationship with efficacy. It can be observed that the best result
obtained within the Maxiter = 2500 SA, using the effective-address procedure, was when SACT used
48 threads. Figure 6b shows that in YN3, 48 threads compete with 40 threads to find the best solution.
This indicates that with a greater number of threads, on average, better solutions may be obtained.
This effect is seen because the larger group of threads (H48) has the same directed pathway toward the
same Sbest solution. This is due to the greater number of effective-address applied to the n threads with
the best solution Sbest. The result is that a greater number of threads lead to a directed path through the
best solution Sbest. The Hamming distance becomes smaller between the set of threads with respect
to Sbest. This can be seen in Figures 8b, 9b, 10b and 11b. It is generally observed in all cases that on
average, the Hamming distance decreases with an increasing number of threads. Interestingly, with
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regard to the efficacy of the algorithm that can be noted in Figures 4b and 7b for all other threads (H8,
H16, H32, and H40), there is no defined behavior. For example, the efficacy as a function of the number
of threads for YN1 (Figure 4b) in increasing order is H40, H8, H16, H32, H48. Efficacy as a function of
the number of threads for YN2 (Figure 5b) in increasing order is H8, H16, H32, H40, H48. Efficacy as a
function of the number of threads and YN3 (Figure 6b) in increasing order is H8, H16, H32, H48, H40.
Efficacy as a function of the number of threads for YN4 (Figure 7b) in increasing order is H40, H16,
H8, H32, H48. It can be seen that the efficacy of the algorithm SACT based on the number of threads,
depends on the problem to solve. However, it can be observed that for all problems YN, generally
with 48 threads, the efficacy of SACT is better in almost all YN; the average efficacy is better using 48
threads (H48).

Figures 4b, 5b, 6b and 7b show that the worst behavior occurs when SACT is executed in a
single thread sequence (H1) where cooperation with the effective-address procedure is with the only
thread that exists (H1). It is noted that approximately from iteration = 100 SA, the efficiency decreases
considerably for finding a good makespan when H8 is compared to H48. This behavior occurs for
the four problems YN. The opposite happens when there is cooperation thread (H8 to H48). Efficacy
increases on average from Figures 4b, 5b, 6b and 7b, by about 10 units from iteration 250 to 2500 SA.
This makes these makespan results better than those found by H1. For example, in YN1 of Figure 4b,
in iteration 500 SA, the best average makespan when there is cooperation (H32) is close to 898. When
there is no cooperation (H1), the makespan is about 909. In the iteration 2500 SA, the average makespan
when there is cooperation (H48) is close to 894 and when there is no cooperation (H1), the makespan is
close to 906.

Figures 4a, 5a, 6a and 7a show that the worst performances are when SACT is executed in a single
thread sequence (H1), where cooperation does not use the effective-address procedure. When the only
thread that exists is (H1), the best solution is taken from the previous SA (SH1 = SH1_c). It is noted
that approximately at the beginning (before Maxiter = 50 SA), the efficacy of H1 is better. Then this
efficacy decreases considerably. This behavior occurs in all four YN problems. The opposite happens
when there is cooperation thread (H8 to H48). The efficacy of cooperation increases as the number of
iterations increases of 250–500 SA, as shown by better results for the makespan as compared to that
found by H1. For example, in YN1, Figure 4a, at iteration 500 SA, the average makespan when there is
cooperation (H8) is close to 902 and when there is no cooperation (H1), the makespan is about 908. In
iteration 2000 SA, the average makespan when there is cooperation (H40) is close to 896 and when
there is no cooperation (H1), the makespan is near 906.
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An interesting point related to the efficacy of the SACT algorithm is that when there is cooperation
but no effective-address there is no defined behavior for different threads in execution, as seen in
Figures 4a, 5a, 6a and 7a. Table 2 summarizes the efficacy of SACT with cooperation and without
effective-address for YN problems in descending order. It can be observed that the efficacy of the
algorithm SACT as a function of the number of threads depends on the problem being resolved. When
there is both cooperation and effective-address, there is definite behavior for running threads, as can
be seen in Figures 4b, 5b, 6b and 7b. Table 3 presents the efficacy of SACT with cooperation and
effective-address for YN problems in descending order. It can be seen that the increased efficacy of the
SACT algorithm, as a function of the number of threads, occurs when the number of threads is the
largest (H48). The exception to this is the YN3 problem, in which case the number of threads is also
great. In YN1 and YN4, the worst efficacy is obtained with H40. According to Table 4, in order to
define the number of threads needed to increase the efficacy in SACT, it would be necessary to start
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with H32 threads, and slowly increase the threads, being careful detect cases when SACT has a number
of threads that presents a low efficacy, as in the case of YN1(H40) and YN4(H40).

An interesting point related to the efficacy of the SACT algorithm is that when there is cooperation
but no effective-address there is no defined behavior for different threads in execution, as seen in
Figures 4a, 5a, 6a and 7a.

The efficacy of cooperation with the effective-address procedure (Figures 4b, 5b, 6b and 7b), is
noticed when, with a small number of iterations 500 SA, the value of an average makespan (MS)
improves considerably when compared to the second type of cooperation (Figures 4a, 5a, 6a and 7a).
For example, for YN1 with effective-address, the average MS is about 900 (H8, H16, H32, H40, H48), as
seen in Figure 4b. For YN1 without effective-address, the average MS is close to 905 (H8, H16, H32, H40,
H48) as shown in Figure 4a. For YN2 with effective-address, the average MS is close to 922 (H8, H16,
H32, H40, H48), as noted in Figure 5b. For YN2 without effective-address, the average MS is close to 928
(H8, H16, H32, H40, H48), as observed in Figure 5a.
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For YN3, with effective-address, the average MS is close to 906 (H8, H16, H32, H40, H48), as seen in
Figure 6b. For YN3 without effective-address, the average MS is close to 912 (H8, H16, H32, H40, H48),
as shown in Figure 6a. For YN4 with effective-address, the average MS is close to 922 (H8, H16, H32,
H40, H48), as noted Figure 7b. For YN4 without effective-address, the average MS is close to 928 (H8,
H16, H32, H40, H48), as seen in Figure 7a. It can be observed that with a Maxiter = 500, the increased
efficacy is almost constant for all YN, with 6 units of improvement in makespan when effective-address
is used, as compared to when it is not used.

