
JAISCR, 2013, Vol. 3, No. 3, pp.   251Samira Arabgol, Hoo Sang Ko

[20] D. E. Goldberg, Genetic Algorithms in Search,
Optimization, and Machine Learning, Addison-
Wesley, 1989.

[21] S. Jahandideh, S. Jahandideh, E. Barzegari Asad-
abadi, M. Askarian, M. M. Movahedi, S. Hos-
seini, and M. Jahandideh, ”The Use of Artificial
Neural Networks and Multiple Linear Regression
to Predict Rate of Medical Waste Generation,”

Waste Management, vol. 29, no. 11, 2009, pp.
2874–2879,.

[22] D. Venkatesan, K. Kannan, and R. Saravanan, ”A
Genetic Algorithm-based Artificial Neural Net-
work Model for the Optimization of Machining
Processes,” Neural Computing and Applications,
vol. 18, no. 2, 2009, pp. 135–140.

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO
EVALUATE THE FEASIBILITY OF ITS APPLICATION IN
THE UNIVERSITY COURSE TIMETABLING PROBLEM

Marco Antonio Cruz Chvez, Alina Martnez Oropeza
CIICAp, Universidad Autnoma del Estado de Morelos

Av. Universidad 1001. Col. Chamilpa, C.P. 62209.
Cuernavaca, Morelos, Mxico

mcruz@uaem.mx

Abstract

This paper presents a comparative analysis of complexity between the B-TREE and the
Binary Search Algorithms, both theoretically and experimentally, to evaluate their effi-
ciency in finding overlap of classes for students and teachers in the University Course
Timetabling Problem (UCTP). According to the theory, B-TREE Search complexity is
lower than Binary Search. The performed experimental tests showed the B-TREE Search
Algorithm is more efficient than Binary Search, but only using a dataset larger than 75
students per classroom.

1 Introduction

Resource Scheduling is a very important area
within computer sciences due to its wide applica-
tion in different areas, such as manufacturing, the
academic environment, and vehicle routing, among
others. One of the typical problems in this area
is the scheduling in an academic environment [6],
where school schedules must be established. Their
development requires long periods of time due to
the number of variables to assess. Also on occasion,
unfeasible solutions are obtained because overlaps
could occur. An overlap is the timeslot in which the
same event or activity happens simultaneously; in
this context, when scheduling classes, teachers and
students cannot give or take different classes during
the same timeslot.

Designing school schedules is not an easy task,
but its complexity depends on the level. For exam-
ple in an elementary school the complexity is re-
duced due to the smaller quantity of teachers, class-
rooms, and the fixed student groups, so they do not
have to take into account so many variables. The
complexity increases for a high school or a univer-

sity where there are many constraints to be consid-
ered in order to obtain a feasible solution.

To treat the problem of scheduling at a univer-
sity level, there is a proposed mathematical model
and some benchmarks which are used as a paradigm
to try to obtain feasible and better solutions. The
name of the problem in combinatorial optimiza-
tion is the University Course Timetabling Problem
(UCTP), which has been classified within the set
of NP-Complete problems due to its complexity [1,
2]. This means that there is no known deterministic
algorithm bound by a polynomial temporal func-
tion to solve this kind of problem [3]. Therefore,
the scientific community has focused its research
on the treatment of NP-Complete problems through
non-deterministic algorithms, which are bound by
polynomial time. These algorithms (better known
as Heuristics) need to be constantly improved in
attempt to obtain better solutions or reduce the ex-
ecution time [4]. There are several techniques that
have been used to find feasible solutions to this
problem, but the most common are metaheuristics.

 – 263
DOI 10.2478/jaiscr-2014-0018

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



252 Cruz Chvez M. A., Martnez Oropeza A.

To find a good solution to UCTP using any
metaheuristic, local search application is necessary.
The heart of a local search is the application of a
neighborhood structure, which generates exchanges
of elements. Iterative local search, guided by an
objective function, can improve the solution of a
problem as UCTP, but every swap generated by the
neighborhood structure through local search could
generate an unfeasible solution. To detect a move-
ment of the neighborhood structure that can gener-
ate an unfeasible solution in UCTP, it is necessary
to use a search algorithm. For example, in a UCTP,
moving a student e to take a class on day i, at a
specific hour j, in classroom k, (i, j, k), may cre-
ate schedule conflicts (overlap) for the student and
other classes that he takes. To determine if there
is overlap, it is necessary to perform a search in all
classrooms (k = 1,..., n) to verify that the student e
is not taking another class in the same timeslot (i,
j).

According to theory, the search algorithms with
the least theoretical complexity are B-TREE and
Binary search. The B-TREE complexity, in the
worst case, is lower than the Binary search com-
plexity. For this reason, in this work, these two
search algorithms were tested for UCTP. A set of
hard constraints were accounted for, which ensured
non-overlapping classes for both teachers and stu-
dents [5]. The fulfillment of these constraints must
be verified; it is necessary to check that students do
not take more than one subject per timeslot (i, j),
and in one classroom k. If a student e takes more
than one subject in the same timeslot (i, j), the stu-
dent is overlapping; therefore, the obtained solution
is unfeasible.

