
This work was supported by project 160 of the Fideicomiso SEP-UNAM,  2006-2007. 
 
 

An Algorithm of scheduling for the Job Shop Scheduling Problem  

 
 Marco Antonio Cruz-Chávez1, Martín G. Martínez-Rangel1,2, J. A. Hernández1, José Crispín 

Zavala-Díaz2, Ocotlán Díaz-Parra1  
1CIICAP, 2FCAeI, Autonomous University of Morelos State 

Avenida Universidad 1001. Col. Chamilpa, C.P. 62210. Cuernavaca, Morelos, México 
{ mcruz, mmtzr, Alfredo, crispin_zavala, ocotlandp}@uaem.mx 

 
 

Abstract 
 
This paper presents an algorithm that applies a new 

mechanism in order to generate scheduling which 
allows for evaluation of the quality of solutions that 
are obtained in the Job Shop Scheduling Problem 
(JSSP). In this research, the quality of the solution is 
evaluated by using the makespan as an objective 
function. It is demonstrated experimentally that the 
proposed algorithm has better efficiency and efficacy 
when compared to the classic form of scheduling 
generation  used  to evaluate the solution quality in the 
JSSP. The efficiency and efficacy obtained by the 
proposed algorithm make it possible to generate and 
evaluate a greater number of better quality solutions in 
less time, so a greater exploration of the solution space 
for the JSSP can be conducted.  
 
1. Introduction 
 

The Job Shop Scheduling Problem (JSSP) is one of 
the most well known and difficult to solve problems in 
the scheduling area. JSSP is probably the model most 
often studied and most developed of all the problems 
pertaining to the deterministic theory  of scheduling. It 
serves as a reference for other techniques that try to 
solve problems in the same field, for example the 
transport problem or the knapsack problem [1]. The 
time required to solve the JSSP increases exponentially 
according to the size of the problem. According to the 
complexity theory [2], JSSP is classified into the NP-
complete group [3]; this group of problems is 
considered to be the most difficult group of problems 
to solve in the world. For big instances, a deterministic 
algorithm does not exist that solves problems in this 
group. For this reason, metaheuristics are used to 
search for the global optimum of problems in this 
group [4] because one can generate algorithms that 
bound this group of problems to polynomial time. 

These heuristics are characterized by searches through 
neighborhoods in non deterministic form. For this 
reason, the development of more efficient and effective 
mechanisms that accelerate the searches is important in 
order to improve the search in neighborhoods. 

A great number of metaheuristics have been 
proposed for the search for the global optimum of the 
JSSP in polynomial time. These algorithms include 
Simulated annealing [5], [6], Tabu Search [7], [8], [9], 
Ant Colony [10], and Genetic Algorithms [10], [11], 
[12], [13], among others. In order to evaluate the 
quality of solutions, these metaheuristics require the 
makespan to be found (function objective value of the 
problem) during each step of the heuristic algorithm. In 
order to do this, the scheduling algorithm is generally 
used [14]. Every time that the metaheuristic obtains a 
new solution (schedule), this algorithm is applied to 
the solution in order to assign a start time to each one 
of the operations that are part of the JSSP and obtain 
the value of the makespan. The makespan is defined as 
the completion time of the last operation Ol in the 
system and it is equal to the sum of the start time of Ol 
plus the  processing time of Ol.  

This paper proposes a scheduling mechanism to 
more quickly evaluate the quality of each solution 
(schedule) obtained in the process of local search by 
application of a neighborhood function. The 
neighborhood function used in this investigation is 
N1[6] with the Neighborhood Generation Mechanism 
(NGM) proposed in [15]. This combination of N1-
NGM very simply selects only feasible solutions 
without needing to work through the critical path of the 
generated solution like  N1 normally does. This allows 
for the measurement of performance of the proposed  
scheduling algorithm with feasible solutions, leaving 
aside the infeasible ones. 

Following the introduction, is section 2 which 
explains the disjunctive graph model of JSSP that is 
used in the  proposed scheduling mechanism. In 
section 3, the proposed mechanism for the schedule 



 
 

generation is described. In section 4  the computational 
study and the experimental tests are presented, and in 
section 5 are the conclusions. 