When comparing the first type of cooperation (Figures 4b, 5b, 6b and 7b) and second type of
cooperation (Figures 4a, 5a, 6a and 7a), when the number of iterations is 2500, the average value
of MS is better for the first type of cooperation. For YN1 with effective-address, the average MS is
approximately 896 (H8, H16, H32, H40, H48), as seen in Figure 4b. For YN1 without effective-address,
the average MS is approximately 898 (H8, H16, H32, H40, H48), as shown in Figure 4a. For YN2
with effective-address, the average MS is approximately 904 (H8, H16, H32, H40, H48), as noted in
Figure 5b. For YN2 without effective-address, the average MS is approximately 905 (H8, H16, H32, H40,
H48), as observed in Figure 5a. For YN3 with effective-address, the average MS is approximately 904
(H8, H16, H32, H40, H48), as seen in Figure 6b. For YN3 without effective-address, the average MS is
approximately 905 (H8, H16, H32, H40, H48), as shown in Figure 6a. For YN4 with effective-address,
the average MS is approximately 980 (H8, H16, H32, H40, H48), as observed in Figure 7b. For YN4
without effective-address, the average MS is approximately 985 (H8, H16, H32, H40, H48), as noted in
Figure 7a. With a Maxiter = 2500, the increase in efficiency of the problem varies from 1 to 5 units of
improvement in MS whether effective-address is used or not used. Even the slightest improvement in
MS, which is 1, is very good, because what is sought with any optimization algorithm is to improve
the bounds already known for big problems. The improved efficacy makes SACT competitive with the
best algorithms reported in the literature, according to the results presented below.

Table 2 summarizes the efficacy of SACT with cooperation and without effective-address for YN
problems in descending order. It can be observed that the efficacy of the algorithm SACT as a function
of the number of threads depends on the problem being resolved. When there is both cooperation
and effective-address, there is definite behavior for running threads, as can be seen in Figures 4b, 5b, 6b
and 7b.

Table 2. Efficacy of SACT with cooperation and without effective-address procedure as a function of
the threads executed.

Problem
Threads

Best→Worst

YN1 H40–H16 H16 H48 H8 H32 H1
YN2 H40–H32 H32 H8 H48 H16 H1
YN3 H32 H48 H40 H16 H8 H1
YN4 H16 H32 H40 H48 H8 H1

Table 3 summarizes the efficacy of SACT with cooperation and with effective-address for YN
problems in descending order. It can be seen that the increased efficacy of the SACT algorithm, as
a function of the number of threads, occurs when the number of threads is the largest (H48). The
exception to this is the YN3 problem, in which case the number of threads is also great. In YN1 and
YN4, the worst efficacy is obtained with H40. According to Table 3, in order to define the number of
threads needed to increase the efficacy in SACT, it would be necessary to start with H32 threads, and
slowly increase the threads, being careful to detect cases when SACT has a number of threads that
presents a low efficacy, as in the case of YN1(H40) and YN4(H40).
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Table 3. Efficacy of SACT with cooperation and with effective-address procedure as a function of the
threads executed.

Problem
Threads

Best→Worst

YN1 H48 H32 H16 H8 H40 H1
YN2 H48–H40 H40 H32 H16 H8 H1
YN3 H40–H48 H48 H32 H16 H8 H1
YN4 H48 H32 H8 H16 H40 H1

An evaluation of the Hamming distance presented in Figures 8–11 for the problems YN1, YN2,
YN3, and YN4, respectively, with different numbers of threads, shows the degree of similarity in each
solution with respect to the best solution in each iteration. The Hamming distance between SHi_c and
Sbest is obtained by comparing the sequence of operations on each machine of JSSP. If the Hamming
value of a solution SHi_c is zero regarding Sbest, then the solution SHi_c is the same as Sbest and they have
the same configuration. Conversely, if SHi_c, has a very large Hamming value e.g., 400 (maximum value
for a solution of the problem YN), then Sbest is totally different from SHi_c. The greater the Hamming
distance in a set of solutions S = {SH1_c, SH2_c, SH3_c, ..., SHn_c} with respect to an Sbest solution, the
greater the diversity in the set of solutions S, where n is the number of running threads.

Figures 8a, 9a, 10a and 11a, show that for cooperation without effective-address, more diversity
exists than in the case of cooperation with effective-address. There is less diversity when movement
follows a directed path via Sbest, as seen in Figures 8b, 9b, 10b and 11b.

In Figures 8a, 9a, 10a and 11a, the Hamming distance without effective-address is within a range
of 250 to 380. This is the case in almost all the execution interval of SACT, with different numbers of
threads, and for different problems. It is true for YN1, YN2 between 180 and 325, YN3 between 190 and
320, and YN4 between 200 and 325. Given that in this kind of cooperation there is no effective-address,
the diversity behavior remains almost constant throughout the runtime of SACT, with the exception of
the first 250 s. It is seen that H8 and H16 have less diversity than all the other YN problems. Since
there is not a directed path through the best solution Sbest, the Hamming distance does not present a
significant decrease over time. The behavior does differ in relation to the number of threads, as can be
observed in Figures 8a, 9a, 10a and 11a. In Figure 8a for YN1, the Hamming distance is greatest for
H40 and least for H8. The other Hamming distances have almost the same average behavior (H16, H32,
and H48).

In Figures 8a, 9a, 10a and 11a, for YN2, YN3, and YN4, respectively, Hamming distance has the
same average performance for H16, H32, H40, and H48. For H8, the Hamming distance is smaller.
The behavior of the Hamming distance based on the number of threads is due to each thread involving
a solution of SA. Because of this, if a larger number of solutions are compared to Sbest, there could
be a wider diversity. This is not always true because Sbest has no relationship with most of the
solutions generated by the thread. An example of this can be seen in Figure 8a, Hamming (H48) <

Hamming (H40).
In Figures 8b, 9b, 10b and 11b, the Hamming distance with effective-address at the beginning of

SACT has a diversity of Hamming values up to 350. This is then reduced considerably as the execution
progresses, and SACT has values in the range of 70 to 150. Because there is such cooperation with
effective-address, the diversity is reduced because the search in the solution directs itself toward Sbest
solutions. The behavior of the Hamming distance based on the number of threads is due to each thread
involving a solution of SA. Because of this, if a larger number of solutions are compared to Sbest, there
could be a wider diversity. However, as the time of implementation of effective-address, is reduced,
solutions are directed toward a single path. This could be debatable. It can be observed in Figures 8b,
9b, 10b and 11b and Figures 4b, 5b, 6b and 7b, that applying cooperation threads with a directed path
toward the best solution, a greater number of threads find better solutions. Since the greater diversity
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of the solutions is achieved with a greater number of threads, this avoids a hasty convergence prior to
finding good solutions.Appl. Sci. 2019, 9, x FOR PEER REVIEW 18 of 41 
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Figure 12 presents YN1 with H32 threads, with a long execution time of close to 2 h. It can be seen
that the effective-address procedure still does not make the Hamming distance converge in SACT. What
can be seen is that if SACT is left running an extremely long time, the Hamming distance will tend
to zero.
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Figure 12. Effect of the effective-address procedure on the convergence of SACT for long times. YN1-20
× 20. H32.