In this research, the two most efficient search al-
gorithms, according to their theoretical complexity,
were used to conduct an experimental comparison.

Application of a search method allows for re-
vision of each student e assigned to an event in a
timeslot in a CR classroom. It also allows for revi-
sion of possible overlaps with other events the stu-
dent takes, where an event is a class taken by the
student e. According to this reasoning, the meth-
ods applied to UCTP require a very efficient search
algorithm within their structure due to the iterative
nature which is required for this problem. Accord-
ing to theoretical and experimental results, a con-
clusion was reached as to the best option, based on

the efficiency of the search algorithms applied to
this specific case.

The contribution of this work is to find the most
efficient search algorithm to detect overlap of events
for students and teachers in the UCTP.

The present research is divided as follows. Sec-
tion one provides a general introduction to the
problem, and emphasizes the importance of having
an efficient method which can obtain good solu-
tions in a reasonable computational time. Section
two presents the formal definition of the Univer-
sity Course Timetabling Problem, focusing on the
explanation of the set of constraints, which define
the specific case. Section three discusses the theo-
retical complexity managed in the literature for the
principal search methods. An explanation is given
for the methods of both Binary Search and B-TREE
Search. The fourth section presents the temporal
functions specified to each algorithm. Section five
shows the experimental results, and the compara-
tive analysis of both methods, taking into account
their theoretical and experimental complexity. Fi-
nally, the conclusions of this research are presented
in section six.

2 University Course Timetabling
Problem

The University Course Timetabling Problem
(UCTP) has been classified within the Complexity
Theory as NP-Complete [1]. This problem could be
solved by deterministic or non-deterministic meth-
ods. Using a deterministic method, it is only fea-
sible to obtain the optimal solution for a small in-
stance, because if the instance size grows, the com-
putation time of a deterministic algorithm increases
exponentially. As a result, most researchers have
focused on heuristics, which get approximated so-
lutions in a reasonable time; although, there is no
guarantee of their optimality.

The features of the components that are consid-
ered in this problem, such as students, classrooms,
facilities, teachers, and classes, when considered in
combination with the features of limited resources,
time considerations and the available spaces for as-
signing the events, make it difficult to get feasible
solutions in a reasonable computing time.

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



253Cruz Chvez M. A., Martnez Oropeza A.

To find a good solution to UCTP using any
metaheuristic, local search application is necessary.
The heart of a local search is the application of a
neighborhood structure, which generates exchanges
of elements. Iterative local search, guided by an
objective function, can improve the solution of a
problem as UCTP, but every swap generated by the
neighborhood structure through local search could
generate an unfeasible solution. To detect a move-
ment of the neighborhood structure that can gener-
ate an unfeasible solution in UCTP, it is necessary
to use a search algorithm. For example, in a UCTP,
moving a student e to take a class on day i, at a
specific hour j, in classroom k, (i, j, k), may cre-
ate schedule conflicts (overlap) for the student and
other classes that he takes. To determine if there
is overlap, it is necessary to perform a search in all
classrooms (k = 1,..., n) to verify that the student e
is not taking another class in the same timeslot (i,
j).

According to theory, the search algorithms with
the least theoretical complexity are B-TREE and
Binary search. The B-TREE complexity, in the
worst case, is lower than the Binary search com-
plexity. For this reason, in this work, these two
search algorithms were tested for UCTP. A set of
hard constraints were accounted for, which ensured
non-overlapping classes for both teachers and stu-
dents [5]. The fulfillment of these constraints must
be verified; it is necessary to check that students do
not take more than one subject per timeslot (i, j),
and in one classroom k. If a student e takes more
than one subject in the same timeslot (i, j), the stu-
dent is overlapping; therefore, the obtained solution
is unfeasible.

In this research, the two most efficient search al-
gorithms, according to their theoretical complexity,
were used to conduct an experimental comparison.

Application of a search method allows for re-
vision of each student e assigned to an event in a
timeslot in a CR classroom. It also allows for revi-
sion of possible overlaps with other events the stu-
dent takes, where an event is a class taken by the
student e. According to this reasoning, the meth-
ods applied to UCTP require a very efficient search
algorithm within their structure due to the iterative
nature which is required for this problem. Accord-
ing to theoretical and experimental results, a con-
clusion was reached as to the best option, based on

the efficiency of the search algorithms applied to
this specific case.

The contribution of this work is to find the most
efficient search algorithm to detect overlap of events
for students and teachers in the UCTP.

