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Abstract. This paper presents an experimental study of the solutions space generated by the mathematical model of the 

Water Distribution Network Design Problem by using Two-Looped network benchmarks to find the feasible solutions space. 

It shows how the performance of a typical Evolutionary Algorithm (EA) can be improved by considering the importance of 

working with a feasible population and carrying out repetitive mutations and crossovers to generate new feasible offspring 

with better fitness. The replacement of parents represents the mortality index of a population at each generation of EA. Aim-

ing to compensate the mortality index, EA is forced to maintain a constant population size by increasing the number of de-

scendants with the crossover operator. The experimental results show both the feasible solutions space and the results of the 

algorithm when using feasible solutions and varying population size.  

 

1. Introduction 

In life, there are problems with several solutions and one must be chosen. This is the case for combinatory 

optimization problems [1]. 

An optimization problem has some important characteristics; it has an objective function to be optimized, a 

search space, and a subset of the search space. The feasible solutions space for combinatory optimization prob-

lems is a discrete set, or it can be reduced to a discrete set.  

The Water Distribution Network Design problem (WDND) is an optimization problem. It consists of finding 

the most efficient way to supply water to consumers, within given constraints. For example pressure require-

ments must be reached to offer users an adequate service when satisfying their water requirements. The WDND 

Problem has been widely studied by many researchers. The first attempts to solve the problem were based on 

Lineal Programming techniques. Alperovits and Shamir [7] proposed a linear programming gradient method 

which has been adapted and improved by Quindry [8], Goulter et al. [9], Fujiwara et al. [10], and Kessler et al. 

[11], among others. It is noteworthy that the previously cited works present similarities in their mathematical 

formulation, decision variables, and methods used to solve the problem. The mathematical formulation was 

based on lineal programming models, the decision variables was based on continuous variables, and the solution 

method for the problem was primarily based on lineal programming methods. The design of the network tended 

to be a branched layout. In the last decade, the WDND problem has gradually been modified. It has been formu-

lated as a non linear programming problem and pipe diameters have been stated as discrete decision variables. 

The solution method for the problem has generally been based on heuristic methods like Evolutionary Algo-

rithms (EAs), Simulated Annealing and others. The design of the network has been a looped layout, and the 

network technique to supply water to consumers has been gravity. Even though the problem has been referred to 

as the WDND problem for three decades, there are some important differences between the first two decades 

and last decade. These differences alter the problem slightly, and do not allow for direct comparison. They in-

clude mathematical formulation, decision variables, topology (branched or looped), solution method, and tech-

nique to feed the network (pumping or gravity).  

According to the computational complexity theory, WDND is verified as an NP-Complete problem by map-

ping it to the well-known Job Shop Scheduling Problem [3]. It is classified in the set of NP-Hard problems [4], 

and has been widely studied over 30 years by many researchers due to its practical application. In order to solve 

this problem, several approaches have been applied. When trying to solve the WDND problem, global optimiza-

tion [5, 6], linear programming [7, 8], non-linear programming [9, 10, 11, 12, and 13] and many other heuristics 

have been applied [14, 15, 16, 17]. When attempts are made to solve this problem for real instances, it is ex-

tremely complex to find the optimum solution. Even for small benchmarks of NP-Complete problems, finding 

the global optimum solution by using an exact method would take years [2]. A good alternative is the use of 

heuristic methods. One of the most promising and commonly used methods is the well-known EAs. These 

methods are stochastic search procedures, based on evolution and natural selection [21, 21]. They suggest a sat-

isfactory success rate for identifying good solutions. They have successfully handled NP-Complete problems 

[18, 19] for different fields, including the WDND problem [20, 23]. An EA consists of 5 main components: 1) 

Solution Representation, 2) Initial Population, 3) Evaluation Function, 4) Genetic Operators and 5) Parametric 



values for population size, crossover and mutation probabilities, and number of generations. Recently, many 

works have focused on developing EAs. When working with an EA to solve the WDND problem, some ques-

tions related to the components of the EA arise: What percentage of the feasible solutions is included in the 

complete search space? How many solutions should be generated to find a feasible solution? What must the size 

of the feasible initial population be in order to have a representative sample of the search space? What method is 

used to create an initial population?  

In order to find the global optimal solution, it is important to know the size of the feasible solutions space. 

The goal is to know if the size and characteristics of the initial population help the Evolutionary Algorithm to 

converge earlier to a better solution. These questions are addressed in this article. 