The obtained results to YN problems indicate that in order for SACT to work with higher efficiency,
it requires a computer that has a greater number of threads in order to allow SACT to make a greater
number of effective-address with a greater number of threads, using a larger value of Maxiter.

4.3. SACT Statistic Review

The bar plot is used in this paper as a tool to assess the frequency obtained from the solutions
in terms of quality, the unit is no dimensional. The x-axis in the bar plot represents the value of the
objective function of JSSP, which is the MS obtained by SACT.

Figure 13 shows the bar plots for YN1, YN2, YN3, and YN4 problems. In the four bar plots, SACT
presents frequencies whose distribution is skewed to the left with respect to the midpoint.
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Figure 13. SACT, bar plots YN1, YN1, YN3, YN4. (a) SACT, YN1 (30 tests). (b) SACT YN2 (30 tests). (c)
SACT, YN3 (30 tests). (d) SACT, YN4 (30 tests).

The frequency distribution of YN1 and YN3 (Figure 13a,c) is very similar to a normal distribution.
The frequency distribution of YN2 (Figure 13b) and YN4 (Figure 13d) is a little skewed to the right
with respect to the midpoint (arithmetic mean), this is important because it indicates that most results
obtained are to the left of the midpoint value, so the makespan found in most of the tests is of good
quality. For YN1, 12 results out of 30 obtained, have a makespan value better or equal to the midpoint
and are within the range 889–894. For YN2, 16 results out of 30 obtained, have a makespan value better
or equal to the midpoint and are within the range 911–917. For YN3, 14 results out of 30 obtained, have
a makespan value better or equal to the midpoint and are within the range 897–903. For YN4, 15 results
out of 30 obtained, have a makespan value better or equal to the midpoint and are within the range
973–978. There is data concentration near the arithmetic mean for the four benchmarks, YN1 to YN4.

The frequency distribution of DMU06, DMU07, DMU08, and DMU10 (Figure 14) is skewed to the
right with respect to the midpoint (arithmetic mean). DMU06 (Figure 14a) shows a bimodal frequency
distribution, the highest frequency is 8 and is at the midpoint with 3319.2. At the left of the bar plot the
frequency is 2 and the quality results is 3276. DMU07 (Figure 14b) and DMU08 (Figure 14c) present
a data distribution further from the arithmetic mean, as opposed to DMU06, DMU09 (Figure 14d),
and DMU10 (Figure 14e). For DMU07, 12 out of 30 results have a makepan value better or equal to
the midpoint. At the far left of the bar plot the frequency is 6 and the quality results is 3092. At the
far right of the bar plot the frequency is 2 and the quality results is 3227. DMU06 and DMU10 have
a higher dispersion in the data distribution. For DMU08, 8 results of 30 obtained, have a makespan
value better or equal to the midpoint and this value is 3225. At the far left of the bar plot the frequency
is 8 and the quality results is 3225. At the far right of the bar plot the frequency is 1 and the quality
results is 3390. For DMU09, 8 results out of 30 obtained, have a makespan value better or equal to the
midpoint and are within the range 3140–3159. At the far left of the bar plot the frequency is 5 and the
quality results is 3140. At the far right of the bar plot the frequency is 3 and the quality results is 3235.
For DMU10, 10 results out of 30 obtained, have a makespan value better or equal to the midpoint and
are within the range 3015–3029. At the far left of the bar plot the frequency is 3 and the quality results
is 3015. At the far right of the bar plot the frequency is 4 and the quality results is 3085.
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Figure 14. SACT bar plots DMU06, DMU07, DMU08, DMU09, DMU10. (a) SACT, DMU06 (30 tests).
(b) SACT, DMU07 (30 tests). (c) SACT, DMU08 (30 tests). (d) SACT, DMU09 (30 tests). (e) SACT,
DMU10 (30 tests).

The frequency distribution of DMU46 and DMU47 (Figure 15) is skewed to the left with respect to
the midpoint (arithmetic mean). For DMU48, the data are concentrated near the arithmetic mean, 26
out of 30. DMU50 has a central frequency distribution, with the exception of a single data that is far
from this distribution. For DMU46 (Figure 15a), only 6 results out of 30 obtained, have a makespan
value better or equal to the midpoint and are within the range 4143–4163. At the far left of the bar
plot the frequency is 2 and the quality results is 4143. At the far right of the bar plot the frequency is
7 and the quality results is 4193. For DMU47 (Figure 15b), only 6 results out of 30 obtained, have a
makespan value better or equal to the midpoint and are within the range 4036–4060. At the far left
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of the bar plot the frequency is 1 and the quality results is 4036. At the far right of the bar plot the
frequency is 4 and the quality results is 4096. For DMU48 (Figure 15c), 9 results out of 30 obtained,
have a makespan value better or equal to the midpoint and are within the range 3878–3900. At the far
left of the bar plot the frequency is 1 and the quality results is 3878. At the far right of the bar plot the
frequency is 1 and the quality results is 3988. For DMU49 (Figure 15d), 12 results out of 30 obtained,
have a makespan value better or equal to the midpoint and are within the range 3831–3849. At the far
left of the bar plot the best frequency is 1 and the quality results is 3831. At the far right of the bar plot
the frequency is 3 and the quality results is 3876. For DMU50 (Figure 15e), 15 results out of 30 obtained,
have a makespan value better or equal to the midpoint and are within the range 3842–3868. At the far
left of the bar plot the best frequency is 1 and the quality results is 3842. At far right of the bar plot the
frequency is 6 and the quality results is 3907.
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The results obtained for the other small, medium, and large problems are presented in Tables 4–6,
respectively. The SACT used 48 threads. For each benchmark, 30 executions were carried out
with SACT.

Table 4 presents the MS results with SACT for small benchmarks. For all the benchmarks the
optimal solution value is reached (RE = 0). For most benchmarks the standard deviation of zero is
obtained. The greatest standard deviation is obtained in ORB03 (σ = 6.9). For most benchmarks,
the mode is the optimal solution obtained. The mode is the value that appears most often in the 30
tests. For most benchmarks, the median obtained is the optimal solution. If the median achieves the
optimum, then at least half of the 30 tests achieved the optimal solution. The more difficult benchmarks
that obtained the optimal solution according to the mode and median were ORB02 and ORB03. Table 4
shows, based on the standard deviation that the data distribution in each benchmark is completely
homogeneous and the data are grouped very close to each other or with the same optimal value. For
each benchmark in 30 tests, almost the same value for mean, median, and mode are found„ indicating
a symmetrical distribution of data.

Table 4. SACT results, small benchmarks JSSP (10 × 10).