The present research is divided as follows. Sec-
tion one provides a general introduction to the
problem, and emphasizes the importance of having
an efficient method which can obtain good solu-
tions in a reasonable computational time. Section
two presents the formal definition of the Univer-
sity Course Timetabling Problem, focusing on the
explanation of the set of constraints, which define
the specific case. Section three discusses the theo-
retical complexity managed in the literature for the
principal search methods. An explanation is given
for the methods of both Binary Search and B-TREE
Search. The fourth section presents the temporal
functions specified to each algorithm. Section five
shows the experimental results, and the compara-
tive analysis of both methods, taking into account
their theoretical and experimental complexity. Fi-
nally, the conclusions of this research are presented
in section six.

2 University Course Timetabling
Problem

The University Course Timetabling Problem
(UCTP) has been classified within the Complexity
Theory as NP-Complete [1]. This problem could be
solved by deterministic or non-deterministic meth-
ods. Using a deterministic method, it is only fea-
sible to obtain the optimal solution for a small in-
stance, because if the instance size grows, the com-
putation time of a deterministic algorithm increases
exponentially. As a result, most researchers have
focused on heuristics, which get approximated so-
lutions in a reasonable time; although, there is no
guarantee of their optimality.

The features of the components that are consid-
ered in this problem, such as students, classrooms,
facilities, teachers, and classes, when considered in
combination with the features of limited resources,
time considerations and the available spaces for as-
signing the events, make it difficult to get feasible
solutions in a reasonable computing time.

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO . . .

The goal of finding solutions to the UCTP is
to obtain a scheduling such that both students and
teachers can attend all their programmed classes
without time difficulties. The UCTP has some spe-
cific features that must be respected to obtaining a
feasible solution. These features are known as con-
straints, and are classified into two kinds of con-
straints.

Hard Constraints: They must be fulfilled com-
pletely, and must not be violated. For example a
teacher cannot give different classes in the same
timeslot.

Soft Constraints: They should, preferably, be sat-
isfied, although some violations could be accepted
adding a penalty per each violation. A clear exam-
ple may be that the students should not have four or
more continuous classes. The main reason is that
it is not pedagogically recommended, because the
students need a rest after taking continuous classes.
However, some violation could be accepted due to
the time circumstances, and the scheduling.

The specific problem tackled in this research
consists of a set of events that have to be pro-
grammed in a set of 45 timeslots, which are dis-
tributed in five days with nine 50-minute periods
per day. There is also a set of classrooms where
the events are held, a set of students who attend
the events, and a set of facilities in each classroom,
which are necessary to perform the events. Each
student has to attend a certain number of events,
which are scheduled in certain classrooms with spe-
cific features. Taking this into account, a feasible
solution has to have all the events scheduled in a
classroom during a timeslot, respecting the follow-
ing constraints and trying to improve the value of
the objective function (1).

Min F.O = ∑s1+∑s2+∑s3 (1)

The objective function minimizes the quantity
of soft constraints violated, where S1, S2, and S3
refer to the soft constraints defined to this specific
problem [6]. The constraints, both hard and soft,
are explained as follows:

Set of Hard Constraints

H1. No student attends more than one event in the
same timeslot.

H2. The classroom capacity must be enough to hold

all the students assigned to attend the event.

H3. The assigned classroom must have the required
facilities to carry out the assigned event.

H4. No classroom can have more than one event in
the same timeslot.

H5. No teacher attends more than one event in the
same timeslot.

Set of Soft Constraints

S1. A student should not take classes in the last
timeslot of the day.

S2. A student should not take two or more uninter-
rupted classes.

S3. A student should not take only one class during
a day.

The UCTP could be represented in a schematic
form (Figure 1) to improve its understanding.

The representation shown in Figure 1 is made
using a tridimensional form, better known as a cube,
where each layer, represented by different colors,
symbolizes a classroom. A classroom is formed by
several 3D boxes (Period, Day, and Classroom) per
day, where each one defines a timeslot where an
event can be assigned. An event is the intersection
between a Period, and a Day in certain Classroom,
where an event could be assigned. Each event will
be taken by a group of students, who will attend to
several events {EV1, EV2,. . . , EVn} per week. For
example, the EV1 is taken by students E1, E2, and
E3 in the classroom CR2. A set of events form a
class.

Each classroom has certain features, which are
required by the different events. Those features
could be TVs, DVDs, computers, projectors, or
whiteboards, among others.

Some of the characteristics that must be taken
into account to assign an event to a classroom are
its features and size. For example, a mathematics
teacher may need a whiteboard in order to give a
class. Size of the classroom must also be consid-
ered. It is necessary to check the classroom capac-
ity because a common problem is that big groups of
students are assigned to small classrooms. In Figure
1 we can observe a possible solution, where all the
hard and soft constraints are satisfied in order to get
a feasible scheduling to a small instance. For this
representation, the quality of the obtained solution,

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



254 Cruz Chvez M. A., Martnez Oropeza A.

according to the objective function is not evaluated,
because it is only an example of a feasible solution
where all the constraints are satisfied. It is very dif-
ficult to use a bigger instance because of its time
limitations and the nature of the problem.

