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Abstract 
 

An experimental analysis of five neighborhoods is 

presented. The analysis includes a hybrid structure 

comprised of one random pair, two random pairs, 

three random pairs or four random pairs. The 

efficiency and effectiveness of each structure was 

tested using the minimum spanning tree problem. As 

proposed in this research paper, the hybrid structure 

approach applied to the minimum spanning tree 

problem demonstrates superior effectiveness and 

competitive efficiency as compared to other structures. 

 

1. Introduction 
 

The minimum spanning tree problem (MST) is a 

combinatorial optimization problem, and one of the 

most important problems in the field of distributed 

computing and communications networks [1]. It was 

formulated in 1926 by Otakar Borukva, in his attempt 

to find the cheapest way to distribute electric power in 

southern Moravia, Czech Republic [2]. The 

formulation of this problem has been useful for 

research in various fields, such as electrical and 

hydraulic systems, transportation, telecommunications 

network design, computer systems, telephone systems 

and other operations research problems where the goal 

is to optimize costs, distances, lengths or other 

measures between the points of consumption [3]. 

According to the complexity theory, the MST problem 

is classified as type P [4, 5].  

This paper presents the analysis of five 

neighborhood structures with the minimum spanning 

tree problem. In this analysis, each neighborhood 

structure is implemented within an iterated local search 

algorithm (ILS). The algorithm is evaluated in 

efficiency and effectiveness for each neighborhood 

structure. Based on experimental testing, the best 

neighborhood structure is determined. 

The proposed neighborhood hybrid structure is 

made up of the four structures that are analyzed, which 

are one random pair, two random pairs, three random 

pairs and four random pairs. The use of the 

neighborhood hybrid technique allows a better 

exploitation of the solution space, resulting in better 

solutions. Hybrid structures have been employed in 

different optimization problems [6, 7, 8], but there was 

not previous research found using hybrid structures for 

the minimum spanning tree problem.  

This article is divided into the following sections. 

Section two defines the minimum spanning tree 

problem. Section three presents a neighborhood hybrid 

structure, as well as the performance of each 

neighborhood structure used. Section four explains the 

iterated local search. Section five details the 

experimental testing with ILS using the five 

neighborhood structures and section six presents the 

conclusions obtained in this research. 

 

2. Minimum Spanning Tree Problem  
 

The minimum spanning tree problem in the 

literature is represented by a graph [9, 10], which is 

defined as an undirected graph, connected and 

weighted G= (V, E), where V= {v1, v2…..vn} is a finite 

set of vertices and E = {eij | eij = (vi, vj), vi, vj  V} is a 

finite set of edges. It is said that a graph is weighted if 

each edge has an associated positive real number 

denoted by  W =  {wij  |  wij  =  w (vi, vj),  wij > 0,   vi,  vj   

   V}  representing distance, length, cost or another 

measure. The graph is undirected because the edges do 

not have a direction. A graph is connected if all edges 

are connected.  Figure 1 shows an example of an 

undirected, connected and weighted graph.  
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Figure 1. Undirected graph, connected with 35 

vertices, 16 edges, with random cost in each edge 
 

In terms of graphs, when finding a minimum 

spanning tree, certain conditions must be met [11]: 

 

1. Being a subgraph of G with no cycles with 

n-1 edges, where n is the total number of 

vertices. 

2. Being a subgraph of G where all vertices 

are connected. 

3. The total of the costs of all edges 

associated with the subgraph is the 

minimum. 

 

Figure 2 shows the minimum spanning tree for the 

graph presented in Figure 1. 

 
Figure 2.  Example of a minimum spanning tree 

 

The minimum spanning tree problem can be 

formulated by the following mathematical model [10]:  
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Equation (1) is the objective function of the 

problem, to minimize the total cost of all edges that 

form the minimum spanning tree. The set of constraints 

(2) requires that all vertices be connected, which 

implies that the total of all edges is equal to n-1, where 

n represents the total number of vertices, therefore no 

cycles are permitted. The set of constraints (3) 

prohibits the edges of ET from forming cycles, where 

(S, S) notes that all the edges that go from a vertex in 

the set S must connect to another vertex in the set S. 

The set of constraints (4) indicates whether an edge 

connects to a pair of vertices or not, if ex =1, then the 

edge connects a vertice i with a vertice j, otherwise 

ex =0.  

