
This work was supported by project 160 of the Fideicomiso SEP-UNAM, 2006-2007.

An Algorithm of scheduling for the Job Shop Scheduling Problem

 Marco Antonio Cruz-Chávez1, Martín G. Martínez-Rangel1,2, J. A. Hernández1, José Crispín

Zavala-Díaz2, Ocotlán Díaz-Parra1
1CIICAP, 2FCAeI, Autonomous University of Morelos State

Avenida Universidad 1001. Col. Chamilpa, C.P. 62210. Cuernavaca, Morelos, México
{ mcruz, mmtzr, Alfredo, crispin_zavala, ocotlandp}@uaem.mx

Abstract

This paper presents an algorithm that applies a new

mechanism in order to generate scheduling which
allows for evaluation of the quality of solutions that
are obtained in the Job Shop Scheduling Problem
(JSSP). In this research, the quality of the solution is
evaluated by using the makespan as an objective
function. It is demonstrated experimentally that the
proposed algorithm has better efficiency and efficacy
when compared to the classic form of scheduling
generation used to evaluate the solution quality in the
JSSP. The efficiency and efficacy obtained by the
proposed algorithm make it possible to generate and
evaluate a greater number of better quality solutions in
less time, so a greater exploration of the solution space
for the JSSP can be conducted.

1. Introduction

The Job Shop Scheduling Problem (JSSP) is one of
the most well known and difficult to solve problems in
the scheduling area. JSSP is probably the model most
often studied and most developed of all the problems
pertaining to the deterministic theory of scheduling. It
serves as a reference for other techniques that try to
solve problems in the same field, for example the
transport problem or the knapsack problem [1]. The
time required to solve the JSSP increases exponentially
according to the size of the problem. According to the
complexity theory [2], JSSP is classified into the NP-
complete group [3]; this group of problems is
considered to be the most difficult group of problems
to solve in the world. For big instances, a deterministic
algorithm does not exist that solves problems in this
group. For this reason, metaheuristics are used to
search for the global optimum of problems in this
group [4] because one can generate algorithms that
bound this group of problems to polynomial time.

These heuristics are characterized by searches through
neighborhoods in non deterministic form. For this
reason, the development of more efficient and effective
mechanisms that accelerate the searches is important in
order to improve the search in neighborhoods.

A great number of metaheuristics have been
proposed for the search for the global optimum of the
JSSP in polynomial time. These algorithms include
Simulated annealing [5], [6], Tabu Search [7], [8], [9],
Ant Colony [10], and Genetic Algorithms [10], [11],
[12], [13], among others. In order to evaluate the
quality of solutions, these metaheuristics require the
makespan to be found (function objective value of the
problem) during each step of the heuristic algorithm. In
order to do this, the scheduling algorithm is generally
used [14]. Every time that the metaheuristic obtains a
new solution (schedule), this algorithm is applied to
the solution in order to assign a start time to each one
of the operations that are part of the JSSP and obtain
the value of the makespan. The makespan is defined as
the completion time of the last operation Ol in the
system and it is equal to the sum of the start time of Ol
plus the processing time of Ol.

This paper proposes a scheduling mechanism to
more quickly evaluate the quality of each solution
(schedule) obtained in the process of local search by
application of a neighborhood function. The
neighborhood function used in this investigation is
N1[6] with the Neighborhood Generation Mechanism
(NGM) proposed in [15]. This combination of N1-
NGM very simply selects only feasible solutions
without needing to work through the critical path of the
generated solution like N1 normally does. This allows
for the measurement of performance of the proposed
scheduling algorithm with feasible solutions, leaving
aside the infeasible ones.

Following the introduction, is section 2 which
explains the disjunctive graph model of JSSP that is
used in the proposed scheduling mechanism. In
section 3, the proposed mechanism for the schedule

generation is described. In section 4 the computational
study and the experimental tests are presented, and in
section 5 are the conclusions.