Figure 1. Schematic representation of a possible
solution applied to a small UCTP instance

Finding a feasible solution is not easy; it re-
quires an efficient process dedicated to exploring
the solution space and verifying that all the con-
straints were satisfied. The process of ensuring that
a solution is feasible requires the use of a search al-
gorithm, which has to examine each set of students
and teachers in each classroom to make certain that
no subject and no students were overlapped. Even
if a feasible solution is found, it is necessary to con-
tinue exploring for new feasible solutions in order
to obtain the best possible solution. The aim of the
present research is to find an efficient search algo-
rithm to apply to the specific problem of UCTP ex-
plained in this section.

The next section provides a general explanation
of some of the most efficient search algorithms. Ex-

amination of their theoretical complexity allowed
for the selection of the two best algorithms. An
experimental comparison was performed, using a
computer program to select the best algorithm for
this specific problem.

3 Search Algorithms

Search algorithms have been widely used to
perform searches in data structures, such as trees,
where they have been applied successfully. Many
types of search algorithms exist, such as linear
search, Binary search, B-TREE search, and some
hybrid searches, which have been applied to differ-
ent optimization problems.

The main difference among these search algo-
rithms is the computational effort required to carry
out a certain search, because many of them need
the keys (elements of the total set) in a specific or-
der, which increases the complexity of the algo-
rithm. For this research, three of the most com-
mon search algorithms are used, in addition to one
hybrid (Quicksort + Binary search). According to
their complexity, theoretically, B-TREE search is
more efficient that the others.

The complexity of an algorithm (Table 1) de-
pends on the number of questions that it must ask in
the worst case in order to find a specific key within
a set of n keys.

Using the information from Table 1, the graph
below (Figure 2) was made, which clearly shows
the theoretical behavior of each search method. In
the case of B-TREE search, a tree to the order of 5
was used.

According to the comparison presented in Table
1 and Figure 2, it can be observed that the most ef-
ficient algorithm is B-TREE search, and the second
most efficient is Binary search. It is important to
note that these two algorithms work with ordered
keys. They have the previously mentioned com-
plexity only if the set of keys used are already or-
dered; otherwise, the complexity increases depend-
ing on the sorting algorithm applied.

A comparison of the requirements of the search
algorithm (Table 1) with the features of the specific
problem tackled in this paper, show that it is pos-
sible to apply them to the UCTP. The set of keys
used corresponds to the students assigned to differ-

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



255Cruz Chvez M. A., Martnez Oropeza A.

according to the objective function is not evaluated,
because it is only an example of a feasible solution
where all the constraints are satisfied. It is very dif-
ficult to use a bigger instance because of its time
limitations and the nature of the problem.

Figure 1. Schematic representation of a possible
solution applied to a small UCTP instance

Finding a feasible solution is not easy; it re-
quires an efficient process dedicated to exploring
the solution space and verifying that all the con-
straints were satisfied. The process of ensuring that
a solution is feasible requires the use of a search al-
gorithm, which has to examine each set of students
and teachers in each classroom to make certain that
no subject and no students were overlapped. Even
if a feasible solution is found, it is necessary to con-
tinue exploring for new feasible solutions in order
to obtain the best possible solution. The aim of the
present research is to find an efficient search algo-
rithm to apply to the specific problem of UCTP ex-
plained in this section.

The next section provides a general explanation
of some of the most efficient search algorithms. Ex-

amination of their theoretical complexity allowed
for the selection of the two best algorithms. An
experimental comparison was performed, using a
computer program to select the best algorithm for
this specific problem.

3 Search Algorithms

Search algorithms have been widely used to
perform searches in data structures, such as trees,
where they have been applied successfully. Many
types of search algorithms exist, such as linear
search, Binary search, B-TREE search, and some
hybrid searches, which have been applied to differ-
ent optimization problems.

The main difference among these search algo-
rithms is the computational effort required to carry
out a certain search, because many of them need
the keys (elements of the total set) in a specific or-
der, which increases the complexity of the algo-
rithm. For this research, three of the most com-
mon search algorithms are used, in addition to one
hybrid (Quicksort + Binary search). According to
their complexity, theoretically, B-TREE search is
more efficient that the others.

The complexity of an algorithm (Table 1) de-
pends on the number of questions that it must ask in
the worst case in order to find a specific key within
a set of n keys.

Using the information from Table 1, the graph
below (Figure 2) was made, which clearly shows
the theoretical behavior of each search method. In
the case of B-TREE search, a tree to the order of 5
was used.

According to the comparison presented in Table
1 and Figure 2, it can be observed that the most ef-
ficient algorithm is B-TREE search, and the second
most efficient is Binary search. It is important to
note that these two algorithms work with ordered
keys. They have the previously mentioned com-
plexity only if the set of keys used are already or-
dered; otherwise, the complexity increases depend-
ing on the sorting algorithm applied.