 

 

3. Neighborhood Hybrid Structure 
 

The neighborhood structures are techniques used for 

the purpose of improving a solution, in which it is 

necessary to move step by step from an initial solution 

toward a neighboring solution that provides the 

minimum or maximum value of the objective function 

[12]. These techniques are used in optimization 

problems, which allow a better exploration of the 

solution space through its implementation within a 

local search algorithm. 

A neighborhood is defined as a set of all those 

solutions which may be achieved from an initial 

solution s, through a movement  during the 

exploitation of the solution space [4]. The movement 

 can be a permutation, insertion or deletion between 

elements that form the solution s. The type of 

movement defines the kind of structure and size of the 

neighborhood [13]. 

A neighborhood structure is defined as a function 

N(s) presented in equation (5)  

 

 ':')( ssSssN 


 

     (5) 



A neighborhood function N(s) specific for each 

solution s  S is a set N(s)  S, called the 

neighborhood of s. This indicates that each solution s’ 

is a neighborhood of s if s’  N(s). S represents the 

total set of possible solutions of an instance of the 

problem.  

The movements made by each of the neighborhood 

simple structures are applied to the MST problem. 

These structures also form the neighborhood hybrid 

structure. The neighborhood structures are important 

because they allow a better exploitation of the solution 

space. 

A Random Pair [4, 6, 14, 15]. This procedure starts 

with a feasible solution s from which is chosen a 

random number num1, which is considered the root. 

Then another random number num2 is chosen, which is 

considered to be a neighbor vertex. A perturbation is 

performed; this movement generates a single cycle and 

removes an edge belonging to the cycle generated. If 

by removing that edge, vertices are not connected, the 

removed edge is reconnected and another edge is 

removed. The process continues until no disconnected 

vertices are left. Figure 3 shows the movement 

performed by the structure of a random pair.  

 
Figure 3. Neighborhood structure of one random 

pair 
 
Two random pairs. The same procedure described 

for a random pair is carried out in the case of two 

random pairs [6, 15, 16, 17]. The only difference is that 

two random numbers are generated and considered a 

root, and two other random numbers are considered 

neighboring vertices. Therefore, two edges are 

removed corresponding to the numbers generated. 

Figure 4 shows the movement performed by the 

structure used.  

 

 
Figure 4. Neighborhood structure of two random 

pairs 

 

Three random pairs. For a neighborhood structure 

with three random pairs [18], it is necessary to generate 

three random numbers which are considered root, and 

three other random numbers which are considered 

neighboring vertices. Three edges are removed, 

corresponding to the numbers generated. Figure 5 

shows the movement performed by the neighborhood 

structure of three random pairs.  

 
Figure 5. Neighborhood structure of three random 

pairs 

 

Four random pairs. The same procedure described 

for the previous movements is used, with the 

generation of four random numbers [18] which are 

considered root and four other random numbers which 

are considered neighboring vertices. Four edges are 

removed belonging to the numbers generated. 

Considering the roles of neighborhood structure 

presented above and their performance reported in the 

literature [6, 7, 8], the development of a neighborhood 

hybrid structure was proposed. Figure 6 shows the 

neighborhood hybrid structure in general. This 

structure is a combination of the individual structures 

already explained, in which the type of movement 

applied is determined at random during the execution 

of the algorithm.  



 
Figure 6. Flowchart of neighborhood hybrid 

structure  

 

4.  Iterated Local Search with 

Neighborhood Hybrid Structure 
 

The procedure implemented for analysis of the 

neighborhood structure is based on a local search 

method (ILS). ILS is a heuristic that iteratively applies 

a local search method [19]. Hoos and Stützle [20] 

claim that ILS is one of the simplest and most effective 

methods to avoid entrapment in local optima. 

Figure 7 shows the iterated local search general 

algorithm. The iterated local search procedure requires 

a neighborhood structure and an objective function that 

maximizes or minimizes. The process starts with any 

solution s and the set of solutions in the neighborhood 

N(s), from which a solution is chosen s’ through a 

movement σ. The type of movement σ applied to 

choose a neighbor defines the neighborhood structure. 

In this case there are four different types of movements 

in the neighborhood hybrid structure, σ  = {σ1, σ2, σ3 

σ4}. This movement σ is performed by a stochastic 

process, which improves the objective function. If it is 

necessary to minimize, then  f (s’)   f (s). If this is 

true, then solution s is replaced by solution s’ to 

improve it. This is repeated until the stop criterion of 

local search is met. New local searches are performed 

iteratively. Each time a local search terminates, it 

evaluates f (s’) <= f (CS_ILS). If it is true, the local 

solution s’ is replaced by the best solution CS_ILS that 

has been obtained so far. This procedure continues 

until the solution is not further improved. The stop 

criterion of ILS is the maximum number of executions 

of local searches. This work was also implemented in 

ILS separately for each neighborhood structure to 

conduct experimental testing. 