In this paper, an EA, called EA-WDND, is presented. EA-WDND differs from traditional EAs in four important 

aspects: 1) Initial population creation. It is a subset of a feasible solutions space, all the individuals of the popu-

lation can be selected to generate offspring. 2) The population size of offspring generated is bigger than the 

population size of parents. 3) For each generation, the population is created by the best offspring; parents are 

combined to produce offspring and then they die. Unfeasible individuals cannot survive. 4) EA-WDND algo-

rithm solves two models: the constraints satisfaction model by using Epanet Solver, and the optimization model 

by evaluating the objective function.  

The principal contribution of this work is the experimental study of the search space of the WDND Problem. 

It helps determine how many solutions should be generated, and the time needed to obtain different sizes of fea-

sible populations. The study shows the difficulty of finding a feasible solution in the complete solutions space. 

An experimental study of an evolutionary algorithm, EA-WDND, presented here, shows convergence by using 

different sizes of initial feasible populations.  

This paper is organized as follows: Section 2 explains the combined Mathematical Model for the WDND 

Problem. Section 3 presents a description of the Evolutionary Algorithm. Section 4 defines the Solutions Space 

for the WDND Problem. Section 5 describes the experimental results of the solutions space. Section 6 presents 

the conclusions and future investigations to provide continuity to this work.  
 

2. Water Distribution Network Design Problem (WDND) 

The optimization of the looped water distribution networks is an important and complex problem with applica-

tions in urban, industrial and irrigation water supply. It consists of minimizing the network investment cost with 

pipe diameters as decision variables, while link layout, connectivity, and demands are imposed as constraints 

[24]. The solution to the problem is the least cost optimum configuration, which is a sequence of the necessary 

pipe diameters to convey water from sources to all the network water users, satisfying their requirements.  

Recently, the model that represents the WDND problem has been stated as a non-programming lineal model, 

and hydraulic restrictions have been managed as implicit restrictions [13]. In this work, the mathematical model 

represents looped networks and has been divided into two models to classify design restrictions, independent of 

operation restrictions: 1) the model of lineal programming includes network design restrictions which can be 

stated mathematically in terms of the cost of a pipeline and unit length for each pipeline (Table 1 and 2). The 

constraints satisfaction model includes network operation restrictions.  

Equation (1) is the objective function. It consists of minimizing the total cost, TC, of the water distribution net-

work configuration, where n is the number of pipes in the network. TC is based on the sum of the costs of each 

pipe of length Lijdk. Cost Cijdk is taken from a commercial diameters list and it depends directly of the diameter of 

pipe used. The cost of a pipeline is assumed to be linearly proportional to its length. The objective function is 

subject to constraints set. Constraints in (2) indicate that one or more pipes Lijdk in the network can have the 

same diameter dk. At the same time, it indicates when a diameter included in the set D of commercial diameters, 

is not being used for a pipe in the network. D is the set of commercial diameters available for the water network 

design, D = {d1, d2,…, dn}. Constraints in (3) indicate that each node i in the network can be connected to pipes 

of length Lijdk with the same or different commercial diameter sizes. Constraints in (4) indicate that for each 

pipe, of length
kijdL , a single pipe diameter of the list of commercially available diameters must be used. Re-

strictions in (5) define values that can be assigned to the set of variables X. For example, when considering ref-

erence equation (1), if a pipe connected from node i to node j uses a diameter dk then Xijdk = 1, otherwise Xijdk =0. 
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Table 1. Model of Lineal Programming 
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The constraints satisfaction model (Table 2) includes network operation restrictions. They refer to the necessary 

restrictions to operate a looped water network properly. Constraint (6) represents the physical law of mass con-

servation on each of n nodes of the network, where Qin are the pipe flows into the loop, Qout are the pipe flows 

away from the loop, and Qe is positive if it is an external demand and negative if it is a supply. The flow enter-

ing a node must be equal to the flow leaving the node. Constraint (7) refers to the law of conservation of energy 

in a mesh m; in this case m is a loop in the network. It indicates that the sum of the frictional energy losses along 

pipe lengths belonging to the hydraulic mesh should be zero if there are not power pumps in m. Constraint (8) 

refers to the minimum and maximum pressure requirements to satisfy the users’ water requirements while guar-

anteeing appropriate network operation. Pressure requirements are verified at each demand node i of the net-

work. Finally, constraint (9) is related to the limitation of flow velocity V in pipes. The minimum velocity re-

quirement is defined to avoid reducing the diameter of pipes because of sediments. The maximum velocity 

requirement helps to reach required pressures.  
 