Problem Optimum
Units of Time

Better
Units of Time

Worse
Units of Time

Mean
Units of Time %RE σ t Sec Median Mode

FT6 55 55 55 55 0 0.0 0.03 55 55
FT10 930 930 930 930 0 0.0 1.05 930 930
LA16 945 945 945 945 0 0.0 5.1 945 945
LA17 784 784 784 784 0 0.0 4.9 784 784
L18 848 848 848 848 0 0.0 4.2 848 848

LA19 842 842 842 842 0 0.0 4.1 842 842
LA20 902 902 902 902 0 0.0 4.34 902 902

ORB01 1059 1059 1059 1059 0 0.0 13.63 1059 1059
ORB02 888 888 889 889 0 0.4 9720 889 889
ORB03 1005 1005 1021 1017 0 6.9 1048 1020 1021
ORB04 1005 1005 1005 1005 0 0.0 155 1005 1005
ORB05 887 887 890 888 0 1.6 1354 887 887
ORB06 1010 1010 1010 1010 0 0.0 59 1010 1010
ORB07 397 397 397 397 0 0.0 4.95 397 397
ORB08 899 899 899 899 0 0.0 10.33 899 899
ORB09 934 934 934 934 0 0.0 5 934 934
ORB10 944 944 944 944 0 0.0 4.84 944 944
ABZ5 1234 1234 1234 1234 0 0.0 12.62 1234 1234
ABZ6 943 943 943 943 0 0.0 4.23 943 943
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Table 5 presents the MS results with SACT for medium benchmarks. For all the benchmarks, the
optimum value is reached (RE = 0). For most benchmarks, a small value of standard deviation (σ < 7)
is obtained. The exception is the LA38 problem with the highest standard deviation of 21; however,
this value is less than half of the arithmetic mean (mean) and this represents little dispersion of the
data, however the dispersion of the data found by SACT in a frequency distribution for medium-sized
benchmarks, is greater than the dispersion found for small-sized benchmark data. LA29 finds the
optimal solution in 54 s. LA40 finds in 37 min. TA07 finds the optimal solution in 99 s and TA07 finds
in 85 min. More than half of the benchmarks of medium size have a mode equal to the optimal solution.
For most benchmarks, the median obtained is not the optimal solution. The most difficult problems
for obtaining the optimal solution according to the mode and median were the benchmark LA40,
TA03, TA05 to TA08, and TA10. LA40 was the most complicated of these benchmarks, the optimal
solution was obtained in only one of the 30 executions, where the median and mode were furthest
from the optimal value. Table 5 shows, based on the standard deviation that the data distribution in
each benchmark is completely homogeneous and the data are grouped very close to each other or with
the same optimal value. LA38 presents the data a little more dispersed (σ = 20.6).

Table 5. SACT results, medium benchmarks JSSP (15 × 15).

Problem Optimum
Units of Time

Better
Units of Time

Worse
Units of Time

Mean
Units of Time %RE σ t Sec Median Mode

LA36 1268 1268 1281 1275 0 6.1 371.6 1278 1268
LA37 1397 1397 1399 1397 0 0.9 230 1397 1397
LA38 1196 1196 1245 1216 0 20.6 55 1218 1196
LA39 1233 1233 1237 1234 0 1.8 54 1233 1233
LA40 1222 1222 1234 1227 0 3.4 2245 1228 1229
TA01 1231 1231 1231 1231 0 0.0 328 1231 1231
TA02 1244 1244 1244 1244 0 0.0 501 1244 1244
TA03 1218 1218 1223 1221 0 2.3 4373 1221 1223
TA04 1175 1175 1175 1175 0 0.0 301 1175 1175
TA05 1224 1224 1231 1229 0 2.8 2218 1230 1230
TA06 1238 1238 1240 1239 0 0.8 5090 1239 1239
TA07 1227 1227 1228 1228 0 0.4 99 1228 1228
TA08 1217 1217 1224 1220 0 3.0 1986 1218 1218
TA09 1274 1274 1281 1277 0 3.6 1433 1274 1274
TA10 1241 1241 1253 1245 0 4.6 3830 1244 1244

Table 6 presents the MS results with SACT for large benchmarks. Most of the obtained values are
close to the upper bound (UB), four of the benchmarks achieve this value. TA28 finds the greatest
relative error (RE = 0.87%). TA22, TA30, YN3, and YN4 find the lowest RE = 0. The DMU benchmarks
(46–50) are an exception because DMU49 finds the largest RE = 3.06 and DMU47 finds the lowest RE
= 2.08. The largest standard deviation was 41.8 for the problem DMU08, and the lowest standard
deviation was 4.9 for the problem YN1; however, this value is less than half of the arithmetic mean
(mean) and this represents little dispersion of the data, however the dispersion of the data found by
SACT in a frequency distribution for large-sized benchmarks, is greater than the dispersion found
for small-sized benchmark data and medium-sized benchmark data. The mean is greater than the
median and mode for DMU06 to DMU08 and DMU10, but with very close values, indicating very
little skewed frequency distributions (see Figure 14). With DMU09 the mean is between the median
and the mode indicating that the frequency distribution is close to a symmetrical distribution (see
Figure 14d). The mean is less than the median and mode for DMU46 to DMU47 and DMU49, but
with very close values, indicating very little skewed frequency distributions (see Figure 15). With
DMU48 the mean is between the median and the mode indicating that the frequency distribution is
close to a symmetrical distribution without taking the atypical value of 3988 (see Figure 15c). With
DMU50 the mean is greater than the median and the mode but with very close values, indicating that
the frequency distribution is close to a symmetrical distribution without taking the atypical value of
3842 (see Figure 15e). The shortest time for TA benchmarks was for TA22 and the longest time was for
TA30. The time for DMU benchmarks with the smallest relative error was for DMU08 and the time
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with the largest relative error was for DMU49. The shortest time for YN benchmarks with the smallest
relative error was for YN3 and the longest time with the biggest relative error was for YN2.

Table 6. SACT results, large benchmarks JSSP (20 × 20).

Problem UB
Units of Time

Better
Units of Time

Worse
Units of Time

Mean
Units of Time %RE σ t Sec Median Mode

TA21 1642 1646 1772 1683 0.24 18.1 1938 1681 1665
TA22 1600 1600 1680 1637 0 13.1 3476 1636 1644
TA23 1557 1560 1628 1600 0.19 15.5 1681 1598 1598
TA24 1646 1651 1693 1681 0.3 14.4 397 1683 1670
TA25 1595 1597 1669 1633 0.13 17.9 2208 1634 1649
TA26 1643 1651 1716 1684 0.49 15.6 4547 1681 1680
TA27 1680 1682 1712 1701 0.12 6.5 1736 1700.5 1698
TA28 1603 1617 1639 1625 0.87 6.6 1374 1623 1622
TA29 1625 1627 1642 1631 0.12 4.9 4876 1628.5 1627
TA30 1584 1584 1618 1607 0 6.0 6429 1608.5 1606

