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Abstract

This work deals with the problem of the search for optimal design of multiproduct batch
chemical plants found in a chemical engineering process with uncertain demand. The aim of this
work is to minimize the investment cost and find out the number and size of parallel equipment
units in each stage. For this purpose, it is proposed to solve the problem in two different ways: the
first way is by using Monte Carlo Method (MC) and the second way is by Genetics Algorithms
(GAs). This GAs consider an effective mixed continuous discrete coding method with a four-
point crossover operator, which take into account simultaneously, the uncertainty on the demand
using Gaussian process modeling with two criteria maximization the Net Present Value (NPV)
and Flexibility Index (FI). The results (number and size of equipment, investment cost, production
time (Hi), NPV, FI, CPU time and Idle times in plant) obtained by GAs are better than the MC.
This methodology can help the decision makers and constitutes a very promising framework for
finding a set of “good solutions.”

KEYWORDS: genetic algorithm, monte carlo, Gaussian process modeling, batch process, indus-
trial design
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1. Introduction 
 
In chemical engineering, there has been an increased interest in the development 
of systematic method for the design of batch process in specialty chemicals, food 
products, and pharmaceutical industries (Reklaitis, 1992). Most processes in the 
modern biotechnology industry, correspond to batch plants, and with the rapid 
development of new products (i.e, both therapeutic and non therapeutic proteins) 
(Crougham et al. 1997). 
          The main host for recombinant proteins for many years has been 
Escherichicali. However, the developments with yeast cells have grown at a very 
rapid pace, which has resulted in several important commercial products such as 
insulin, hepatitis B vaccine, and also more recently, chymosin and protease. The 
fact that many recombinant proteins made in yeast can be made to be secreted out 
of the cell and that yeast allows for at least partial glycosilation is an added bonus 
for this host (Montatgna et al. 2000), therefore, in the optimal design of a 
multiproduct batch chemical process, the production requirement of each product 
and the total production time available for all products are specified. The number 
and size of parallel equipment units in each stage as well as the location and size 
of intermediate storage are to be determined in order to minimize the investment 
cost. 
          The common approach used by previous research in solving the design 
problem of batch plant has been to formulate it as a mixed integer nonlinear 
programming (MINLP) problem and then employ optimization techniques to 
solve it. Robinson and Loonkar (1972) studied the problem of designing 
multiproduct plants operating in single product campaign mode and with a single 
unit in each processing stage and they extended the nonlinear programming model 
to include both the design of discrete equipment size and the selection of the 
parallel units number, by solving it through the use of heuristics and branch and 
bound. The same problem was further formulated by Grossmann and Sargent 
(1979) as a (MINLP) model. Knopf et al. (1981) and Yeh and Reklaitis (1987) 
accounted for the presence of semicontinuous units. Voudouris and Grossmann 
(1992) proposed reformulations of the previous design models where discrete size 
are explicitly accounted for. 
          Many works in the literature on batch process design are based on 
expressions that relate the batch sizes linearly with the equipment sizes. Also, the 
processing times are usually expressed as nonlinear functions of the batch size. 
Given certain restrictions on these mathematical expressions, the models can be 
referred to as posynomials, which possess a unique optimum (Grossmann and 
Sargent. 1979). Salomone and Iribarren (1992) proposed posynomial models in 
which the constants are obtained as a result of the optimization of the process 
decision variables with simplified models. Salomone et al. (1994) generalized the 
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approach by allowing the process parameters to be generated from either 
experimental data and/or dynamic simulation. Because of the NP-hard nature of 
the design problem of batch plant, unbearable long computational time will be 
induced by the use of Mathematical Programming (MP) when the design problem 
is somewhat complicated. Severe initial values for the optimization variables are 
also necessary. Moreover, with the increasing size of the design problem, MP will 
be futile. Heuristics needs less computational time, and severe initial values for 
optimization variables are not necessary, but it may end up with a local optimum 
due to its greedy nature. Also, it is not a general method with respect to the fact 
that special heuristic rules will be needed for a special problem.  
          In economics, demand is the desire to own something and the ability to pay 
for it (Henning et al. 1988). The term demand is also defined elsewhere as a 
measure of preferences that is weighted by income, but the market demand for 
such products is usually changeable, and at the stage of design of a batch plant, it 
is almost impossible to get the precise information on the future product demand 
over the lifetime of the plant. However, decisions must be made about the plant 
capacity. This capacity should be able to balance the product demand satisfaction. 
In the conventional optimal design of a multiproduct batch chemical plant 
(Hasebe, 1979), a designer specifies the production requirements for each product 
and total production time for all products (Floudas, 2005). The number required of 
volume and size of parallel equipment units in each stage is to be determined in 
order to minimize the investment cost. 
          Basically, batch plants are composed of items operating in a discontinuous 
way. Each batch then visits a fixed number of equipment items, as required by a 
given synthesis sequence (so-called production recipe) (Ponsich et al. 2007). 
For instance, the design of a multiproduct batch chemical plant is not only to 
minimize the investment cost, but also to minimize: the operation cost, total 
production time, and to maximize: the revenue, flexibility index, simultaneously 
(Aguilar et al. 2005). 
          On the other hand, the key point in the Design of Multiproduct Batch Plants 
(DMBP) under uncertain demand. The market demand for products resulting from 
the batch industry is usually changeable, and at the stage of conceptual design of a 
batch plant, it is almost impossible to obtain the precise information on the future 
product demand over the plant lifetime. Nevertheless, decisions must be made 
about the plant capacity. This capacity should be able to balance the product 
demand satisfaction and extra-capacity in order to reduce the loss on the excessive 
investment cost or than on market share due to the varying product demands. 
The most recent common approaches treated in the dedicated literature represent 
the demand uncertainty using fuzzy concepts with trapezoidal fuzzy number 
which can be represented by a membership function (Bautista et al. 2007). Yet, 
this assumption does not seem to be always a reliable representation of reality, 
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because in practice we can’t get whole linguistics parameters about the 
uncertainty demand, such as perceptions, seasons and offers. For this reason an 
alternative treatment of the imprecision is constituted by using Gaussian Process 
Modeling that represents  the “more or less possible values”. 
In this work, we will only consider multiproduct batch plants, which means that 
all the products follow the same operating steps (Cao et al. 2002), the structure of 
the variables are the equipment sizes and number of each unit operation that 
generally take discrete values. 
          The aim of this work is to solve the DMBP under uncertain demand using 
(MC) and (GAs) with an effective mixed continuous discrete coding method with 
a four-point crossover operator. The model presented is general, it takes into 
account all the available options to increase the efficiency of the batch plant 
design: unit duplication in-phase and out-phase and intermediate storage tanks.  
We found out that MC performs effectively and gives a solution, but we would 
like to solve the problem more effectively, that’s why we proposed to apply GAs, 
an intelligent problem-solving method that has demonstrated its effectiveness in 
solving combinatorial optimization problem. Some modifications to traditional 
GAs, mainly an effective mixed continues discrete coding method with a four-
point crossover operator is developed, and satisfactory results are obtained. 
The paper is organized as follows, section 2 is devoted to the methodology. In 
section 3 we formulate the problem formulation, including process description. 
Then in section 4 we report results and discussion with comparative results. 
Finally the conclusions on this work are drawn.  
 