Table 2. Constraints Satisfaction Model  
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3. Evolutionary Algorithm 

Evolutionary Algorithms (EAs) are adaptive methods which attempt to imitate the biological and genetic pro-

cesses and can successfully be applied to optimization problems. The main fields of application of EAs include 

problems such as Water Distribution Networks, with high complexity, non-linear behavior, and a high number 

of decision variables [25]. EAs are stochastic numerical search procedures inspired by biological evolution al-

lowing the individuals with better fitness to survive and propagate their genes to successive generations. EAs 

deal with a population of individuals, which experience constant changes by means of genetic operators like re-

production, crossover, and mutation. EAs are gaining popularity due to their capabilities in handling several real 

world problems involving complexity, noisy environments, imprecision, uncertainty, and vagueness [26].  

In this work, for the WDND problem, the individuals of a population are represented by a set of parameters 

(commercial diameters and lengths of pipes) that describe a solution. Each solution is codified into a chromo-

some structure to represent the analogy with the characters strings. They are evaluated with respect to the objec-

tive function in (1) and ranked according to their fitness. The best individuals for the problem are those individ-



uals with least-cost. Generally, the best individuals are more likely to be candidate solutions to reproduce, hav-

ing offspring that compose the next generation.  

Figure 1 shows the solution methodology used to solve the WDND problem by using an evolutionary algorithm. 

The proposed algorithm in this work, called EA-WDND, works in Linux platforms. It uses the well-known Epa-

net Solver [27] version 2.0 [28] to verify hydraulic constraints, Table 2.  

The solutions space (SS), also known in the literature as search space, includes all possible solutions to the prob-

lem. The size of the SS depends directly on the input instance analyzed. Hence, for two-looped network instanc-

es, the search space would include 1,875,000,000 possible solutions. SS includes feasible and unfeasible solu-

tions. Feasible solutions are those solutions that obey restrictions of the lineal programming model and 

restrictions of the hydraulic model at the same time (section 2). Unfeasible solutions are those solutions that do 

not obey all constraints included in both models.  

An instance of a WDND problem is defined by the function RSSf : , where SS is the finite set of solutions 

that defines the problem instance, R is the set of real values that defines each solution in SS, and f is the objec-

tive function. In a problem instance, it is necessary to find the solution SSs for 

which     SSyyfsf  , , where s is feasible. The set R includes decision variables which are discrete 

values; specifically it refers to pipe diameters. In Figure 1,  SSFUSSssFU  ,  is a subset taken 

from SS. FU can contain feasible and unfeasible solutions because restrictions of the hydraulic model are not 

considered at this point. The set of feasible solutions space is represented 

by  FUFSFUFSfeasibleisssFS  ,, . The set FS considers both the constraints of the lineal and 

the hydraulic model. FS is created by taking solutions of FU and verifying them to determine whether they obey 

hydraulic constraints. The verification is done using the EPANET Solver. Therefore, FS can only include feasi-

ble solutions. 

 
 

Fig. 1. Solution Methodology for the WDND Problem 
 

It is known that the initial feasible population, which is not necessarily the best one, allows good individuals in 

next generations of the genetic algorithm to be obtained. When generating the initial population, a question aris-

es regarding its optimal size. The selection operator used is “the best” (elitist) [29]. It consists of taking the best 

individuals of the population FS. According to their fitness, the operator “the best” selects an average of the best 

individual values from a population. Then individuals are combined producing offspring that will compose the 

next generation, called the Feasible Solutions Subset FSS (see Figure 1), 

 FSFSSFSFSSFSssFSS  ,, . FSS has the same definition for the feasible solutions space FS. 

The difference between FS and FSS is that FS, in the first generation of the algorithm, contains feasible individ-

uals randomly generated. FSS contains offspring of individuals included into the FS set. For the next genera-

tions, FS is created by replacing its individuals with offspring that result from applying crossover and mutation 

operators. It is important to mention that the number of crossover or mutations is directly related to the popula-

tion size. For each individual of the population, a crossover or mutation is applied. Consequently, the number of 

feasible offspring individuals included in FS is slightly larger than the size of FSS. Some descendants are elimi-

nated because they are not feasible when Epanet evaluates them. The feasible individuals are kept in a tempo-

rary list and they are ranked according to their fitness. The fittest offspring replace parents at each generation to 

constitute a new feasible population set, FSS. The FSS set is used at each generation to carry out crossover or 

mutation on its individuals. 