DMU06 3244 3254 3381 3321 0.31 30.4 267 3319 3307
DMU07 3046 3065 3223 3127 0.62 37.5 3192 3122.5 3118
DMU08 3188 3192 3385 3255 0.13 41.8 1696 3253 3202
DMU09 3092 3121 3231 3174 0.94 29.5 1912 3173.5 3228
DMU10 2984 3001 3084 3042 0.57 23.1 246 3041 3032
DMU46 4035 4133 4189 4171 2.43 13.9 3424 4172 4176
DMU47 3942 4024 4094 4070 2.08 13.9 1244 4073.5 4074
DMU48 3763 3856 3988 3907 2.47 20.9 858 3906 3908
DMU49 3710 3822 3871 3851 3.02 21.3 8301 3906 3902
DMU50 3729 3829 3907 3882 2.68 16.2 5281 3881.5 3881

YN1 884 885 905 896 0.11 4.5 1558 895.5 896
YN2 904 906 930 917 0.22 6.4 3353 916 913
YN3 892 892 915 903 0 5.9 2459 903.5 904
YN4 968 968 990 978 0 5.8 3525 977.5 974

Figure 16 presents the average of 5 tests of the relative error obtained for 15 × 15 problems. It
can be noted that the maximum RE occurs in LA38 and was not greater than 1.7. The most difficult
problem was LA40, however 5 trials show that the average RE was not greater than 0.5. For the other
15 × 15 problems, the maximum average RE is in the range 0 ≤ RE ≤ 0.6. The problems for which it
was easiest to find the global optimum were TA01, TA02, and TA04. In all the tests, they had RE = 0,
which is why they are not present in Figure 16.
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Figure 17 presents the average of 30 tests of the relative error obtained for the YN problems. It can
be observed that the maximum RE occurs in YN2 and was not greater than 1.7; this problem had more
difficulty approaching the upper bound of agreement in Table 6. The lowest average RE was in YN4,
not greater than 1.2 with respect to the upper bound in Table 6.
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4.4. Behaviour in DMU Benchmarks Scheduling

Figure 19, presents the Gantt chart of the problem DMU08. The scheduling of the jobs in each of
the problem’s machines can be observed. This type of distribution in the scheduling is characteristic
of all problems, TA (21–30), YN (1–4), and DMU (06–10). The DMU problems (49–50) show different
behavior. The scheduling distribution type is different. This is shown in Figure 20, where the Gantt
diagram of the DMU46 problem is presented as an example.
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Figure 20 shows that the planning of the job sequences in DMU46 indicates that in machines 1 to
10, the work operations can be sequenced from time zero. For machines 11 to 20, the operations of jobs
cannot be sequenced at time zero because there is a precedence order in operations of the same job.
This precedence order makes it impossible to use machines 11 to 20 if the operations of machines 1 to
10 have not previously been executed.
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4.5. Comparision of SACT with Other Algorithms

Table 7, presents the results for the FT (Fisher and Thompson) and LA (Lawrence) benchmarks.
SACT and BRK-GA (Biased Random-Key Genetic Algorithm) algorithms find the best results reported
in the literature. Both algorithms obtained the optimal value for LA40. With regard to the execution
time, it shows that SACT is competitive for most benchmarks. Table A2, in Appendix A, shows the
software/hardware environment used for the execution of the algorithms presented in Table 7.

Table 7. Efficiency and efficacy results for FT and LA benchmarks.

Prob Op ST t Sec BG t
Sec SG t

Sec AM t Sec TA t
Sec SGS t

Sec TGA t
Sec TS/PR t

Sec UP t Sec HO t
Sec GT AG

%RE

Size 10 × 10

FT10 930 0 1.05 0 10.1 – – 0 64.6 0 3.8 1.8 557 0 0.06 0 4.75 0 1208 0 4.1 0.54 0
LA16 945 0 5.1 0 4.6 0 38.8 – – – – 0 304 0 0.094 0 0.15 0 1458 0 19.9 0.11 0.10
LA17 784 0 4.9 0 4.6 – – – – – – – – 0 0.016 0 0.08 0 78 0 19.9 0 0
LA18 848 0 4.2 0 4.6 – – – – – – – – 0 0.015 0 0.09 0 76 0 19.9 0 0
LA19 842 0 4.1 0 4.6 0 34.6 – – 0 0.5 – – 0 0.025 0 0.16 0 1130 0 19.9 0 1.18
LA20 902 0 4.34 0 4.6 – – – – – – – – 0 0.031 0 0.11 0 1304 0 19.9 0.55 0.55

Size 15 × 15

LA36 1268 0 371.6 0 21.4 0 4655 0 36.6 0 9.9 – – 0 0.57 0 4.5 0.79 48,387 0 105 3.16 –
LA37 1397 0 230 0 21.4 0.29 4144 0 879.6 0 42.1 – – 0 0.51 0 26.2 0.72 49,836 0 105 6.59 –
LA38 1196 0 55 0 21.4 0.42 5049 0 55.4 0 47.8 – – 0 1.25 0 32.6 1.59 50,876 0 105 6.61 –
LA39 1233 0 54 0 21.4 – – 0 65.7 0 28.6 – – 0 0.5 0 11.6 1.38 50,603 0 105 4.62 –
LA40 1222 0 2245 0 21.4 0.33 4544 0.16 941.4 0.16 52.1 – – 0.16 0.86 0 385 0.57 50,609 0.16 105 2.46 –

Table 8, presents results for ORB, ABZ, TA, DMU, and YN benchmarks in [33]. SACT obtains the
best results reported in the literature for most of the benchmarks. The relative error (RE) for ORB, ABZ,
TA, YN, and DMU (06–10) benchmark is RE < 0.95%. For DMU (47–50,) benchmark is RE < 3.03%. This
shows that SACT is competitive with respect to the other algorithms presented. In [36] the researchers
report a new UB = 904 for the problem YN2; previously the known UB was 907. SACT finds a UB = 906.
Although this is not the new value reported by [36], it was able to improve the UB known before
2014. In efficiency, SACT is competitive with the ACOFT-MWR (Ant Colony Optimization with Fast
Taboo - Most Work Remaining) . The exception can be seen with BRK-GA algorithm for the DMU
benchmarks, SACT is, 0.12 < RE < 3.04 and BRK-GA is, 0 ≤ RE < 0.49. Table A2, in Appendix A, shows
the software/hardware environment used for the execution of the algorithms presented in Table 8.
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Table 8. Efficiency and efficacy for orb, ABZ, TA, DMU, and YN benchmarks.