2. Methodology 
 
In the 1960s and 1970s witnessed a tremendous development in the size and 
complexity of industrial organizations. The administrative decision-making has 
become very complex and involves large numbers of workers, materials and 
equipment. A decision is a recommendation for the best design or operation in a 
given system or process engineering, so as to minimize the costs or maximize the 
gains (Salvendy, 1982). Using the term "best" implies that there is a choice or set 
of alternative strategies of action to make decisions. The term optimal is usually 
used to denote the maximum or minimum of the objective function, and the 
overall process of maximizing or minimizing is called optimization. The 
optimization problems are not only in the design of industrial systems and 
services, but also apply in the manufacturing and operation of these systems once 
they are designed. Including various methods of optimization, we can mention: 
MINLP, Monte Carlo Method and Genetics Algorithms. 
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2.1 Monte Carlo Method 
 
Enrico Fermi was an early user of what was later called a Monte Carlo Method. A 
Monte Carlo Method uses a computer to generate a large number of scenarios 
based on probabilities for inputs. For each scenario, a specific value would be 
randomly generated for each of the unknown variables (Douglas, 2007). The 
demand is the random variable of our model. In order to simulate the values of 
this variable, we had used graphical user interface of random number generation 
tool. Through calculation we can see the whole values will take the objective 
function as net present value. Then we made several runs with different sample 
sizes to see what happened with the net present value and then calculated the 
average results and standard deviation error. 
 
2.2 Genetics Algorithms  
 
The term genetics algorithms, almost universally abbreviated now a days to GAs, 
was first used by John Holland and his colleagues (Holland et al. 1994). A 
genetics algorithms is a search technique used in computing to find exact or 
approximate solutions to optimization and search problems, however the 
canonical steps of the GAs can be described as follows: 
          The problem to be addressed is defined and captured in an objective 
function that indicated the fitness of any potential solution. 
          A population of candidate solutions is initialized subject to certain 
constraints. Typically, each trial solution is coded as a vector X, termed a 
chromosome, with elements being described as solutions represented by binary 
strings. The desired degree of precision would indicate the appropriate length of 
the binary coding. 
          Each chromosome, Xi, i = 1, ..., P, in the population is decoded into a form     
appropriate for evaluation and is then assigned a fitness score, μ(Xi) according to 
the objective. 
          Selection in genetics algorithms is often accomplished via differential 
reproduction according to fitness. In a typical approach, each chromosome is 
assigned a probability of reproduction, Pi , i = 1, ..., P, so that its likelihood of 
being selected is proportional to its fitness relative to the other chromosomes in 
the population. If the fitness of each chromosome is a strictly positive number to 
be maximized, this is often accomplished using roulette wheel selection 
(Goldberg, 1989). Successive trials are conducted in which a chromosome is 
selected, until all available positions are filled. Those chromosomes with above-
average fitness will tend to generate more copies than those with below-average 
fitness. 
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          According to the assigned probabilities of reproduction, Pi , i = 1, ..., P, a 
new population of chromosomes is generated by probabilistically selecting 
strings from the current population. The selected chromosomes generate 
“offspring” via the use of specific genetic operators, such as crossover and bit 
mutation. Crossover is applied to two chromosomes (parents) and creates two 
new chromosomes (offspring) by selecting a random position along the coding 
and splicing the section that appears before the selected position in the first string 
with the section that appears after the selected position in the second string and 
vice versa (see Figure 1). Bit mutation simply offers the chance to flip each bit in 
the coding of a new solution. 