The crossover operator is a function )','(),( 2121 ssssCr 
 ; it consists of exchanging   chromosome 

information of the two parents  21,ss to produce an offspring pair  '

2

'

1, ss  that inherits characteristics of the 

parents.  SSssFSssssFS  )','(,)','()','( 212121
. The crossover σ refers to the combination of two fea-
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sible solutions, s1 and s2, to generate two new individuals, s’1 and s’2. These new individuals are then verified in 

Epanet to determine whether they are feasible solutions. The crossing strategy implemented in this work is 

called one point cross-over [24]. It generates two offspring, the s’1 and s’2 chromosomes. To determine whether 

the offspring chromosomes are better than their parents, their fitness has to be computed with the objective func-

tion (see Eq. 1). In the EA-WDND algorithm, the parents are removed and replaced by the best offspring to 

keep a stable population size. The result is a new generation, usually with better fitness. 

The mutation operator [24] involves randomly replacing a targeted gene. The mutation operator is a func-

tion, )()( 'ssM 
 . The mutation α, implemented in the mutation module, consists of randomly replacing 

the targeted gene using a random number K ϵ [1, n], where n is the total number of genes in the chromosome. 

Each gene represents a pipe diameter. It is replaced with a random integer K [d1, dn], where n is the total number 

of commercial diameters. For each individual mutated, an offspring chromosome is generated and a determinis-

tic mutation α is carried out. The mutation operator α involves randomly selecting a gene to be mutated, using a 

random number K ϵ [1, n], where n is the total number of genes in the chromosome. It is replaced with the gene 

of greatest diameter that is located in the next position of the array (i+1). Another variation consists of randomly 

selecting a gene to be mutated, using a random number K ϵ [1, n], where n is the total number of genes in the 

chromosome. The randomly selected gene is replaced with the gene of smallest diameter located in the (i-1) po-

sition of the array.  

 

4. Solutions Space 

In order to have a representative sample of the population space, an experimental study was conducted. It con-

sisted of generating solutions for the WDND problem. The objective was to determine the percentage of feasible 

solutions for this problem. The experimental study was carried out based on the Two-Looped network bench-

mark [7]. 

[13] The Two-Looped network has seven nodes and eight pipes arranged in two loops. The network is fed by 

the gravity technique. It has a fixed head reservoir of 210 m. The pipes are 1000 m in length. The minimum 

pressure limitation is 30 m above ground level for each node. There are 14 commercial diameters which can be 

selected. The nodal head and demands, the cost per meter for each size of pipe, and other data are widely report-

ed in many previous works [7, 30, 31, 8, and 32].  

 In the literature, information on how to define the size of initial population for the WDND problem was not 

found. Some researches use various population sizes, Table 3. 

 
Table 3. Population Size  

Date Researchers Population Size 

1997 Savic et al. 50 

1999 Montesinos et al. 300 

2003 Matias et al. 100-1000 

2006 Reca et al. 500 
 

5. Experimental Results 

The experimental study for the WDND problem involved the generation of different population sizes to know 

the number of feasible individuals (verified in Epanet) that can be obtained for each sample. Additionally, for 

each sample, the time required to obtain feasible populations was measured. To generate a feasible population, 

the algorithm was executed 30 times for each defined sample population. Table 4, shows the results obtained 

from the executions of the algorithm. After 30 executions were carried out, the average for a sample of 15,000 

individuals was 144 feasible individuals generated in 12 seconds. 

 
Table 4. Population Size 

Sample Feasible 

Individuals 

Time 

(sec.) 

15,000 144 12 

30,000 293 24 

60,000 589 63 

120,000 1188 98 

240,000 2374 186 

480,000 4752 383 

960,000 9509 720 



1,920,000 19355 1500 

 

According to the obtained results, it can be noted that the feasible solutions space is 0.01% of the complete 

solutions space for the benchmark Two-Looped network, Fig. 2a. Based on the experimental results, it can be 

deduced that the time needed to generate the complete solutions space (1,475,800,000) should be approximately 

521 hours, Fig. 2b. The required time increases according to the input instance, so the algorithm could spend 

years generating all possible solutions for larger instances. 

 

 

  
Fig. 2a. Feasible Solutions Space. 