 
 
2. The Job Shop Scheduling Problem 
 

The Job Shop Scheduling Problem (JSSP) consists 
of a set N of jobs, a set M of machines and a set O of 
operations, where each one of the jobs is a subset of O 
in sequential form. Each i operation has a duration 
τ(Oi). In an assignment of jobs, a start time is defined 
for each operation st(Oi), such that: 

1. A machine cannot process more than one 
operation at a time. 

2. The execution order of the operations in each job 
is respected. 

The time at which the execution of all the 
operations of the JSSP is finished is known as the 
makespan. Usually one of the objectives of JSSP 
searches is to find a schedule that minimizes the 
makespan. 
 
2.1  The Disjunctive Graph Model 

 
Figure 1 show the disjunctive graph model for a 

JSSP of 3x3 (three machines and three jobs), this 
model is introduced by Roy and Sussmann [17]. The 
general problem of JSSP is defined for the graph G = 
(V,A,E, τ) where: 
 
ܸ ൌ ܱ  ሼܫ,  ሽܨ
 
ܣ ൌ ൛ൣܫ, ଵܱ൧, ൣ ܱ , ܱሺାଵሻ൧, ൣܱ, ܶ൧ห݅, ݆: ܱ א ܱൟ 
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The vertexes V represent the operations. There are two 
vertexes (fictitious operations) that do not  have a 
processing time, these are the I (source) and the F 
(finish). The weight of a vertex τ(Oij) is the processing 
time p(Oij), τ(Oij) = p(Oij), τ(I) = τ(F) = 0. The first 
operation of each job connects toward the I (source) 
node, while the last operation of each job connects 
toward the F (finish) node. The precedence constraint 
between a pair of operations Oij, O(i+1)j carried out in 
the same job, is represented by an conjunctive  arc [Oij, 
O(i+1)j] א A. 
 

In same way, the resource capacity constraint between 
a pair of operations Oij, పܱ́ఫ́ א O,  M(Oij) = M( పܱ́ఫ́) is 
represented by a disjunctive arc {Oij, పܱ́ఫ́} א E where 
the two forms of directing this arc correspond to the 
two possible orientations of {Oij, పܱ́ఫ́}. 

 
Fig. 1. Disjunctive graph representation of the JSSP 
3x3. 

An orientation of E is a function ߜ: ܧ ՜  such ܱݔܱ
that ߜ൫൛ ܱ, పܱ́ఫ́ൟ൯ א ൛ۃ ܱ, పܱ́ఫ́ۄൟ, ൛ۃ ܱ, పܱ́ఫ́ۄൟ  for 
each ൛ ܱ, పܱ́ఫ́ൟ א  If the orientation δ of the set E .ܧ
results in a digraph D = G´ = (V, A, E, τ, δ (E)) then a 
schedule is obtained that represents a solution of the 
JSSP, which could be feasible or infeasible. Figure 2 
presents an example of a feasible solution for the JSSP 
in Figure 1. 

 

 
Fig. 2. A feasible solution for the JSSP 3x3 in fig. 1. 

 
 
3. Scheduling Procedure 

 
In order to apply the proposed mechanism in the 

construction of a scheduling, it is necessary to begin 
with a schedule (a solution) that has defined its 
scheduling. The method applied to generate a schedule 
with its scheduling is the one used in [14]. 

This randomly selects an operation that belongs to 
the set which consists of operations that do not have an  
predecessor (prior operation in the same job) or  that in 
their defect, are operations that have a predecessor but 
that this has been assigned, identifying its final 
processing time. If the selected operation fulfills this 
rule (precedence constraint), it is assigned an execution 



 
 

time (turn) and the final moment that the processing 
machine has for the operation programmed is verified 
(resources capacity constraint). The start time of the 
operation is then determined evaluating the two 
restrictions (precedence and resource capacity) 
considering that of greater value.  