 
Parent #1: 1101 0111 1011 0101 1101            Offspring#1: 11010000100111100010 

Parent #2: 1010 0000 1001 1110 0010            Offspring#2: 10100111101101011101 

 

Figure 1. Four-points crossover operators 

          The process is halted if a suitable solution has been found or if the 
available computing time has expired, otherwise, the process proceeds to step 3 
where the new chromosomes are scored, and the cycle is repeated. 

 
2.2.1 Implementation and Empirical Tuning Methods. 
 
Mapping Objective Functions to Fitness Form. In many problems, the objective 
is more naturally stated as the minimization of some cost function g(x) rather than 
the maximization of some utility or profit function u(x). Even if the problem is 
naturally stated in maximization form, this alone does not guarantee that the 
utility function will be non negative for all (x) as we require in fitness function (a 
fitness function must be a non negative figure of merit. Goldberg, 1989). The 
duality of cost minimization and profit maximization is well known. In normal 
operations research work, to transform a minimization problem to a maximization 
problem we simply multiply the cost function by a minus one. 

In genetic algorithm work, this operation alone is insufficient because the 
measure thus obtained is not guaranteed to be non negative in all instances. With 
GAs, the following cost-to-fitness transformation is commonly used: 
 

otherwise
CxgwhenxgCxf

0
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maxC may be taken as the largest g value observed thus far. For the problem of 
DMBP in this paper, we take this transformation form. 
 
Fitness Scaling. In order to achieve the best results of GAs, it is necessary to 
regulate the level of competition among members of the population. This is 
precisely what we do when we perform fitness scaling. Regulation of the number 
of copies is especially important in small population genetics algorithms. At the 
start of GAs runs, it is common to have a few extraordinary individuals in a 
population of mediocre colleagues. If left to the normal selection rule 

(pselecti,= ∑ f
f i ), the extraordinary individuals would take over a significant 

proportion of the finite population in a single generation, and this is undesirable, a 
leading cause of premature convergence. Later on during a run, we have a very 
different problem. Late in a run, there may still be significant diversity within the 
population; however, the population average fitness may be close to the 
population best fitness. If this situation is left alone, average members and best 
members get nearly the same number of copies in future generations, and the 
survival of the fittest necessary for improvement becomes a random walk among 
the mediocre. In both cases, at the beginning of the run and as the run matures, 
fitness scaling can help. 
 
Constraints. We deal with the dimension constraints by coding equations and deal 
with time constraints this way: a genetics algorithms generates a sequence of 
parameters to be tested using the system model, objective function, and the 
constraints. We simply run the model, evaluate the objective function, and check 
to see if any constraints are violated. If not, the parameter set is assigned the 
fitness value corresponding to the objective function evaluation. If constraints are 
violated, the solution is infeasible and thus has no fitness. 
 
Codings. When GAs manage a practical problem, the parameters of the problem 
are always coded into bit strings. In fact, coding designs for a special problem is 
the key to using GAs effectively. There are two basic principles for designing a 
GAs coding (Goldberg, 1989): (1) The user should select a coding so that short, 
low order schemata are relevant to the underlying problem and relatively 
unrelated to schemata over other fixed positions. (2) The user should select the 
smallest alphabet that permits a natural expression of the problem. Based on the 
characteristic and structure of DMBP, instead of choosing the concatenated, 
multiparamerted, mapped, fixed-point coding. A mixed continues discrete coding 
method with a four- point crossover operator is designed according to the two 
principles above. The coding method of a DMBP is as follows: Following the 
order-the numbers of out-of-phase groups in each batch stages, in-phase parallel 
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units in each of the groups, semicontinuous parallel units in each semicontinuous 
stages, the size of batch stages, semicontinuous stages, each parameter of the item 
size variables is encoded independently in usual binary codings (local strings), as 
it simplifie the genetic operations, crossover and mutation. Then we place the 
highest bit of reach local string at the site from 1st to nth in DMBP chromosome 
and place the second highest bit of each local string at the site from (n+1)th to 
2nth, and so on. Then we can obtain a DMBP chromosome.(see Figure 2). 
 