Problem Op/UB
ST t Sec BG t Sec AM t Sec TSSA t Sec SGS T Sec TGA t Sec IO t Sec TS/PR t Sec UP t Sec GT AG

%RE

Size 10 × 10

ORB01 1059 0 4.34 0 5.8 0 56.6 0 3.5 0 342 0 0.06 – – 0 0.51 0 2312 2.36 3.12
ORB02 888 0 9720 0 5.8 0 569.3 0 6.4 0.1 306 0 0.06 – – 0 1.69 0.11 2393 0.23 0.68
ORB03 1005 0 1048 0 5.8 0 403.7 0 13.8 1.2 330 0 0.15 – – 0 1.46 0 2358 3.18 2.39
ORB04 1005 0 155 0 5.8 0 17.9 0 14.3 0 306 0 0.45 – – 0 3.71 0 796 2.29 1.09
ORB05 887 0 1354 0 5.8 0 670.3 0 6.6 0 366 0 0.76 – – 0 7.28 0.23 2458 0.79 1.58
ORB06 1010 0 59 0 5.8 – – 0 8.5 – – 0 0.72 – – 0 1.81 0.30 2525 2.48 1.78
ORB07 397 0 4.95 0 5.8 – – 0 0.5 – – 0 0.02 – – 0 0.13 0 2096 1.76 2.02
ORB08 899 0 10.33 0 5.8 – — 0 7.2 – – 0 0.09 – – 0 3.99 0 2338 4.23 1.67
ORB09 934 0 5 0 5.8 – – 0 0.4 – – 0 0.09 – – 0 0.47 0 884 0.96 0.96
ORB10 944 0 4.84 0 5.8 – – 0 0.3 – – 0 0.03 – – 0 0.09 0 817 2.44 –
ABZ5 1234 0 12.62 – – 0 501.9 – – – – 0 0.04 – – – – – – 0.32 –
ABZ6 943 0 4.23 – – 0 199.3 – – – – 0 0.03 – – – – – – 0.42 –

Size 15 × 15

TA01 1231 0 328 0 30.4 0 1531.4 0 11.2 3.1 2782 – – 0 124 0 2.93 – – – –
TA02 1244 0 501 0 30.4 0 685.2 0 30.1 – – – – 0 118 0 38 – – – –
TA03 1218 0 4373 0 30.4 0.16 1833.7 0 108.5 – – – – 0 120 0 44 – – – –
TA04 1175 0 301 0 30.4 0 1186.2 0 71.7 – – – – 0 117 0 39 – – – –
TA05 1224 0 2218 0 30.4 0.33 1492.6 0 10.8 – – – – 0 120 0 11 – – – –
TA06 1238 0 5090 0 30.4 0 1549.1 0 125.2 – – – – 0 113 0 178 – – – –
TA07 1227 0.08 99 0.081 30.4 0.08 1687 0.08 138.6 – – – – 0 117 0.08 0.60 – – – –
TA08 1217 0 1986 0 30.4 0 968.4 0 27.6 – – – – 0 108 0 2.43 – – – –
TA09 1274 0 1433 0 30.4 0 1694.2 0 61.3 – – – – 0 127 0 19 – – – –
TA10 1241 0 3380 0 30.4 0 1418.2 0 68 – – – – 0 122 0 42 – – – –

Size 20 × 20

TA21 1642 0.24 1938 0 143.2 0.31 4158.4 0.12 437 – – – – 0 408 0.12 503 – – – –
TA22 1600 0 3476 0 143.2 0.06 3586.4 0 433.5 – – – – 0 395 0 229 – – – –
TA23 1557 0.19 1681 0 143.2 0.19 4175.7 0.19 429.4 – – – – 0 390 0 360 – – – –



Appl. Sci. 2019, 9, 3360 33 of 40

Table 8. Cont.

Problem Op/UB
ST t Sec BG t Sec AM t Sec TSSA t Sec SGS T Sec TGA t Sec IO t Sec TS/PR t Sec UP t Sec GT AG

%RE

TA24 1644 0.43 397 0.12 143.2 0.49 3320.2 0.12 431.6 – – – – 0.12 435 0.06 779 – – – –
TA25 1595 0.13 2208 0 143.2 0.13 3654.3 0.13 421 – – – – 0 414 0 416 – – – –
TA26 1643 0.49 4547 0 143.2 0.55 3178.8 0.24 436.2 – – – – 0 87 0.24 268 – – – –
TA27 1680 0.12 1736 0 143.2 0.36 3523.8 0 447.8 – – – – 0 423 0 255 – – – –
TA28 1603 0.87 1374 0 143.2 0.94 3804.8 0 431.2 – – – – 0 370 0.62 326 – – – –
TA29 1625 0.12 4876 0 143.2 0.12 3324.9 0.12 426.2 – – – – 0 396 0 94 – – – –
TA30 1584 0 6429 0 143.2 0.69 4003.5 0 436.1 – – – – 0 429 0 389 – – – –

DMU06 3244 0.31 267 0 145.4 – – – – – – – – – – 0.03 823 – – – –
DMU07 3046 0.62 3192 0 145.4 – – – – – – – – – – 0 361 – – – –
DMU08 3188 0.13 1696 0 145.4 – – – – – – – – – – 0 296 – – – –
DMU09 3092 0.94 1912 0 145.4 – – – – – – – – – – 0.07 148 – – – –
DMU10 2984 0.57 246 0 145.4 – – – – – – – – – – 0.03 253 – – – –
DMU46 4035 2.43 3424 0 187.7 – – – – – – – – – — 0 985 – – – –
DMU47 3939 2.15 1244 0 187.7 – — – – – – – – – – 0.08 829 – – – –
DMU48 3763 2.47 858 0.48 187.7 – - – – – – – – – – 0.40 939 – – – –
DMU49 3710 3.02 8301 0.35 187.7 – – – – – – – – – – 0 634 – – – –
DMU50 3729 2.68 5281 0.08 187.7 – – – – – – – – – – 0 610 – – – –

YN1 884 0.11 1558 0 105.2 – – 0 106.6 0.2 15,786 0.23 92.8 0 190 0 169 – – –
YN2 904 0.22 3353 0 105.2 – – 0.33 110.4 4.4 14,586 0.77 13.1 0 197 0 202 – – – –
YN3 892 0 2459 0 105.2 – – 0 110.8 1.3 16,662 0.56 37.2 0 212 0 344 – – – –
YN4 967 0.1 3525 0.1 105.2 – – 0.21 108.7 2.17 14,752 0.83 114.1 0.10 — 0.10 321 – – – –
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Table 9, presents the relative error of algorithms with threads/processes for the FT, LA, ORB,
TA, DMU, and YN benchmarks. SACT has better performance with respect to the other algorithms,
except DMU09. SACT has a relative error in the range of 0 ≤ RE ≤ 0.94%, PPSO (Parallel Particle
Swarm Optimization) has a relative error in the range of 29 ≤ RE ≤ 68%, CGA-PR (Coarse-Grained
Genetic Algorithm with Path-Relinking) has a relative error in the range of 0 ≤ RE ≤ 2.49%, PaGA
(Parallel Agent-Based Genetic Algorithm) has a relative error in the range of 0 ≤ RE ≤ 12.4%, HGAPSA
(Hybridization of Genetic Algorithm with Parallel Implementation of Simulated Annealing) presents
a relative error of 0.79 ≤ RE ≤ 1.92%, HIMGA presents 0 ≤ RE ≤ 1.01%, NIMGA presents 0 ≤ RE ≤
3.01%, IIMMA presents 0 ≤ RE ≤ 0.55% and AGS presents 0 ≤ RE ≤ 1.76%. Concerning the HGACC
distributed algorithm, SACT offers a better performance for YN benchmarks. It reaches the same
effectiveness for 10 × 10 and 15 × 15 size benchmarks. Thus, it is best for the DMU06 benchmark and is
competitive for the other DMU benchmarks. Table A2, in Appendix A, shows the software/hardware
environment used for the execution of the algorithms presented in Table 9.