2. The Job Shop Scheduling Problem

The Job Shop Scheduling Problem (JSSP) consists
of a set N of jobs, a set M of machines and a set O of
operations, where each one of the jobs is a subset of O
in sequential form. Each i operation has a duration
τ(Oi). In an assignment of jobs, a start time is defined
for each operation st(Oi), such that:

1. A machine cannot process more than one
operation at a time.

2. The execution order of the operations in each job
is respected.

The time at which the execution of all the
operations of the JSSP is finished is known as the
makespan. Usually one of the objectives of JSSP
searches is to find a schedule that minimizes the
makespan.

2.1 The Disjunctive Graph Model

Figure 1 show the disjunctive graph model for a

JSSP of 3x3 (three machines and three jobs), this
model is introduced by Roy and Sussmann [17]. The
general problem of JSSP is defined for the graph G =
(V,A,E, τ) where:

ܸ ൌ ܱ ሼܫ, ሽܨ

ܣ ൌ ൛ൣܫ, ଵܱ൧, ൣ ܱ , ܱሺାଵሻ൧, ൣܱ, ܶ൧ห݅, ݆: ܱ א ܱൟ

ܧ ൌ ቄ൛ ܱ, పܱ́ఫ́ൟ | ݅, ݆, ଓ́, ଔ́, ݆ ് ଔ:́ ܱ , పܱ́ఫ́ א ൫ܯ ٿ ܱ ܱ൯ ൌ

൫ܯ పܱ́ఫ́൯ቅ

:ߤ ܸ ՜ ܰܫ

The vertexes V represent the operations. There are two
vertexes (fictitious operations) that do not have a
processing time, these are the I (source) and the F
(finish). The weight of a vertex τ(Oij) is the processing
time p(Oij), τ(Oij) = p(Oij), τ(I) = τ(F) = 0. The first
operation of each job connects toward the I (source)
node, while the last operation of each job connects
toward the F (finish) node. The precedence constraint
between a pair of operations Oij, O(i+1)j carried out in
the same job, is represented by an conjunctive arc [Oij,
O(i+1)j] א A.

In same way, the resource capacity constraint between
a pair of operations Oij, పܱ́ఫ́ א O, M(Oij) = M(పܱ́ఫ́) is
represented by a disjunctive arc {Oij, పܱ́ఫ́} א E where
the two forms of directing this arc correspond to the
two possible orientations of {Oij, పܱ́ఫ́}.

Fig. 1. Disjunctive graph representation of the JSSP
3x3.

An orientation of E is a function ߜ: ܧ ՜ such ܱݔܱ
that ߜ൫൛ ܱ, పܱ́ఫ́ൟ൯ א ൛ۃ ܱ, పܱ́ఫ́ۄൟ, ൛ۃ ܱ, పܱ́ఫ́ۄൟ for
each ൛ ܱ, పܱ́ఫ́ൟ א If the orientation δ of the set E .ܧ
results in a digraph D = G´ = (V, A, E, τ, δ (E)) then a
schedule is obtained that represents a solution of the
JSSP, which could be feasible or infeasible. Figure 2
presents an example of a feasible solution for the JSSP
in Figure 1.

Fig. 2. A feasible solution for the JSSP 3x3 in fig. 1.

3. Scheduling Procedure

In order to apply the proposed mechanism in the

construction of a scheduling, it is necessary to begin
with a schedule (a solution) that has defined its
scheduling. The method applied to generate a schedule
with its scheduling is the one used in [14].

This randomly selects an operation that belongs to
the set which consists of operations that do not have an
predecessor (prior operation in the same job) or that in
their defect, are operations that have a predecessor but
that this has been assigned, identifying its final
processing time. If the selected operation fulfills this
rule (precedence constraint), it is assigned an execution

time (turn) and the final moment that the processing
machine has for the operation programmed is verified
(resources capacity constraint). The start time of the
operation is then determined evaluating the two
restrictions (precedence and resource capacity)
considering that of greater value.