 

 
 Fig. 2b. Time to Generate Feasible Solutions 

 

The EA-WDND algorithm was tested using different sized feasible populations. It was executed 30 times for 

each generated population. On each execution, EA-WDND carried out 20 iterations (generations), labeled 0 to 

19. At each generation, the EA-WDND applied the crossover and mutation operators with a probability of 70% 

and 30% respectively. The population size was kept constant, even when crossover and mutation operators gen-

erated more descendants than the population size. Whatever the number of resulting offspring, the population 

size was the same for all the generations. This was achieved by removing parents and replacing them with the 

fittest offspring. The offspring were ranked according to their fitness. The best individuals were selected at each 

generation and they became parents. In some cases, mutations were carried out on them, so they produced new 

feasible offspring (verified by Epanet) that composed the next generation. It can be said that for each generation 

the population was created, it was combined to produce feasible offspring (verified in Epanet), and then it was 

replaced. Table 5 shows the experimental results obtained with EA-WDND after carrying out 30 executions.  

 

 100 individuals 200 individuals 

 
300 individuals 
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400 individuals 500 individuals 600 individuals 

700 individuals 800 individuals 900 individuals 
 

Fig. 3. Best Values Found Using Different Population Sizes 

 

 
Table 5. Experimental Study of WDND Feasible Solution Space  

Population 

Size 

Min. Itera-

tion of Min 

Cost 

Max. Itera-

tion of Min 

Cost 

Min. Cost Max. 

Cost 

Media 

Iteration 

Media 

Cost 

Number 

of times 

100 9 19 419000 450000 13 429400 9 

200 7 19 419000 449000 14 422500 17 

300 7 19 419000 437000 15 420566 22 

400 9 10 419000 426000 14 419533 25 

500 9 19 419000 437000 15 419966 23 

600 10 19 419000 437000 15 419866 27 

700 5 18 419000 428000 13 419666 26 

800 8 19 419000 483000 15 421300 27 

900 10 19 419000 423000 16 419233 28 

  

 

 

 

 

“Max. Iteration of Min Cost” refers to the iteration for which the algorithm, in the worst case, would find the 

minimum solution for the network cost. For the first row, it means that in the worst case the algorithm would 

find the minimum solution in iteration 19. “Min. Cost” is the least-cost value for the benchmark. The best cost 

reported in the literature, for two-looped networks, is 419000. It is the lowest value found in 20 iterations and 30 

executions of the algorithm. “Max. Costs” refers to the highest-cost value found in 20 iterations and 30 execu-

tions of the algorithm. “Media Iteration” refers to the iterations in which the EA-WDND algorithm finds the 

best values. It is the average for the iterations of 30 executions. “Media Cost” refers to the average obtained 

from 30 executions of the algorithm; it is the cost for the network. Number of times refers to the occurrences in 

which the algorithm finds the best solution. For the first row, it means that the algorithm finds the Min. Cost 

(419000) in 9 executions. It can be seen that for populations of 900 individuals, the Min. Cost was obtained 28 

times. This means that the algorithm failed to find the Min. Cost in only 2 executions, as shown in Table 5. For 



the best case, the minimum cost was found on iteration number 10, which demonstrates the good convergence of 

the algorithm.  

Also, it can be seen that when working with populations of 700 individuals, the EA-WDND algorithm found 

the minimum cost for the network, for the best case on iteration number 5 and for the worst case on iteration 

number 18. It can be seen that the media costs were 419666 and the media iterations was 13. 

Figure 3 shows the experimental results obtained by the EA-WDND algorithm. It can be seen that, as the 

population size increased, better solutions were obtained. Most times, for populations of 900 individuals, the 

best value known in the literature was obtained. It is important to point out that convergence for this algorithm 

was reached quite quickly. The best solution known in the literature was found approximately in 80% of the ex-

ecutions, except in the case of populations of 100 individuals. 

 

6. Conclusions and Future works 

This paper shows how the performance of a typical evolutionary algorithm can be improved by considering 

the importance of the population size taken from the feasible solutions space. It shows the experimental results 

obtained in the solutions space for WDND Problem using a Two-Looped network benchmark. The behavior of 

the EA is the same as in optimization problems. 

According to the obtained results, it can be observed that the feasible solutions space for the WDND problem 

is 0.01% of the complete solutions space for the benchmark Two-Looped network. For each generation, the 

population was created, combined to produce offspring, and then died (unfeasible solutions). It was replaced by 

the best offspring (feasible solutions with Epanet). 

It was observed that the removal of parents that had died and their replacement with the fittest offspring 

helped the EA-WDND converge. It also helped to obtain the best values known in the literature, in iteration 

number 5 in the best case and iteration number 20 in the worst case. It can be said that the convergence rate and 

speed was superior for this algorithm. 

Continuation of this work includes tests in parallel environments, using larger instances such as the Hanoi 

and Balerma network. 
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