Table 9. Parallel algorithms, efficacy for FT, LA, ORB, TA, DMU, and YN benchmarks.

Problem Size Op/UB
%RE

SACT PPSO cGA-PR PaGA HGAPSA HIMGA NIMGA IIMMA PGS PABC HG

FT06 6 × 6 55 0 – – 0 – 0 0 0 0 0 –
FT10 10 × 10 930 0 – 0 7.2 – 0 0 0 0.9 0 0
LA16 10 × 10 945 0 29 – 5.2 – 0 0.11 0 – 0 0
LA17 10 × 10 784 0 33 – 1.2 – 0 0 0 – 0 0
LA18 10 × 10 848 0 33 – 1.4 – 0 0 0 – 0 0
LA19 10 × 10 842 0 37 – 3.7 – 0 0 0 – 0 0
LA20 10 × 10 902 0 32 – 1.1 – 0 0.55 0 – 0.55 0
LA36 15 × 15 1268 0 65 – – 0.87 0 1.97 0 – – 0
LA37 15 × 15 1397 0 58 – – 0.79 0 3.01 0 – – 0
LA38 15 × 15 1196 0 68 1.0 – 1.92 0 2.17 0 – – 0
LA39 15 × 15 1233 0 67 – – 1.05 0 2.11 0 – – 0
LA40 15 × 15 1222 0 68 1.31 – 1.56 0.16 1.96 0.16 – – 0

ORB01 10 × 10 1059 0 – 0 8.5 – 0 0 0 0 – 0
ORB02 10 × 10 888 0 – – 4.6 – 0 0.23 0 0.1 – 0
ORB03 10 × 10 1005 0 – 0 12.3 – 0 2.09 0 0 – 0
ORB04 10 × 10 1005 0 – 0 5.7 – 0 1.39 0 0 – 0
ORB05 10 × 10 887 0 – – 5.5 – 0 0.68 0 0 – 0
ORB06 10 × 10 1010 0 – – 4.0 – 0 0.20 0 – – 0
ORB07 10 × 10 397 0 – – 4.8 – 0 0 0 – – 0
ORB08 10 × 10 899 0 – 0 12.4 – 0 1.11 0 – – 0
ORB09 10 × 10 934 0 – – 6.4 – 0 0.86 0 – – 0
ORB10 10 × 10 944 0 – 0 – – 0 – 0 – – 0
TA21 20 × 20 1642 0.24 – 0.49 – – 0.49 – – – – –
TA22 20 × 20 1600 0 – 0.38 – – – – – – – –
TA23 20 × 20 1557 0.19 – 0.19 – – – – – – – –
TA24 20 × 20 1646 0.3 – 0.36 – – – – – – – –
TA25 20 × 20 1595 0.13 – 0.13 – – – – – – – –
TA26 20 × 20 1643 0.49 – 0.55 – – – – – – – –
TA27 20 × 20 1680 0.12 – 0.36 – – – – – – – –
TA28 20 × 20 1603 0.87 – 0.87 – – – – – – – –
TA29 20 × 20 1625 0.12 – 0.25 – – – – – – – –
TA30 20 × 20 1584 0 – 0 – – – – – – – –

DMU06 20 × 20 3244 0.31 – 0.52 – – – – – – – 0.74
DMU07 20 × 20 3046 0.62 – 1.15 – – – – – – – 0.59
DMU08 20 × 20 3188 0.13 – 0.53 – – – – – – – 0
DMU09 20 × 20 3092 0.94 – 0.13 – – – – – – – 0.59
DMU10 20 × 20 2984 0.57 – 0.84 – – – – – – – 0.10

YN1 20 × 20 884 0.11 – 2.49 – – 1.01 – 0.22 1.4 – 0.23
YN2 20 × 20 904 0.22 – 1.77 – – 0.99 – 0.55 1.2 – 0.33
YN3 20 × 20 892 0 – 1.01 – – 0.90 – 0.34 0.9 – 0
YN4 20 × 20 967 0.1 – 1.45 – – 0.93 – 0.21 1.76 – 0.21

4.6. SACT Computational Efficiency

Figure 21 shows the SACT speedup for the YN benchmarks. The communication through
cooperation between threads (access to the critical section) affects the speedup. An increased number
of threads lead to greater cooperation because each running thread has the need to deposit the best
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solution in a critical section shared by all threads (see Figure 3), generating a bottleneck where in an
instant of time the threads will have to wait their turn to access the critical section. This implies that
increasing the number of threads will have a higher bottleneck, which results that the speedup moves
away from the ideal. The speedup for YN2 is farthest from ideal with respect to other YN benchmarks.
This may be because YN2 is taken more time to generate feasible solutions with the neighborhood
generation mechanism [31]. So, it is possible that YN1, YN3, and YN4 will find solutions feasible
faster. The neighborhood mechanism used in SACT is the only place in the algorithm that can perform
differently on each benchmark. The speedup is very good for all YN benchmarks since is close to
the ideal.
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5. Conclusions

The study presented evidence that a benefit exists when the cooperation of threads is used
applying effective-address procedure in the algorithm of simulated annealing for the job shop scheduling
problem. It is also observed that the SACT algorithm can work more efficiently if it is executed in
a computer with a greater number of threads per core. This permits an increase in the number of
effective-address upon executing a greater number of SA in parallel.

Working with SACT in parallel allows the effective-address procedure to be efficiently applied
because each thread constantly updates its search direction to a good solution space. In addition, no
thread waits for any other thread in its simulated annealing run. That is why the search for better
solutions between threads is asynchronous, enabling to run a larger number of simulated annealing
compared to other threads, but always sharing the best solution space, and trying to improve the
search direction with effective-address procedure on a constant basis. This makes the SACT algorithm
more efficient if the number of threads is greater, which is reflected in the experimental results, as
shown in Section 4.2.