Next, an example is presented that defines the 
symbolic representation of the first So solution 
(schedule) for the JSSP 3x3 presented in Figure 1. The 
symbolic representation presented in Table 1 is used 
for the proposed scheduling method. This first So 
solution is a Gantt Chart shown in Figure 3. One can 
observe in the figure the start (scheduling) and the end 
of the execution of each operation with regard to job, 
these data are included in Table 1, columns ten and 
eleven. Following the order of the schedule in Figure 3, 
the operations are assigned in the following way: 4, 5, 
7, 1, 8, 9, 6, 2 and 3 (by turn, in ascending order) like 
the sample in Table 1, columns one and two. 
 

Máquina 0.-  20000000333100 
Máquina 1.-  00000033200011 
Máquina 2.-  02223311100000 

 
Fig. 3. Allocation of the operations in machines in S0 

 
The first starting So solution used by the proposed 

scheduling mechanism appears in Table 3, which has 
all the necessary data in order to proceed in the 
generation of a new solution (schedule) and the 
construction of its scheduling for the proposed 
mechanism.  

Table 1 shows in column six that the operations that 
could be exchanged are those that are assigned in turns 
3, 4, 7 8 (operations 7, 1, 6, and 2 respectively, see 
Table 1, column 2). Each a has an adjacent operation 
shown in column seven. 

Table 1. Data for the first solution (S0) 

T O J M D In Ao Pr EP B E 
1 4 2 0 1 0 0 0 0 1 1 
2 5 2 2 3 0 0 4 1 2 4 
3 7 3 2 2 1 5 0 0 5 6 
4 1 1 2 3 1 7 0 0 7 9 
5 8 3 1 2 0 0 7 6 7 8 
6 9 3 0 3 0 0 8 8 9 11 
7 6 2 1 1 1 8 5 4 9 9 
8 2 1 0 1 1 9 1 9 12 12 
9 3 1 1 2 0 0 2 12 13 14 

3.1 Scheduling Generation Mechanism  

When a solution (schedule) S0 of the JSSP is applied 
using the neighborhood function N1-NGM proposed in 
[15] for local searches, it is possible to generate new 
feasible solutions upon exchanging (permuting) only 
one pair of adjacent operations that do not have slack-
time between them. This neighborhood function carries 
out a perturbation of S0  to obtain a new solution S1. In 
order to evaluate the makespan of S1 it is necessary to 
obtain the scheduling of S1. The proposed mechanism 
of scheduling construction consists of beginning the 
scheduling starting from the position where the 
solution S0 is perturbed, respecting the partial 
scheduling that is completed before the place where the 
perturbation was done. 

The next example is of the proposed scheduling 
mechanism of the solution S1 (Table 2) obtained by 
exchanging a pair of adjacent operations without slack-
times in the schedule S0 presented in Table 1. 

In order to make the exchange in the solution S0, a 
turn is randomly selected from the list of restricted 
candidates (pairs of operations that could be 
exchanged). The candidates to be exchanged are 
designated in column six by means of a flag, 1 if it is 
interchangeable and zero if it is not. 

It can be observed that for the values in column six,  
the pairs of candidate operations are (7, 5), (1, 7), (6, 8) 
and (2, 9). These can be seen in the rows highlighted in 
gray, columns two and seven of Table 1. In this case, 
turn 7 is randomly selected (operation 6) to be 
exchanged with the operation that is in turn 5 
(operation 8). This change is carried out in Figure 4, 
which shows the corresponding solution S1: 

 
Machine 0.- 20000000333100 
Machine 1.- 00002033000011 
Machine 2.- 02223311100000 

 
Fig. 4. New configuration after the interchange of 
operation 6 by 8 in machine 1. Solution S1. 