 
 
Figure 2. Illustration of the encoding method for a small size example 

 
The reason for using crossed coding, because this codification is suitable for the 
item size variables, and can be analyzed in theory as follows: 
• Because of the strong relationship among the parameters, the highest bit in 
each local string in binary codings determines the basic structure among every 
parameter, and the second highest bit in each local string determines finer 
structure among every parameter, and so on  for the third, the forth, etc. 
• The schema defining length under crossed coding (n) is shorter than the 
length under concatenated, mapped, fixed-point coding (nK-K+1). 
According to the schema theorem: short schemata cannot be disturbed with high 
frequency, the schema under crossed coding has a greater chance to be 
reproduced in the next generation. Due to its combining the characteristics of 
function optimization with schema theorem and successful binary alphabet table, 
crossed coding demonstrates greater effectiveness than the ordinary coding 
method in our implementation. 

Local string formation is achieved this way: for a parameter 
[ ]maxmin , xxx∈ that needs to be coded, transform it to a binary coding 
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[ ]Κ∈Χ 2,0 first (appropriate length K is determined by the desired degree of 
precision) and then map it to the specified interval [ ]maxmin , xx . In this way, the 

precision of this mapped coding may be calculated as ⎟
⎠
⎞⎜

⎝
⎛

−
−= Κ 12

minmax xxδ . In 

fact, this means that the interval from minx  to maxx  is divided into 12 −Κ  parts, 
because the biggest binary string that has a length of K equals the decimal 
number 1210 2...222 −++++ K . Then, we can obtain Xxx δ+= min , and a local 
string for parameter x with a length of K is obtained. 

To illustrate the coding scheme to the size variables more clearly, we also 
want to give a simple example. For the minimization problem: ),(min yxfz = in 
which [ ]700,300∈x  and [ ]1200,700∈y , if we adopt a string length of 5 for each 
local string and 10110:X , 01101:Y  is an initial solution, we will get the 
chromosome 1001110001 (see Figure 2) and obtain: 
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Although the item number per stage are copied just as they are worth in 

the chromosome (for instance, if nj=2, the corresponding locus will contain 
information “2”).The resulting configuration of a chromosome is shown in Figure 
2. The final encoding procedure is adapted to the double nature of the variables: 
since continuous and integer variables have to coexist in the same chromosome, 
this latter is partitioned into two zones. As shown in Figure 2, the first zone 
encodes the continuous variables , i.e. the item sizes of each processing stage, as 
reduced variables, using crossed binary codings as explicated above. On the other 
hand, the integer variables, representing the item number for each stage, are 
copied directly in the chromosome without any change: for instance, the plant 
illustrated in Figure 2, has 2 items for stage 1, 1 item for stage 2, and 5 items for 
stage 3: This corresponds to the integer numbers encoded at the end of the 
chromosome: 2, 1, 5. 

8

Chemical Product and Process Modeling, Vol. 5 [2010], Iss. 1, Art. 8

http://www.bepress.com/cppm/vol5/iss1/8
DOI: 10.2202/1934-2659.1426



Reproduction. The reproduction operator may be implemented in algorithmic 
form in a number of ways. In this paper, we take the easiest methods Roulette 
wheel (Goldberg, 1989). 
 
Crossover. Crossover operator can take various forms, i.e., one-point crossover, 
multi-point crossover (Frantz, 1972). It is commonly believed that multi-point 
crossover has better performance. The number of crossover points in a multi-
points crossover operator is determined by the string structure. In this paper, a 
four-points crossover operator is adopted. The crossover rate plays a key role in 
GAs implementation. Different values for crossover rate ranging from 0.4 to1.0 
were tried, and the results demonstrate that the values ranging from 0.6 to 0.95. 
In this paper, we take 0.6 as a crossover rate. 
 
Mutation operation. After selection and crossover, mutation is then applied on 
the resulting population, with a fixed mutation rate. The number of individuals on 
which the mutation procedure is carried out is equal to the integer part of the 
value of the population size multiplied by the mutation rate. These individuals are 
chosen randomly among the population and then the procedure is applied .The 
mutation rate using in this paper is 0.40. 
 
Elitism. The elitism consists in keeping the best individual from the current 
population to the next one. In this paper, we take 1 as elitism value. 
 

2.2.2 Population-Related Factors. 
 
Population Size. The GAs performance is influenced heavily by population size. 
Various values ranging from 20 to 200 population size were tested. Small 
populations run the risk of seriously under covering the solution space, a small 
population size causes the GAs to quickly converge on a local minimum, because 
it insufficiently samples the parameter space, while large populations incur severe 
computational penalties. According to our experience, a population size range 
from 50 to 200 is enough our problem. In this paper and according to our 
experience, we take 200 as a population size. 
 
Initial Population. It is demonstrated that a high-quality initial value obtained 
from another heuristic technique can help GAs find better solutions rather more 
quickly than it can from a random start. However, there is possible disadvantage 
in that the chance of premature convergence may be increased. In this paper, the  
 
Termination Criteria. It should be pointed out that there are no general 
termination criteria for GAs. Several heuristic criteria are employed in GAs, 
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i.e.,computing time (number of generations), no improvement for search process, 
or comparing the fitness of the best-so-far solution with average fitness of all the 
solutions. All types of termination criteria above were tried; the criteria of 
computing time is proven to be simple and efficient in our problem. In our 
experience, 200-1000 generations simulation is enough for a complicated problem 
as our problem (DMBP). The best results were obtained when the number of 
generations were taken as 1000 for our problem. 
 