A comparison of the requirements of the search
algorithm (Table 1) with the features of the specific
problem tackled in this paper, show that it is pos-
sible to apply them to the UCTP. The set of keys
used corresponds to the students assigned to differ-

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO . . .

Table 1. Theoretical complexity in the worst case for four commonly used search algorithms

Search Algorithm Theoretical Complexity

B-TREE m > 2 dmin = logm (n+1) dmax = 1+ log(m+1
2 )

( n+1
2

)

Binary Search iterations = log2 (n)

Linear Search iterations = n

QuickSort + Binary Searchc = 3.321928095 iterations = log10 (n
n+c)

Figure 2. Theoretical behavior of each search method, as shown in Table 1.

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO . . .

Table 1. Theoretical complexity in the worst case for four commonly used search algorithms

Search Algorithm Theoretical Complexity

B-TREE m > 2 dmin = logm (n+1) dmax = 1+ log(m+1
2 )

( n+1
2

)

Binary Search iterations = log2 (n)

Linear Search iterations = n

QuickSort + Binary Searchc = 3.321928095 iterations = log10 (n
n+c)

Figure 2. Theoretical behavior of each search method, as shown in Table 1.

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO . . .

Table 1. Theoretical complexity in the worst case for four commonly used search algorithms

Search Algorithm Theoretical Complexity

B-TREE m > 2 dmin = logm (n+1) dmax = 1+ log(m+1
2 )

( n+1
2

)

Binary Search iterations = log2 (n)

Linear Search iterations = n

QuickSort + Binary Searchc = 3.321928095 iterations = log10 (n
n+c)

Figure 2. Theoretical behavior of each search method, as shown in Table 1.

 
Fig. 2. Theoretical behavior of each search method, as shown in Table 1.  

A comparison of the requirements of the search algorithm (Table 1) with the fea-
tures of the specific problem tackled in this paper, show that it is possible to apply 
them to the UCTP. The set of keys used corresponds to the students assigned to dif-
ferent events. Those data are always ordered, thus a sorting algorithm is not needed 
and the algorithms maintain their theoretical complexity. For this reason, the two 
most efficient algorithms were chosen which are, according to Table 1, the Binary 
search and B-TREE algorithms are.  

 
Binary Search 

 
This type of search works with a set of ordered keys, which divides in two parts 

and compares a sought key with the central one. If it is not equal, the limits of the 
rank are defined, depending on whether the central key is greater or less than the 
sought one, which considerably reduces the search set. This process is performed 
iteratively until the sought key is found. Binary search always finds the sought key if 
it exists. The worst case would be that the desired key would be the last one com-
pared. Consequently, the number of iterations would be defined by (2), where the 
number of iterations is directly affected by the number of keys in the sample. 

 

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



256 Cruz Chvez M. A., Martnez Oropeza A.

ent events. Those data are always ordered, thus a
sorting algorithm is not needed and the algorithms
maintain their theoretical complexity. For this rea-
son, the two most efficient algorithms were chosen
which are, according to Table 1, the Binary search
and B-TREE algorithms are.

Binary Search

This type of search works with a set of ordered keys,
which divides in two parts and compares a sought
key with the central one. If it is not equal, the limits
of the rank are defined, depending on whether the
central key is greater or less than the sought one,
which considerably reduces the search set. This
process is performed iteratively until the sought key
is found. Binary search always finds the sought key
if it exists. The worst case would be that the desired
key would be the last one compared. Consequently,
the number of iterations would be defined by (2),
where the number of iterations is directly affected
by the number of keys in the sample.

iterations = log2 (n) (2)

B-TREE Search

B-TREE search performs a specific search for a
key in a balanced tree. This type of search makes
a multi-way branching decision according to the
number of children per node (order). As input, B-
TREE search takes a pointer to the root node and
searches for a key in a sub tree [10].

According to this, a B-TREE of order D can store
up to 2D keys in each of its tree nodes, with a max-
imum of 2D + 1, which corresponds to the maxi-
mum number of children per node. This is true for
all nodes, except the root node, which could have
at least one key, and as a result two pointers [8].
Therefore, the depth d is between a lower (LB) and
an upper bound (UB), which are defined by equa-
tions 3 and 4 [9].

LB = logm (n+1) (3)

UB = 1+ log(m+1
2 )

(
n+1

2

)
(4)

In equations 3 and 4, m = 2D + 1 indicates the total
number of pointers per node in the tree, and n is the
number of keys in the tree. A graphical representa-
tion is shown in Figure 3, and is based on the lower

bound (Equation 3) of a B-TREE with D = 1. It has
three pointers (m = 3) and two keys per node (2D =
2), giving a depth of three (LB = 3) and n = 26 keys.
The depth is very important because is the number
of iterations required to find the sought key.

Applying Equation 4, the upper bound of the
same B-TREE can be obtained. The result is a B-
TREE with four levels. In the same way, a balanced
tree is obtained, which is shown in Figure 4. It is
not complete because it does not use the maximum
number of pointers per node.