Table 2. Data for the solution S1 (Result of interchange of 
operation 6 and operation 8) 

T O J M D In Ao Pr EP B E 
1 4 2 0 1 0 0 0 0 1 1 
2 5 2 2 3 0 0 4 1 2 4 
3 7 3 2 2 1 5 0 0 5 6 
4 1 1 2 3 1 7 0 0 7 9 
5 6 2 1 1 0 0 5 4 5 5 
6 8 3 1 2 0 0 7 6 7 8 
7 9 3 0 3 0 0 8 8 9 11 
8 2 1 0 1 1 9 1 9 12 12 
9 3 1 1 2 0 0 2 12 13 14 



 
 

Table 2 shows the solution S1; in column eleven the 
process of re-scheduling affects only turns 5, 6, 7, 8 
and 9, leaving intact turns 1, 2, 3 and 4. In Table 2, 
column eleven shows that the quality of the solution 
obtained by function of the makespan is 14.  

As is shown in Table 2, it is not necessary obtain 
the scheduling of all the operations, rather one can start 
at the turn that was perturbed (50% of re-scheduling). 
In this case, operation 6 is assigned before operation 8 
(column 2), causing a landslide (a posterior turn) of  
operations 9, 2 and 3 (that were programmed  for after 
the operations that were exchanged). Operations 4, 5, 7 
and 1 remain in the same turns (column 2), occupying 
turns 1, 2, 3 and 4 respectively (column 1). The 
algorithm for re-scheduling the turns 5 to the 9 is the 
one proposed in [14].  

In order to obtain the following solution S2, it is 
necessary to start over with a new permutation in the 
previous solution S1. A turn is randomly selected from 
the new restricted candidates, the candidates are 
selected according to the column six. The candidates 
are the pairs of operations (7, 5), (1, 7) and (2, 9). The 
procedure of re-scheduling repeats and this way the 
quality of each solution (makespan) is evaluated in a 
more efficient manner when re-scheduling the new 
solutions in a partial form.  
 

Table 3. Partial Scheduling Algorithm (S-Partial) 
 

    problem = JSSP Instance; 
    S0 = Initial_solution(Problem);  
    for(i = 0, j = 1; j <= NT; i++, j++){ 

list = restrict_list(Si); 
position = turn_perturbation(Si); 
Sj = perturbation(Si, position, list); 
Sj = scheduling_MS(Sj,position); 

    } 
 

 
Table 3 presents the scheduling algorithm that 

applies the proposed partial scheduling  mechanism. 
The algorithm is begun by choosing an instance of the 
JSSP problem. Next an initial solution S0 (schedule) is 
obtained including the scheduling. NT is the total 
number of solutions to generate, in order to obtain the 
scheduling and the makespan for each solution. With 
the function restrict_list(Si), the list of pairs of 
operations that can be perturbed in the solution Si is 
obtained. The function turn_perturbation(Si), is chosen 
randomly the T turn that belongs to the operation that 
will be perturbed in the solution Si. The function 
perturbation(Si, position, list), generates a new Sj 
solution upon perturbing the pair of operations of the T 
turn in the solution Si. The function 
scheduling_MS(Sj,position) obtains the scheduling of 

the new Sj solution by re-scheduling. It starts re-
scheduling from the T turn which is defined for the 
variable position. The quality of the solution is also 
obtained by evaluating the makespan. 
 
Nomenclature of tables.  
 
T = Turn assigned to the operation, ascending order. 
Or = Operation assigned in the T turn. 
J = Job to which belong the assigned operation. 
M = Machine that processes the operation with T turn. 
D = Duration of the operation in the machine. 
In = If the operation is interchangeable with any 
another, this is marked with 1, otherwise with 0. 
Ao = Adjacent operation with which the operation in 
turn could be interchanged. 
Pr = Operation that precedes to the operation assigned 
in the T turn. 
EP = Completion Time of the Pr operation. 
B = Start time of the operation of the T turn 
(scheduling). 
And = End time of the operation of the T turn. 
 
4. Experimental Results 
 

The proposed scheduling mechanism was 
implemented in an algorithm in language C in a PC 
with 2 GHz, and 1 GB in RAM. In order to prove the 
efficiency of the proposed scheduling method, a set of 
benchmarks was used [16] of small, medium and large 
sizes of JSSP (Mt06, MT10, LA40 YN1). For the 
generation of feasible solutions, the neighborhood 
structure  N1-NGM was used [15]. The initial solution 
was obtained by means of the procedure described in 
section 3. 