3. Problem formulation 
 
3.1. Assumptions 
 
The model formulation for DMBP’s problem approach adopted in this section is 
based on (Karimi, 1989). It considers not only treatment in batch stages, which 
usually appears in all types of formulation, but also represents semi-continuous 
units that are part of the whole process (pumps, heat exchangers, others). 
          A semi-continuous unit is defined as a continuous unit alternating idle times 
and normal activity periods. Besides, this formulation takes into account mid-term 
intermediate storage tanks, the obligatory mass balance at the intermediate storage 
stage, which is one of the most efficient strategies to decouple bottlenecks in 
batch plant design. They are just used to divide the whole process into sub-
processes in order to store an amount of materials corresponding to the difference 
of each sub-process productivity. 
          This representation mode confers on the plant better flexibility for 
numerical resolution: It prevents the whole production process from being 
paralyzed by one limiting stage. So, a batch plant is finally represented as a series 
of batch stages (B), semi-continuous stages (SC) and storage tanks (T). 

The model is based on the following assumptions: 
 
(1) The processes operate in the way of overlay. 
(2) Production is achieved through a series of single product campaigns. 
(3) Units of the same batch or semi-continuous stage have the same type and size. 
(4) The devices in the same production line cannot be reused by the same product. 
(5) The long campaign and the single product campaign are considered. 
(6) The type and size of parallel items in-or out-of-phase are the same in one 
batch stage. 
(7) All intermediate tanks are finite. 
(8) The operation between stages can be of zero wait or no intermediate tank 
when there is no storage. 
(9) There is no limitation for utility. 
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(10) The cleaning time of the batch item can be neglected or included in 
processing time. 
(11) The size of the devices can change continuously in its own range. 
 
3.2. Model  
 
The model considers the synthesis of (I) products treated in (J) batch stages and 
(K) semi-continuous stages. Each batch stage consists of (mj) out-of-phase parallel 
items of the same size (Vj). Each semi-continuous stage consists of (nk) out-of-
phase parallel items with the same processing rate (Rk) (i.e. treatment capacity, 
measured in volume unit per time unit). The item sizes (continuous variables ) and 
equipment numbers per stage ( discrete variables ) are bounded. The (S-1) storage 
tanks, with size (Vs

*), divide the whole process into (S) sub-processes. 
Following the above mentioned notation, DMBP’s problem can be 

formulated to minimize the investment cost for all items, maximizing the net 
present value and maximizing the flexibility index: The investment cost (Cost) is 
written as an exponential function of the unit size, is formulated in terms of the 
optimization variables, which represent the plant configuration: 
 

                              
                   (1) 
 

 
          Where aj and αj, bk and βk, Cs and γs are classical cost coefficients. Equation 
(1) shows that there is no fixed cost coefficient for any item. This may be 
unrealistic and will not tend towards minimization of the equipment number per 
stage. Nevertheless, this information was kept unchanged in order to compare our 
results with those found in the literature (Karimi, 1989). 
          Instead of the investment cost recommended (Chunfeng et al.1996) the 
economic criterion represents the NPV. This approach allows evaluating the 
impact of the plant over some years, taking into account the calculation of the net 
cash flow in terms of the present value of the money. 
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          Equation. (2) underlines the fact that the objective function accounts not 
only for the investment cost, but also for the incomes from the sells (Vp), the 
operation costs (Dp) and depreciation (Ap) computed on n given time periods. 
Discount rates (r), taxes (a) and working capital (f ) are also involved to update 
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the money value. It is worth noting that since sales and operation costs depend on 
the uncertain demand parameter. 
 
          However, the Flexibility Index (FI) is formulated as the ratio between the 
new total production and initial demand: 

∑

∑

=

=

+
= I

i
i

I

i
ii

Q

QQ
FIMax

1

1

* )(
)(                                                                                     (3) 

 
3.2.1 The constraints of the problem: 
 
(i) Variable bounding: 

 

{ } maxmin,..,1 VVVjj j ≤≤∈∀                                                                                 (4) 

{ } maxmin,..,1 RRRkk k ≤≤∈∀                                                                  (5) 
 
          Volume jV  of the items of each batch stage j and treatment capacity kR  of 
each semi-continuous stage k. However, these variables are not continuous 
anymore and were discretized with an interval of 50 units between two possible 
values. This working mode was adopted in a view of realism. Indeed, since 
equipment manufacturers propose the items following defined size ranges, the 
design of operation unit equipment does not require a level of accuracy such as 
real number. Note, however, that the initial bounds on these size variables were 
kept unchanged, being for batch and semi-continuous, respectively: minV  and 

maxV , and minR  and maxR . 
Item number jm  in batch stage j and item number kn  in semi-continuous 

stage k. These variables cannot exceed 3 items per stage ( 3,1 ≤≥ kj nm ). 
 
(ii) Time constraint: the total production time for all products must be lower than 
a given time horizon H  : 
 

∑∑
==

=≥
I

i i

i
I

i
i od

Q
HH

11 Pr
                                                                                         (6) 

 
Where iQ  is the demand for product i. 
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(iii) Constraint on productivities: the global productivity for product i (of the 
whole process) is equal to the lowest local productivity (of each sub-process s). 
 