The levels vary, due to the handling of balanc-
ing, and how the keys are accommodated into the
nodes. For example, in Figure 2, the maximum
number of pointers per node is used. This is unlike
Figure 4, where the nodes do not use all their keys,
and most of them have only two pointers, which in-
creases the levels of the tree (UB = 4.75).

4 Binary and B-TREE Search Al-
gorithms

The two algorithms explained in the last sec-
tion were programmed using C standard language.
Before the experimental testing, a complexity anal-
ysis of both algorithms was performed, obtaining
their temporal function in the worst case. The algo-
rithms’ programs are shown below (Figure 5, and
6).

Figure 5. Binary search algorithm

The Binary search algorithm presented in Fig-
ure 5 shows the process of checking the feasibil-
ity of the solutions in a general way. First of all,
the function receives some parameters; the first one
contains the array of students or teachers (keys) as-
signed to different events in a timeslot (i, j), which

 
Fig. 4. Upper Bound of a B-TREE order three, incomplete and balanced. 

The levels vary, due to the handling of balancing, and how the keys are accommodat-
ed into the nodes. For example, in Figure 2, the maximum number of pointers per 
node is used. This is unlike Figure 4, where the nodes do not use all their keys, and 
most of them have only two pointers, which increases the levels of the tree (UB = 
4.75).  

4 Binary and B-TREE Search Algorithms 

The two algorithms explained in the last section were programmed using C standard 
language. Before the experimental testing, a complexity analysis of both algorithms 
was performed, obtaining their temporal function in the worst case. The algorithms’ 
programs are shown below (Figure 5, and 6). 

 

 
Fig. 5. Binary search algorithm  

The Binary search algorithm presented in Figure 5 shows the process of checking the 
feasibility of the solutions in a general way. First of all, the function receives some 
parameters; the first one contains the array of students or teachers (keys) assigned to 
different events in a timeslot (i, j), which have to be carefully checked in each class-
room of the same timeslot (i, j) to avoid overlaps. The second one contains the num-

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



257Cruz Chvez M. A., Martnez Oropeza A.

ent events. Those data are always ordered, thus a
sorting algorithm is not needed and the algorithms
maintain their theoretical complexity. For this rea-
son, the two most efficient algorithms were chosen
which are, according to Table 1, the Binary search
and B-TREE algorithms are.

Binary Search

This type of search works with a set of ordered keys,
which divides in two parts and compares a sought
key with the central one. If it is not equal, the limits
of the rank are defined, depending on whether the
central key is greater or less than the sought one,
which considerably reduces the search set. This
process is performed iteratively until the sought key
is found. Binary search always finds the sought key
if it exists. The worst case would be that the desired
key would be the last one compared. Consequently,
the number of iterations would be defined by (2),
where the number of iterations is directly affected
by the number of keys in the sample.

iterations = log2 (n) (2)

B-TREE Search

B-TREE search performs a specific search for a
key in a balanced tree. This type of search makes
a multi-way branching decision according to the
number of children per node (order). As input, B-
TREE search takes a pointer to the root node and
searches for a key in a sub tree [10].

According to this, a B-TREE of order D can store
up to 2D keys in each of its tree nodes, with a max-
imum of 2D + 1, which corresponds to the maxi-
mum number of children per node. This is true for
all nodes, except the root node, which could have
at least one key, and as a result two pointers [8].
Therefore, the depth d is between a lower (LB) and
an upper bound (UB), which are defined by equa-
tions 3 and 4 [9].

LB = logm (n+1) (3)

UB = 1+ log(m+1
2 )

(
n+1

2

)
(4)

In equations 3 and 4, m = 2D + 1 indicates the total
number of pointers per node in the tree, and n is the
number of keys in the tree. A graphical representa-
tion is shown in Figure 3, and is based on the lower

bound (Equation 3) of a B-TREE with D = 1. It has
three pointers (m = 3) and two keys per node (2D =
2), giving a depth of three (LB = 3) and n = 26 keys.
The depth is very important because is the number
of iterations required to find the sought key.

Applying Equation 4, the upper bound of the
same B-TREE can be obtained. The result is a B-
TREE with four levels. In the same way, a balanced
tree is obtained, which is shown in Figure 4. It is
not complete because it does not use the maximum
number of pointers per node.

The levels vary, due to the handling of balanc-
ing, and how the keys are accommodated into the
nodes. For example, in Figure 2, the maximum
number of pointers per node is used. This is unlike
Figure 4, where the nodes do not use all their keys,
and most of them have only two pointers, which in-
creases the levels of the tree (UB = 4.75).

4 Binary and B-TREE Search Al-
gorithms

The two algorithms explained in the last sec-
tion were programmed using C standard language.
Before the experimental testing, a complexity anal-
ysis of both algorithms was performed, obtaining
their temporal function in the worst case. The algo-
rithms’ programs are shown below (Figure 5, and
6).