According to the experimental results, it can be concluded that by applying cooperation threads
with a directed path toward the best solution, a larger number of threads find best solutions. Since the
diversity of solutions increases as the number of threads increases, a quick convergence before finding
good solutions is avoided.
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When the cooperation thread is applied without a directed path towards the same solution, finding
a good result does not depend on the number of threads running on SACT. The value of the makespan
is very similar for any number of threads.

The statistical review for the 19 small-sized benchmarks shows that SACT is highly effective since
the optimal value is found in all instances. In 16 instances, the mean is the optimum, which indicates
that for these instances, each of the 30 tests performed by SACT obtained the optimal value. According
to the result of the median, it is understood that in 18 instances, the optimal solution is found in at least
half of the 30 tests performed for each, which is reaffirmed by the mode of the same 18 instances.

The statistical review for the 15 medium-sized benchmarks shows that SACT is highly effective
since the optimal value is found in all instances. In 4 instances, the mean is the optimum and this
indicates that for these instances, each of the 30 tests performed by SACT obtained the optimal value.
According to the result of the median, it is understood that in 5 instances, the optimal solution is found
in at least half of the 30 tests performed for each. In 8 instances, the mode indicates that the optimal
value is the one that appears more frequently.

The statistical review for the 20 large-sized benchmarks shows that SACT is very effective. In 4
instances, the upper bound is found and in 15 instances, the relative error does not exceed 1%.

Because the execution in SACT is executed by threads and communication in the algorithm
handles only two critical sections, the efficiency (speedup) of the proposed algorithm is close to the
ideal value. SACT also shows that efficacy is competitive when compared with other algorithms in the
literature that have been very successful. Additionally, it is better than the algorithms in the literature
that use threads/processes for the job shop problem.

Finally, the conclusion can be drawn that the optimum number of threads to execute in parallel by
SACT is a parameter that must be tuned due to this cooperation in the threads.

The planning characteristics of the DMU (46–50) problems increase the degree of difficulty in
obtaining good solutions by the proposed SACT algorithm. This is a topic of interest for future
research, to search for an improved neighborhood mechanism that finds better solutions with the
SACT algorithm for problems that behave like the DMU (46–50) problems with respect to the operation
precedence and restrictions that prohibit starting all operations at time zero.
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Appendix A

Table A1. Benchmarks used to evaluate the proposed SACT algorithm.

Problem
Size Optimum/UB

Units of TimeJobs Machines

FT6 6 6 55

FT10 10 10 930

LA16 10 10 945

LA17 10 10 784

LA18 10 10 848

LA19 10 10 842

LA20 10 10 902
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Table A1. Cont.

Problem
Size Optimum/UB

Units of TimeJobs Machines

ORB01 10 10 1059

ORB02 10 10 888

ORB03 10 10 1005

ORB04 10 10 1005

ORB05 10 10 887

ORB06 10 10 1010

ORB07 10 10 397

ORB08 10 10 899

ORB09 10 10 934

ORB10 10 10 944

ABZ5 10 10 1234

ABZ6 10 10 943

LA36 15 15 1268

LA37 15 15 1397

LA38 15 15 1196

LA39 15 15 1233

LA40 15 15 1222

TA01 15 15 1231

TA02 15 15 1244

TA03 15 15 1218

TA04 15 15 1175

TA05 15 15 1224

TA06 15 15 1238

TA07 15 15 1227

TA08 15 15 1217

TA09 15 15 1274

TA10 15 15 1241

TA21 20 20 1642

TA22 20 20 1600

TA23 20 20 1557

TA24 20 20 1646

TA25 20 20 1595

TA26 20 20 1643

TA27 20 20 1680

TA28 20 20 1603

TA29 20 20 1625

TA30 20 20 1584

DMU06 20 20 3244

DMU07 20 20 3046

DMU08 20 20 3188

DMU09 20 20 3092

DMU10 20 20 2984

DMU46 20 20 4035

DMU47 20 20 3942

DMU48 20 20 3763

DMU49 20 20 3710
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Table A1. Cont.

Problem
Size Optimum/UB

Units of TimeJobs Machines

DMU50 20 20 3729

YN1 20 20 884

YN2 20 20 904

YN3 20 20 892

YN4 20 20 968

Table A2. Software/hardware environment used in algorithms with which SACT is compared.

Algorithm Hardware and Software

PPSO, [5] Server and client Machines, Logical ring topology, Java, Windows system

HGAPSA, [14] Server and client Machines

cGA-PR, [15] Workstation Pentium IV, multicore, 2.0GHz, 1GB, Microsoft Visual C++

PaGA, [19] Computer network with JADE Middleware, Java

HIMGA, [20] PC, 3.4GHz, Intel®, Core(TM), i7-3770 CPU, 8GB, C++

NIMGA. PC, [21] PC, 3.4GHz, Intel®, Core(TM), i7-3770 CPU, 8GB, C++

IIMMA, PC, [22] PC, 3.4 GHz, Intel®, Core(TM), i7-3770 CPU, 8GB, C++

Sequential AntGenSA (SGS),
Parallel AntGenSA (PGS), [23] Cluster 4nodes, Intel® Xeon® 2.3 GHz, 64GB, Linux CentOS, C, OpenMP

PABC, [24] Four computers system configuration, JAVA

HGACC (HG), [25] CLUSTER, 48 cores, Xeon 3.06GHz, Linux Centos 5.5, GNU gcc, MPI Library

BRK-GA (BG), [36] AMD Opteron 2.2GHz CPU, Linux Fedora release 12, C++

SAGen (SG), [37] Pentium 120 (0.12 GHz), Pentium 166

ACOFT-MWR (AM), [38] PC AMD 1533MHz CPU, 768 MB, Windows XP, Microsoft Visual C++ 6.0

TSSA (TA), [39] PC Pentium IV 3.0GHz, Visual C++

HPSO (HO), [40] PC, AMD Athlon 1700+ (1.47 GHz), Visual C++

TGA, [41] PC 2.2 GHz, 8GB RAM, GNU gcc compiler

IEBO (IO), [42] 2.93 GHz, Intel Xeon X5670, GNU g++ compiler

TS/PR, [43] PC Quad-Core AMD Athlon 3 GHz, 2GB, Windows 7, C++

UPLA, [44] (UP) Intel CoreTM i5, processor M580 2.67 GHz, 6GB, C#

ALSGA (AG), [45] Intel core 2 duo, 2.93 GHz, 2.0GB, Java Agent DEvelopment platform (JADE)

GA-CPG-GT (GT), [46] PC 3.40 GHz Intel(R) Core (TM) i7-3770, 8GB, C++

SACT (ST), this work
Workstation PowerEdge T320, Intel® Xeon® Processor E5-2470 v2, 10cores,
3.10 GHz each, 24GB, Windows Vista Ultimate 64 bits O.S, Visual C++ 2008,

MFC library
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