{ } [ ]
Ss

i odlocisMinodIi
∈

=∈∀ PrPr,..1
                                                                 (7) 

These local productivities are calculated from the following equations:  
(a) Local productivities for product i  in sub-process s: 
 

{ } { } L
is

is

T
BodlocisSsIi =∈∀∈∀ Pr,..,1,,..,1                                                        (8) 

 
(b) Limiting cycle time for product i  in sub-process s: 
 

{ } { } [ ]itij
L

is TMaxTSsIi Θ=∈∀∈∀ ,,..1,,..1                                               (9) 
 
where Js and Ks are, respectively, the sets of batch and semi-continuous stages in 
sub-process s. 
 
(c) Cycle time for product I  in batch stage j: 
 

{ } { }
j

ijtiti
ij m

p
TJjIi

+Θ+Θ
=∈∀∈∀ + )1(,,..,1,,..,1                                               (10) 

 
Where k and k+1 represent the semi-continuous stages before and after batch 
stage j. 
 
(d) Processing time of product i in batch stage j: 
 

{ } { } { } dij
isijijij BgppSsJjIi +=∈∀∈∀∈∀ 0,..,1,..,1,,..,1                           (11) 

 
(e) Operating time for product i  in semi-continuous stage k : 
 

{ } { } { }
kk

ikis
ik nR

DBSsKskIi =∈∀∈∀∈∀ θ,..,1,,..,1,,..,1                                    (12) 

 
(f) Batch size of product i  in sub-process s : 
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{ } { }
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=∈∀∈∀

ij

j
is S

V
MinBSsIi ,..1,,..,1                                                         (13) 

 
(g) Finally, the size of intermediate storage tanks is estimated as the greatest size 
difference between the batches treated in two successive sub-processes: 
 

{ } [ ])1()1((*Pr1,..,1 ++ Θ−Θ−+=−∈∀ ti
L
si

L
isisis TTSodMaxVSs                   (14) 

 
3.3. Process description  
 
The case study is a multiproduct batch plant for the production of proteins taken 
from the literature (Montagna et al. 2000). This example is used as a test bench 
since short-cut models describing the unit operations involved in the process. The 
batch plant involves eight stages for producing four recombinant proteins, on one 
hand, two therapeutic proteins, human insulin (A) and vaccine for hepatitis (B) 
and, on the other hand, a food grade protein, chymosin (C), and a detergent 
enzyme, cryophilic protease (D). As illustrate in Figure 3 the flowsheet of the 
multiproduct batch plant considered in this study. All the proteins are produced as 
cells grow in the fermenter. 
 

 
Figure 3. Multiproduct batch plant for protein production 
 

Vaccines and protease are considered to be intracellular: the first 
microfilter 1 is used to concentrate the cell suspension, which is then sent to the 
homogenizer for microfilter 2 is used to remove the cell debris from the solution 
proteins. 
          The ultrafiltration 1 step is designed to concentrate the solution in order to 
minimize the extractor volume. In the liquid–liquid extractor, salt concentration 
(NaCl) is used solution in order to minimize the extractor volume. In the liquid–
liquid extractor, salt concentration (NaCl) is used to first drive the product to a 
poly-ethylene-glycol (PEG) phase and again into an aqueous saline solution in the 
back extraction. Ultrafiltration 2 is used again to concentrate the solution. The last 
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stage is finally chromatography, during which selective binding is used to better 
separate the product of interest from the other proteins. Insulin and chymosin are 
extracellular products. Proteins are separated from the cells in the first microfilter 
1, where cells and some of the supernatant liquid stay behind. To reduce the 
amount of valuable products lost in the retentate, extra water is added to the cell 
suspension. The homogenizer and microfilter 2 for cell debris removal are not 
used when the product is extracellular. Nevertheless, the ultrafilter 1 is necessary 
to concentrate the dilute solution prior to extraction. The final step of extraction, 
ultrafiltration 2 and chromatography are common to both the extracellular and 
intracellular products. 
          On the other hand, the Figure 1 shows the allocation of intermediate storage 
tanks. Three tanks have been selected: the first after the fermenter, the second 
after the first ultrafilter, and the third after the second ultrafilter. 
 

4. Results and discussion 
 
MC´s results are presented in Table 1, which shows: NPV, FI, Plant cost, Hi and 
CPUtime, obtaining by 30 runs of 100000 iterations. However, in Table 2 presents 
the sizes for the units. 
 

Table 1. Results obtained by MC 
Max (NPV) 1,002,531.965[$] 
%Std.Dev(NPV) 10% 
Max (FI) 1.00000071 
%Std.Dev(FI) 10% 
Cost Plant 1,389,778.03[$] 
Hi 6,000(h) 
CPU time 605,000*(s) 

*CPU time was calculated to this method on 
Microsoft Windows XP Profesional Intel(R)D 

CPU 2.80 Ghz, 2.99 GB of RAM. 
 