Next, an example is presented that defines the
symbolic representation of the first So solution
(schedule) for the JSSP 3x3 presented in Figure 1. The
symbolic representation presented in Table 1 is used
for the proposed scheduling method. This first So
solution is a Gantt Chart shown in Figure 3. One can
observe in the figure the start (scheduling) and the end
of the execution of each operation with regard to job,
these data are included in Table 1, columns ten and
eleven. Following the order of the schedule in Figure 3,
the operations are assigned in the following way: 4, 5,
7, 1, 8, 9, 6, 2 and 3 (by turn, in ascending order) like
the sample in Table 1, columns one and two.

Máquina 0.- 20000000333100
Máquina 1.- 00000033200011
Máquina 2.- 02223311100000

Fig. 3. Allocation of the operations in machines in S0

The first starting So solution used by the proposed

scheduling mechanism appears in Table 3, which has
all the necessary data in order to proceed in the
generation of a new solution (schedule) and the
construction of its scheduling for the proposed
mechanism.

Table 1 shows in column six that the operations that
could be exchanged are those that are assigned in turns
3, 4, 7 8 (operations 7, 1, 6, and 2 respectively, see
Table 1, column 2). Each a has an adjacent operation
shown in column seven.

Table 1. Data for the first solution (S0)

T O J M D In Ao Pr EP B E
1 4 2 0 1 0 0 0 0 1 1
2 5 2 2 3 0 0 4 1 2 4
3 7 3 2 2 1 5 0 0 5 6
4 1 1 2 3 1 7 0 0 7 9
5 8 3 1 2 0 0 7 6 7 8
6 9 3 0 3 0 0 8 8 9 11
7 6 2 1 1 1 8 5 4 9 9
8 2 1 0 1 1 9 1 9 12 12
9 3 1 1 2 0 0 2 12 13 14

3.1 Scheduling Generation Mechanism

When a solution (schedule) S0 of the JSSP is applied
using the neighborhood function N1-NGM proposed in
[15] for local searches, it is possible to generate new
feasible solutions upon exchanging (permuting) only
one pair of adjacent operations that do not have slack-
time between them. This neighborhood function carries
out a perturbation of S0 to obtain a new solution S1. In
order to evaluate the makespan of S1 it is necessary to
obtain the scheduling of S1. The proposed mechanism
of scheduling construction consists of beginning the
scheduling starting from the position where the
solution S0 is perturbed, respecting the partial
scheduling that is completed before the place where the
perturbation was done.

The next example is of the proposed scheduling
mechanism of the solution S1 (Table 2) obtained by
exchanging a pair of adjacent operations without slack-
times in the schedule S0 presented in Table 1.

In order to make the exchange in the solution S0, a
turn is randomly selected from the list of restricted
candidates (pairs of operations that could be
exchanged). The candidates to be exchanged are
designated in column six by means of a flag, 1 if it is
interchangeable and zero if it is not.

It can be observed that for the values in column six,
the pairs of candidate operations are (7, 5), (1, 7), (6, 8)
and (2, 9). These can be seen in the rows highlighted in
gray, columns two and seven of Table 1. In this case,
turn 7 is randomly selected (operation 6) to be
exchanged with the operation that is in turn 5
(operation 8). This change is carried out in Figure 4,
which shows the corresponding solution S1:

Machine 0.- 20000000333100
Machine 1.- 00002033000011
Machine 2.- 02223311100000

Fig. 4. New configuration after the interchange of
operation 6 by 8 in machine 1. Solution S1.