 
Figure 7. Iterated local search general algorithm 

 

5. Experimental Results 
 

Experimental tests of the iterated local search were 

conducted in a PC with a processor of 3.17GHz, 2 GB 

RAM, Windows Vista Ultimate O.S and a compiler 

Visual C++ 2008. The test instances were generated 

randomly, from 100 and 200 vertices. Thirty 

executions were realized for each neighborhood 

structure. A stop criterion for ILS was set at a total of 

100 iterations because after that number there were no 

significant improvements in the objective function (see 

Equation 1). 

 

5.1. Effectiveness Tests 
 

Table 1 shows that the structure with the least 

effectiveness is one random pair. Of the 30 tests, the 

best solution was found by the hybrid structure. The 

four random pairs structure found the worst solution of 

highest quality, and also showed better performance 

when comparing the average and standard deviation. 

The three pair structure has the best standard deviation. 

The hybrid structure takes second place of the five. 

 

Table 1. Results for 100 vertices with 30 executions 

of ILS for each structure 
Structure Best 

solution 

Worst 

solution 

Avera

ge 

Std. 

Dev. 
Random pair 3937 5008 4155.2 132.06 

Two random pairs 3776 5157 4094.1 134.68 

Three random pairs 3806 5144 4037.9 126.48 

Four random pairs 3773 4900 4013.7 109.16 

Hybrid 3769 4941 4056.9 122.66 

 

Input: data structure 

CS_ILS=M; // where M has a large value 

 Do 

     Generates initial solution s 

      Do 

          Obtain s’=    4321 ,,, fsN   

           If (f (s’) ≤ f (s)) then 

               s’= the best solution so far 

               s = s’ 

           End if 

       While stop criterion LS // LS =Local Search 

       If (f(s’) ≤  f(CS_ILS)) then 

            CS_ILS= s’ 

       End-if 

 While stop criterion ILS // ILS=Iterated Local Search 

Output: solution of MST 



Table 2 shows that the least effective structure was 

the one random pair structure. Of the 30 tests, the best 

solution was found by the hybrid structure, this 

structure also had the best average. The four random 

pairs structure performed best regarding the worst 

solution of best quality. The three random pairs 

structure showed the best standard deviation. In this 

case the hybrid structure is second of the five. 

 

Table 2. Results for 200 vertices with 30 executions 

of ILS for each structure 
Structure Best 

solution 

Worst 

solution 

Average Std. 

Dev. 
Random pair 8178 10221 8630.7 187.47 

Two random 

pairs 

7995 9969 8493.4 200.68 

Three random 

pairs 

8162 9912 8515.4 158.97 

Four random 

pairs 

8088 9776 8490.8 183.05 

Hybrid 7987 10095 8468.5 174.20 

 

5.2. Efficiency Tests 
 

Figure 8 shows the average run time of the MST 

problem for instances of 100 and 200 vertices with 30 

tests for each instance, applied to each neighborhood 

structure. Figure 8 shows that in the instance of 200 

vertices the execution time for each neighborhood 

structure increases significantly when compared to the 

instance of 100. This increase is due to the increase in 

the size of the solution space for the instance of 200.  

 

Figure 8. Run time with 100 and 200 vertices for 

each structure 

 

Figure 8 shows that the random pair structure is 

most efficient for both the instances of 100 and 200 

vertices, because it has the best average running time. 

The hybrid structure proponed in this research shows 

competitive behavior in both cases, although it does not 

show the best efficiency, it does not show the worst 

either. The hybrid structure is located at an 

intermediate point with respect to the other structures. 

The behavior of the hybrid structure is logical, due to 

the fact that it consists of the four other structures 

chosen randomly. The structure with the worst 

efficiency is that of four random pairs, which is 

required to perform a larger number of movements, 

obtaining the new solution s’ requires more 

computational effort. 

 

Future Work 

 

In order to attempt to improve the performance of 

these algorithms, future work could involve 

implementation of the neighborhood hybrid structure to 

metaheuristics as simulated annealing, tabu search and 

others.  

 

6. Conclusion  
 

The neighborhood hybrid structure works 

effectively for the minimum spanning tree problem. 

This analysis is based on the results obtained in the 

experimental tests for the neighborhood with 100 and 

200 instances. The efficiency of the hybrid structure is 

competitive with respect to the rest of the structures 

tested.  
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