 
Table 2. Equipment structure according to Table 1 
Stage        1           2                  3                  4                5                6                    7            8 
Vj          10000    10000         10000         6692.625     9924         10000        499.875       5265        
Rk                             45.832         14.737       17.880        125.391                        26.197  
VS         500.09                                                           195.017                        37.534    
mj           3            3                   3                  3                 2               3                   2               2        
nk           3            3                   3                  3                 2               3                   2               2 
 
          As showed in Table 1, reported value about an acceptable NPV, also 
showing the feasible process with respect to the economic aspect due to the rapid 
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depreciation of equipment over five years of study. However, in the Table 2 
presented a set of discrete equipment structure. The risk of this configuration is 
just stopped at 6000h with risk of failing to fulfill the potential future demand 
coming from a fluctuation of the market. 
          However, the typical results obtained by GAs were run 30 times starting 
from random initial population guarantees the stochastic nature of the algorithms 
with demand modeled by Gaussian probability distribution, maximizing NPV and 
FI. The results are developed as shown in the following Table 3: Plant Cost, Hi 
and CPU time, giving also an excellent NPV with the best index of flexibility to 
accomplish a possible additional demand. Neverthless, the structure of equipment 
was illustrated in Table 4.  
 

Table 3. Results obtained by GAs 
Max (NPV) 1,432,188.522[$] 
%Std.Dev(NPV) 0.5% 
Max (FI) 2.08276419 
%Std.Dev(FI) 0.5% 
Cost Plant 833,647.5[$] 
Hi 5,491.123159(h) 
CPU time <1(s)* 

*CPU time was calculated to this method on 
Microsoft Windows XP Profesional Intel(R)D 

CPU 2.80 Ghz, 2.99 GB of RAM. 
 
 
Table 4. Equipment structure according to Table 3 
Stage       1                2                  3                  4                5                6                    7            8 
Vj         22.6085      6.7988         1.0794         1.6191       9.0651       0.8151       0.5497       0.0754        
Rk                                 14.8047        1.0040         7.9194       99.888                         16.2750  
VS        27.1410                                                                2.0241                           0.3467   
mj                1            1                   1                   1               1               1                    1               1        
nk                1            1                   1                   1               1               1                    1               1 
 

 

4.1.Comparative results 

As shown in the following table 5, we are directly comparing MC’s results against 
those AGs’s. 
 
 
 
 
 
 
 

16

Chemical Product and Process Modeling, Vol. 5 [2010], Iss. 1, Art. 8

http://www.bepress.com/cppm/vol5/iss1/8
DOI: 10.2202/1934-2659.1426



Table 5.  Comparative results between MC and GAs. 
 
                                                             GAs                                      MC 

Max(NPV)                                   1,432,188.522[$]                       1,002,531.965[$] 
%Std.Dev (NPV)                                     0.5%                                       10%    
Max (FI)                                          2.08276419                             1.00000071  
%Std.Dev (FI)                                         0.5%                                        10% 
Plant Cost                                        833,647.5[$]                           1,389,778.03[$] 
Hi                                                     5,491.123159(h)                          6,000(h) 
CPU time                                             <1(s)*                                  605,000*(s)   
*CPU time was calculated on Microsoft Windows XP Profesional Intel(R)D CPU 2.80 Ghz, 2.99 
GB of RAM. 
 
 
          The Table 5 showed that the NPV ($1,432,188.522) and FI (2.08) obtained 
by GAs are better than the MC, taking into account that the customers need the 
product each 6000h. Also, the total production time computed by GAs is 
5,491.12h to fulfill the eventual increase of future demand caused by market 
fluctuations. The table showed also a very small Std.Dev(error). In addition, GAs 
results in a faster convergence (less than one second). 
However, the equipment structure showed by Monte Carlo Method is very 
expensive and NPV obtained is very small. Furthermore, MC approach has the 
disadvantage of long searching time and so needs more CPUtime (605,000s), 
which is well known to be computationally expensive if enough scenarios are 
taken to a closest to the optimum solution. The advantage of MC method is simple 
in structure.  
          On the other hand, the GAs allow the reduction of the idle time to the stage, 
Table 6 and Table 7 show the idle times obtained by MC and GAs respectively. 
 
 
Table 6. Idle Times in Plant with Parallel Units and Intermediate Storage Tanks 
by MC 
 

Unit 

Product 1 2 3 4 5 6 7 8 

Insulin 0 0   0 57.7  67.11 

Vaccine 0 54 0 0 60.79 57.7 22.9 67.11 

Chymosin 0 17   17.54 57.7 27.9 67.11 
Protease 0 63 16 15 63.07 57.7 55.03 67.11 
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Table 7. Idle Times in Plant with Parallel Units and  
Intermediate Storage Tanks by Gas 
 