Figure 5. Binary search algorithm

The Binary search algorithm presented in Fig-
ure 5 shows the process of checking the feasibil-
ity of the solutions in a general way. First of all,
the function receives some parameters; the first one
contains the array of students or teachers (keys) as-
signed to different events in a timeslot (i, j), which

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO . . .

Figure 3. Lower Bound of a B-TREE order three, complete and balanced

Figure 4. Upper Bound of a B-TREE order three, incomplete and balanced

 niterations 2log  (2) 
B-TREE Search 

 
B-TREE search performs a specific search for a key in a balanced tree. This type of 

search makes a multi-way branching decision according to the number of children per 
node (order). As input, B-TREE search takes a pointer to the root node and searches 
for a key in a subtree [10]. 

According to this, a B-TREE of order D can store up to 2D keys in each of its tree 
nodes, with a maximum of 2D + 1, which corresponds to the maximum number of 
children per node. This is true for all nodes, except the root node, which could have at 
least one key, and as a result two pointers [8]. Therefore, the depth d is between a 
lower (LB) and an upper bound (UB), which are defined by equations 3 and 4 [9]. 
 

 1log  nLB m  (3) 







 








  2

1log1
2

1
nUB m

  
(4) 

 
In equations 3 and 4, m = 2D + 1 indicates the total number of pointers per node in 

the tree, and n is the number of keys in the tree. A graphical representation is shown 
in Figure 3, and is based on the lower bound (Equation 3) of a B-TREE with D = 1. It 
has three pointers (m = 3) and two keys per node (2D = 2), giving a depth of three 
(LB = 3) and n = 26 keys. The depth is very important because is the number of itera-
tions required to find the sought key. 

 

 
Fig. 3. Lower Bound of a B-TREE order three, complete and balanced. 

 
Applying Equation 4, the upper bound of the same B-TREE can be obtained. The 

result is a B-TREE with four levels. In the same way, a balanced tree is obtained, 
which is shown in Figure 4. It is not complete because it does not use the maximum 
number of pointers per node.  

 

 
Fig. 4. Upper Bound of a B-TREE order three, incomplete and balanced. 

The levels vary, due to the handling of balancing, and how the keys are accommodat-
ed into the nodes. For example, in Figure 2, the maximum number of pointers per 
node is used. This is unlike Figure 4, where the nodes do not use all their keys, and 
most of them have only two pointers, which increases the levels of the tree (UB = 
4.75).  

4 Binary and B-TREE Search Algorithms 

The two algorithms explained in the last section were programmed using C standard 
language. Before the experimental testing, a complexity analysis of both algorithms 
was performed, obtaining their temporal function in the worst case. The algorithms’ 
programs are shown below (Figure 5, and 6). 

 

 
Fig. 5. Binary search algorithm  

The Binary search algorithm presented in Figure 5 shows the process of checking the 
feasibility of the solutions in a general way. First of all, the function receives some 
parameters; the first one contains the array of students or teachers (keys) assigned to 
different events in a timeslot (i, j), which have to be carefully checked in each class-
room of the same timeslot (i, j) to avoid overlaps. The second one contains the num-

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



258 Cruz Chvez M. A., Martnez Oropeza A.

have to be carefully checked in each classroom of
the same timeslot (i, j) to avoid overlaps. The
second one contains the number of keys (students
or teachers) in the variable array, and the last one
takes the value of the sought key (desired student or
teacher), which is to be searched into the array.

The body of the function performs an iterative
process, which compares the sought key, continu-
ously halves the search space until the desired key
has been found, and returns the position of the spe-
cific key found. If the key has not been found,
the algorithm returns -1, indicating that the student
does not exist in that list. The following algorithm
is the B-TREE search, which is shown in Figure 6.

Figure 6. B-TREE search algorithm

The function responsible for the search receives
a parameter, which contains the sought key. This
value enters into an iterative process, which per-
forms a search descending through the branches
of the tree, depending whether the desired key is
higher or lower than the root node. If the sought
key is found, the algorithm returns the value of the
key. It returns -1 if the student or teacher has not
been found.

5 Computational Results

Two types of testing were performed to prove
the efficiency and efficacy of both algorithms. First
of all, the range of iterations required to find a
specific student or teacher (sought key) was calcu-
lated theoretically. For B-TREE, equations 3 and
4 were used to obtain the lower and upper bound
corresponding to a search with certain character-
istics, such as number of students or teachers to
be searched. For Binary search, the same condi-
tions were used to calculate the maximum number

of iterations. Secondly, experimental tests were per-
formed, which were executed on the same computer
and used the same instances to be able to directly
compare the obtained results.

5.1 Evaluation of Complexity Theory

The theoretical tests were performed to evalu-
ate the efficiency of both the Binary and B-TREE
search algorithms. In order to be able to make a
comparison between the algorithms, they were exe-
cuted using the same values and features.