In order to compare the efficiency and the efficacy 
of the proposed scheduling mechanism, two strategies  
were used for the generation of scheduling for each one 
of the instances of test. The first strategy is called S-
Total which uses the classical procedure of scheduling 
proposed in [14] to evaluate the quality of a solution. 
This procedure requires obtaining the scheduling for all 
the operations in the JSSP. The S-Total strategy is used 
in many of the algorithms presented in the JSSP 
literature. The second strategy, called S-Partial 
(proposed mechanism described in 3.1), obtains re-
scheduling for only a part of the operations involved in 
the problem instance in order to evaluate the quality of 
the solution. 

Figure 5 shows that S-Partial requires less time to 
generate the same number of solutions (65,500) than S-
Total requires for small, medium and large problems. 
As the size of the problem increases, S-Partial is 
increasingly efficient. For instances of large problems, 



 
 

with around 400 operations,  S-Partial is on average 
58% more efficient than S-Total. In order to generate 
65,500 solutions in the large instance YN1, on average, 
S-Partial takes 1,250 seconds while S-Total takes 
3,010 seconds. 
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Fig. 5. Efficiency of the S-Partial vs. S-Total 

 
In order to measure the efficacy of the proposed 

mechanism, Table 4 shows that for 65,500 generated 
solutions, S-Partial generates better quality of solutions 
than S-Total in almost all the instances of the problem. 
The exception is the small instance MT06 where the 
quality is equal. In the average value it can be observed 
that S-Partial is better in two instances, worse in MT10 
and equal in LA40. 

Table 4. solution Quality  

Strategies 
 

Problem Mean Min Max 

S-Total MT06 94.26 55 158 
S-Partial MT06 93.73 55 159 
S-Total MT10 1782.5 1324 2405 

S-Partial MT10 1797.42 1291 2466 
S-Total La40 1894.39 1354 2772 

S-Partial La40 1894.64 1228 2786 
S-Total YN1 1308.44 991 1731 

S-Partial YN1 1280.98 978 1805 
 
S-Partial allows for dispersed solutions in the 

solution space of the JSSP instance to be found to a 
greater degree because the range of S-Partial is greater, 
this is shown in Figure 6 with an average of 65,500 
solutions evaluated for different instances of different 
sizes. This behavior favors the Genetic Algorithms and 
Simulated Annealing because the solutions generated 
by the proposed mechanism embrace a grater solution 

space of the problem and this permit a better 
exploration of the solution space of the JSSP. 
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Fig. 6. Range of solutions of S-Partial vs. S-Total 
 

The  proposed S-partial algorithm, is of polynomial  
complexity and according to the value of T turn that is 
evaluated, the polynomial order could be: In the worst 
case O(3n2), in the better case O(n) and the average 
case O(0.5n2). According to the experimental results 
presented in Figure 5, where S-Total with complexity 
O(n2) is compared with S-Partial, one could observe 
that for small problems, the complexity of S-Partial is 
similar to S-Total and when the size of the problem 
increases, one could conclude that the complexity of S-
Partial tends to be minor that S-Total, this is, it move 
between the interval of O(n) to O(0.5n2). 

 

5. Conclusions 
 

The results observed in this research, demonstrate 
that the proposed scheduling mechanism is much more 
efficient than the classical mechanism of scheduling 
frequently used in metaheuristics for the JSSP. The 
efficacy that the proposed mechanism presents is also 
superior in almost all the evaluated cases, and only in 
inferior, but still competitive, in a few cases when 
compared with the classical scheduling mechanism. 

According to the obtained results, when measuring 
the range for an average of 65,500 solutions in each 
problem size, one could conclude that the solutions 
obtained by S-Partial have a greater dispersion in the 
solution space for the problem instance. This can favor 
the behavior of the metaheuristics for JSSP, because 
the search can embrace a greater exploration of the 
solution space. 
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