Unit 

Product 1 2 3 4 5 6 7 8 

Insulin 0 0   0 0.01 0 0 

Vaccine 0 1.93 0.04 0 2.91 0 0.17 0 

Chymosin 0 0.01   0 0 0.31 0.17 

Protease 0 2.09 0 0 3.07 0 0.5 0 

 
Here we can see that the idle times obtained by GAs showed a 

consideration reduction than MC. 
          From these results, we can see that the results obtained by GAs are power 
compared with MC’s results. However, since the case study has been taken from 
Montagna et al (2000), they solved the problem using rigorous mathematical 
programming (MINLP) which is solved to global optimality (minimize the capital 
cost $829,500) with implementation of the outer approximation/equality 
relaxation/augmented penalty method. However in previous work (Montagna et al 
2000), they didn’t mentioned anything about NPV, FI and CPU time, also in their 
model, they didn’t take into account operation costs. Nonetheless, their model 
needed a long computational time and require severe initial values to the 
optimization variables. Montagna et al. (2000), also showed in their paper that the 
behavior of the demand was completely deterministic. However, this assumption 
does not seem to be always a reliable representation of the reality, since in 
practice the demand of pharmaceutical products resulting from the batch industry 
is usually changeable. 
         GAs performed effectively and gave a solution within 0.5% of the global 
optimal 833,647.5[$], GAs provided also interesting solutions, in terms of quality 
as well as of computational time. 
         Furthermore, GAs results in a faster convergence. However, GAs is 
designed to deal with problems of a more complicated as our problem, DMBP, 
successfully and the computing time(<1s) is more less than MINLP and MC. 
These results are important, because they demonstrate the effectiveness of GAs in 
solving the complicated design problem of DMBP, which is due to GAs searching 
from population (not a single point), and its parallel computing nature and can be 
applied to deal with uncertain demand. 
         Now, some observation about some important aspects in our implication of 
GAs and some problems in practice: The most important of all is the method of 
coding, because the codification is a very important issue when a genetic 
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algorithm is designed to deal with the combinatorial problem, as well as also the 
characteristics and inner structure of the DMBP.  

The commonly adopter concatenated, multiparameter, mapped, fixed point 
coding are not effective in searching to the global optimum (Wang et al. 1996). 
According to the inner structure of the design problem of multiproduct batch that 
gives us some clues for designing the above mixed continuous discrete coding 
method with a four-point crossover operator. As it is evident to the results of 
application, this coding method is well fitted to the proposed problem. 
Another aspect that affects the effectiveness of our Genetic Algorithms procedure 
considerably is a crossover. 
         Corresponding to the proposed coding method, we adopted a four-point 
crossover. It is commonly believed that multipoint crossover is more effective 
than the traditional one point crossover method. 
It is also important to note that the selection of crossover points as well as the way 
to carry out the crossover should take into account the bit string structure, as it is 
the case in our codification. 
        A problem in practice is the premature loss of diversity in the population, 
which results in premature convergence. Because premature convergence is so 
often the case in the implementation of GAs according to our calculation 
experience. Our experience makes it clear that the Elitism parameter can solve the 
premature problem effectively and conveniently. 
 
5. Conclusions 
 
We applied Genetic Algorithms with an effective mixed continues discrete coding 
method with a four crossover point to solve the problem of DMBP. GAs 
performed effectively and gave a solution within 0.5% of the global optimum. 

Furthermore, the results provided by GAs are much better with respect to 
Monte Carlo Method. GAs with mixed continuous discrete coding with a four-
point crossover are well fitted for the proposed optimization problem and 
demonstrate the following advantages in application: 

• GAs have no special demand for initial values of decision variables. The 
initial population of strings is chosen randomly as long as it does not 
violate the constraints for the problem. 

• As is evident from the computation results, GAs yield highly satisfactory 
global optimum.  

• Due to the parallel computing nature GAs result in faster convergence in 
comparison with MINLP and MC. 

• GAs are simple in structure and are convenient for implementation, with 
no more complicated mathematical calculation than such simple operators 
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as encoding , decoding, testing constraints, and computing values of 
objective. 

• According to the above investigation, with a single case study as proof of 
improved results, we recommend the decision maker the configuration 
mentioned in the Table 5, because give us a good NPV, with a low cost 
investment for the purchase of equipment, taking a major advantage to 
fulfill the possibility if there is an increased demand in the future. This 
demonstrates the satisfactory results are obtained by GAs. 

• In this framework, the GAs with an effective mixed continuous discrete 
coding method with a four point crossover operator gave us the high 
efficiency and justifies its factibility use for solving non-linear 
mathematical models with the uncertainties parameters. 

• Finally, this framework provides an interesting decision/making approach 
to improve design multiproduct batch plants under conflicting goals.  

 

Appendix A. Data Set 

The experimental data of DMBP based on published data (Datar and Rosen, 1990 
; Petrides et al. 1996 ; Andrews et al. 1999, Asenjo and Patrick, 1990). The plant 
is divided into sub-processes, consists of six batch stages [B(1-6)] to manufacture 
in four products A,B,C,D. The Table shows the values for processing 
times )(, hjiτ , size factor for the units, cost data, and the production requirement 
for each product quantifying the uncertainty on the demand. Here, we assume that 
the demand of products A, B, C and D are uncertain following normal probability 
distribution function. The data set are summarized in the following Table A1. 
 
Table A1. Data used in the problem of batch plant design 
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