Table 2. Data for the solution S1 (Result of interchange of
operation 6 and operation 8)

T O J M D In Ao Pr EP B E
1 4 2 0 1 0 0 0 0 1 1
2 5 2 2 3 0 0 4 1 2 4
3 7 3 2 2 1 5 0 0 5 6
4 1 1 2 3 1 7 0 0 7 9
5 6 2 1 1 0 0 5 4 5 5
6 8 3 1 2 0 0 7 6 7 8
7 9 3 0 3 0 0 8 8 9 11
8 2 1 0 1 1 9 1 9 12 12
9 3 1 1 2 0 0 2 12 13 14

Table 2 shows the solution S1; in column eleven the
process of re-scheduling affects only turns 5, 6, 7, 8
and 9, leaving intact turns 1, 2, 3 and 4. In Table 2,
column eleven shows that the quality of the solution
obtained by function of the makespan is 14.

As is shown in Table 2, it is not necessary obtain
the scheduling of all the operations, rather one can start
at the turn that was perturbed (50% of re-scheduling).
In this case, operation 6 is assigned before operation 8
(column 2), causing a landslide (a posterior turn) of
operations 9, 2 and 3 (that were programmed for after
the operations that were exchanged). Operations 4, 5, 7
and 1 remain in the same turns (column 2), occupying
turns 1, 2, 3 and 4 respectively (column 1). The
algorithm for re-scheduling the turns 5 to the 9 is the
one proposed in [14].

In order to obtain the following solution S2, it is
necessary to start over with a new permutation in the
previous solution S1. A turn is randomly selected from
the new restricted candidates, the candidates are
selected according to the column six. The candidates
are the pairs of operations (7, 5), (1, 7) and (2, 9). The
procedure of re-scheduling repeats and this way the
quality of each solution (makespan) is evaluated in a
more efficient manner when re-scheduling the new
solutions in a partial form.

Table 3. Partial Scheduling Algorithm (S-Partial)

 problem = JSSP Instance;
 S0 = Initial_solution(Problem);
 for(i = 0, j = 1; j <= NT; i++, j++){

list = restrict_list(Si);
position = turn_perturbation(Si);
Sj = perturbation(Si, position, list);
Sj = scheduling_MS(Sj,position);

 }

Table 3 presents the scheduling algorithm that

applies the proposed partial scheduling mechanism.
The algorithm is begun by choosing an instance of the
JSSP problem. Next an initial solution S0 (schedule) is
obtained including the scheduling. NT is the total
number of solutions to generate, in order to obtain the
scheduling and the makespan for each solution. With
the function restrict_list(Si), the list of pairs of
operations that can be perturbed in the solution Si is
obtained. The function turn_perturbation(Si), is chosen
randomly the T turn that belongs to the operation that
will be perturbed in the solution Si. The function
perturbation(Si, position, list), generates a new Sj
solution upon perturbing the pair of operations of the T
turn in the solution Si. The function
scheduling_MS(Sj,position) obtains the scheduling of

the new Sj solution by re-scheduling. It starts re-
scheduling from the T turn which is defined for the
variable position. The quality of the solution is also
obtained by evaluating the makespan.

Nomenclature of tables.

T = Turn assigned to the operation, ascending order.
Or = Operation assigned in the T turn.
J = Job to which belong the assigned operation.
M = Machine that processes the operation with T turn.
D = Duration of the operation in the machine.
In = If the operation is interchangeable with any
another, this is marked with 1, otherwise with 0.
Ao = Adjacent operation with which the operation in
turn could be interchanged.
Pr = Operation that precedes to the operation assigned
in the T turn.
EP = Completion Time of the Pr operation.
B = Start time of the operation of the T turn
(scheduling).
And = End time of the operation of the T turn.

4. Experimental Results

The proposed scheduling mechanism was
implemented in an algorithm in language C in a PC
with 2 GHz, and 1 GB in RAM. In order to prove the
efficiency of the proposed scheduling method, a set of
benchmarks was used [16] of small, medium and large
sizes of JSSP (Mt06, MT10, LA40 YN1). For the
generation of feasible solutions, the neighborhood
structure N1-NGM was used [15]. The initial solution
was obtained by means of the procedure described in
section 3.

In order to compare the efficiency and the efficacy
of the proposed scheduling mechanism, two strategies
were used for the generation of scheduling for each one
of the instances of test. The first strategy is called S-
Total which uses the classical procedure of scheduling
proposed in [14] to evaluate the quality of a solution.
This procedure requires obtaining the scheduling for all
the operations in the JSSP. The S-Total strategy is used
in many of the algorithms presented in the JSSP
literature. The second strategy, called S-Partial
(proposed mechanism described in 3.1), obtains re-
scheduling for only a part of the operations involved in
the problem instance in order to evaluate the quality of
the solution.

Figure 5 shows that S-Partial requires less time to
generate the same number of solutions (65,500) than S-
Total requires for small, medium and large problems.
As the size of the problem increases, S-Partial is
increasingly efficient. For instances of large problems,

with around 400 operations, S-Partial is on average
58% more efficient than S-Total. In order to generate
65,500 solutions in the large instance YN1, on average,
S-Partial takes 1,250 seconds while S-Total takes
3,010 seconds.

0 50 100 150 200 250 300 350 400 450
0

200
400
600
800

1000
1200
1400
1600
1800
2000
2200
2400
2600
2800
3000
3200 65,500 Solutions

Number of Operations

Ti
m

e(
Se

co
nd

s)

 S-Partial
 S-Total

Fig. 5. Efficiency of the S-Partial vs. S-Total

In order to measure the efficacy of the proposed

mechanism, Table 4 shows that for 65,500 generated
solutions, S-Partial generates better quality of solutions
than S-Total in almost all the instances of the problem.
The exception is the small instance MT06 where the
quality is equal. In the average value it can be observed
that S-Partial is better in two instances, worse in MT10
and equal in LA40.

Table 4. solution Quality

Strategies

Problem Mean Min Max

S-Total MT06 94.26 55 158
S-Partial MT06 93.73 55 159
S-Total MT10 1782.5 1324 2405

S-Partial MT10 1797.42 1291 2466
S-Total La40 1894.39 1354 2772

S-Partial La40 1894.64 1228 2786
S-Total YN1 1308.44 991 1731

S-Partial YN1 1280.98 978 1805

S-Partial allows for dispersed solutions in the

solution space of the JSSP instance to be found to a
greater degree because the range of S-Partial is greater,
this is shown in Figure 6 with an average of 65,500
solutions evaluated for different instances of different
sizes. This behavior favors the Genetic Algorithms and
Simulated Annealing because the solutions generated
by the proposed mechanism embrace a grater solution

space of the problem and this permit a better
exploration of the solution space of the JSSP.

0 50 100 150 200 250 300 350 400 450

0

200

400

600

800

1000

1200

1400

1600

R
an

ge
(m

ak
es

pa
n)

Number of operations

 S-Total
 S-Partial

Fig. 6. Range of solutions of S-Partial vs. S-Total

The proposed S-partial algorithm, is of polynomial
complexity and according to the value of T turn that is
evaluated, the polynomial order could be: In the worst
case O(3n2), in the better case O(n) and the average
case O(0.5n2). According to the experimental results
presented in Figure 5, where S-Total with complexity
O(n2) is compared with S-Partial, one could observe
that for small problems, the complexity of S-Partial is
similar to S-Total and when the size of the problem
increases, one could conclude that the complexity of S-
Partial tends to be minor that S-Total, this is, it move
between the interval of O(n) to O(0.5n2).

5. Conclusions

The results observed in this research, demonstrate
that the proposed scheduling mechanism is much more
efficient than the classical mechanism of scheduling
frequently used in metaheuristics for the JSSP. The
efficacy that the proposed mechanism presents is also
superior in almost all the evaluated cases, and only in
inferior, but still competitive, in a few cases when
compared with the classical scheduling mechanism.

According to the obtained results, when measuring
the range for an average of 65,500 solutions in each
problem size, one could conclude that the solutions
obtained by S-Partial have a greater dispersion in the
solution space for the problem instance. This can favor
the behavior of the metaheuristics for JSSP, because
the search can embrace a greater exploration of the
solution space.

6. References

[1] A. Jain S. Meeran.: A State of the Art Review of JOB-
SHOP Scheduling Techniques. Technical Report.
Department of Applied Physics, Electronic and Mechanical
Engineering University of Dundee, Dundee, Scotland, UK,
DD1 4HN,1998.

[2] C H. Papadimitriou, K. Steigliths.: Combinatorial
Optimization. Algorithms and Complexity. Dover
Publications, Inc. 1998.

[3] M.R. Garey, D.S. Johnson and R. Sethi, The complexity
of Flow shop and Job shop Scheduling. Mathematics of
Operations Research, Vol. I, No 2, USA, 117-129, May,
1976.

[4] D.Applegate, W. Cook, “A computational study of the
job shop scheduling problem”, ORSA Journal on Computing,
3, 149-156, 1991.

 [5] S. Kirkpatrick, S. D. Gelatt Jr., and M. P. Vecchi,
Optimization by simulated annealing. Science, 220(4598), 13
May, 671-680, 1983.

[6] V. Laarhoven PJM, EHL Aarts, and JK Lenstra. Job shop
scheduling by simulated annealing. Operations Research, 40,
pp.113-125, 1992.

[7] M.D Amico M, M. Turbian. Applying tahu search to the
job shop scheduling problem. Annual Operations Research,
40, pp. 231-252, 1993.

[8] K. Morikawa, T. Furuhashi, Y. Uchikawa. Single
Populated Genetic Algorithm and its Application to Job-shop
Scheduling. Proc. Of Industrial Electronics, Control,
Instrumentation, and Automation on Power Electronics and
Motion Control, pp. 1014-1019, 1992.

[9] E. Nowicki, C. Smutnicki. A Fast Taboo Search
Algorithm: for the Job Shop Problem. Managemenr Science,
vol. 42, pp. 797-813, 1996.

[10] Cheng-Fa Tsai, Chun-Wei Tsai, and -Chin-Chang
Tseng. New and efficient antibased heuristic method for
solving the traveling salesman problem; Expert Systems
(accepted, will appear in vol. 20, no. 4, 2003)

 [11] T.Cheng-Fa, T.Chun-Wei , and T.Ching-Chang.
ACOMAC: An Efficient Method for Solving raveling
Salesman Problem. 2002 IEEE Intemational Joint
Conference on Neural Network(IJCNN 2002), pp. 1540-
1545, Honolulu, Hawaii, USA

[12] T.Cheng-Fa , T.Chun-Wei, and C.Chi-Ping: A Multiple-
Searching Approach to Genetic Algorithms for Solving
Large .Traveling Salesman Problem. 6th Intem. Conf on
Computer Science and Informatics, pp. 362-366, Durham;
NC, USA.

[13] J. Adams, E. Balas, D. Zawack. The 'shifting bottleneck
procedures for job shop scheduling. Management Science,
vol. 34, pp. 391-401, 1988.

[14] P. J. Zalzala, and Flemming. Zalzala, A.M.S. (Ali M.S.),
ed., Genetic algorithms in engineering systems /Edited by
A.M.S. Institution of Electrical Engineers, London, 1997.

[15] M. A. Cruz-Chávez, J. Frausto-Solís, J. R. Cora-Mora,
Experimental Analysis of a Neighborhood Generation
Mechanism Applied to Scheduling Problems, Proceedings of
CERMA2006, IEEE-Computer Society, ISBN 0-7695-2569-
7, pp 226-229, 26-29 September, México, 2006.

[16] J. E. Beasley. OR-Library: Distributing test problems by
electronic mail. Journal of the Operational Research Society,
Vol. 41. No. 11, 1069-1072, 1990. Last update 2003.

[17] Roy and Sussman, Les problemes d’ordonnancement
avec contraintes disjonctives, Note D.S. no 9 bis, SEMA,
Paris, France, December 1964.