The theoretical evaluation of the complexity of
the Binary search algorithm was performed using
Equation 2, which calculates the number of itera-
tions needed to find a sought student in the worst
case. In case of B-TREE search, Equations 3 and
4 were used to calculate the lower bound and the
upper bound, respectively.

In the experimental tests, a set of n students
was used, which corresponds to the number of stu-
dents assigned to a set of events in all classrooms
in a timeslot (i, j) at a time. The values of n were
50, 1000, and 1, 000, 000 students. In the case of
the B-TREE algorithm, the number of iterations to
find a specific student depends on the depth and the
amount of pointers on the tree.

The theoretical tests in the B-TREE algorithm
were performed using three different keys (20,
1000, and 1000000). Based on the iterations, the
lower and upper bounds were calculated for each
number of keys. There is a range of iterations re-
quired to find a specific student when using the B-
TREE algorithm. The obtained results are shown in
Figure 7.

The range shown in Figure 7 for each quantity
of students indicates the possible number of itera-
tions required to find a specific student, which is a
function of the input size. The range could be de-
fined as R = UB – LB, where UB is the maximum
number of iterations, and LB refers to the minimum
number of iteration that can be generated by the B-
TREE search according to Equations 3 and 4. It is
worth mentioning that for any value of n, the value
of R will be large if the number of pointers is small.
Therefore, the value of R decreases and remains al-
most constant as the number of pointers increases.

As was done with the B-TREE search, theoreti-
cal calculations were made with the Binary search.

ber of keys (students or teachers) in the variable array, and the last one takes the value 
of the sought key (desired student or teacher), which is to be searched into the array.  

The body of the function performs an iterative process, which compares the sought 
key, continuously halves the search space until the desired key has been found, and 
returns the position of the specific key found. If the key has not been found, the algo-
rithm returns -1, indicating that the student does not exist in that list. The following 
algorithm is the B-TREE search, which is shown in Figure 6. 

 

 
Fig. 6.   B-TREE search algorithm 

The function responsible for the search receives a parameter, which contains the 
sought key. This value enters into an iterative process, which performs a search de-
scending through the branches of the tree, depending whether the desired key is high-
er or lower than the root node. If the sought key is found, the algorithm returns the 
value of the key. It returns -1 if the student or teacher has not been found. 

5 Computational Results 

Two types of testing were performed to prove the efficiency and efficacy of both 
algorithms. First of all, the range of iterations required to find a specific student or 
teacher (sought key) was calculated theoretically. For B-TREE, equations 3 and 4 
were used to obtain the lower and upper bound corresponding to a search with certain 
characteristics, such as number of students or teachers to be searched. For Binary 
search, the same conditions were used to calculate the maximum number of iterations. 
Secondly, experimental tests were performed, which were executed on the same com-
puter and used the same instances to be able to directly compare the obtained results.  

5.1 Evaluation of Complexity Theory 

The theoretical tests were performed to evaluate the efficiency of both the Binary 
and B-TREE search algorithms. In order to be able to make a comparison between the 
algorithms, they were executed using the same values and features. 

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



259Cruz Chvez M. A., Martnez Oropeza A.

have to be carefully checked in each classroom of
the same timeslot (i, j) to avoid overlaps. The
second one contains the number of keys (students
or teachers) in the variable array, and the last one
takes the value of the sought key (desired student or
teacher), which is to be searched into the array.

The body of the function performs an iterative
process, which compares the sought key, continu-
ously halves the search space until the desired key
has been found, and returns the position of the spe-
cific key found. If the key has not been found,
the algorithm returns -1, indicating that the student
does not exist in that list. The following algorithm
is the B-TREE search, which is shown in Figure 6.

Figure 6. B-TREE search algorithm

The function responsible for the search receives
a parameter, which contains the sought key. This
value enters into an iterative process, which per-
forms a search descending through the branches
of the tree, depending whether the desired key is
higher or lower than the root node. If the sought
key is found, the algorithm returns the value of the
key. It returns -1 if the student or teacher has not
been found.

5 Computational Results

Two types of testing were performed to prove
the efficiency and efficacy of both algorithms. First
of all, the range of iterations required to find a
specific student or teacher (sought key) was calcu-
lated theoretically. For B-TREE, equations 3 and
4 were used to obtain the lower and upper bound
corresponding to a search with certain character-
istics, such as number of students or teachers to
be searched. For Binary search, the same condi-
tions were used to calculate the maximum number

of iterations. Secondly, experimental tests were per-
formed, which were executed on the same computer
and used the same instances to be able to directly
compare the obtained results.

5.1 Evaluation of Complexity Theory

The theoretical tests were performed to evalu-
ate the efficiency of both the Binary and B-TREE
search algorithms. In order to be able to make a
comparison between the algorithms, they were exe-
cuted using the same values and features.

The theoretical evaluation of the complexity of
the Binary search algorithm was performed using
Equation 2, which calculates the number of itera-
tions needed to find a sought student in the worst
case. In case of B-TREE search, Equations 3 and
4 were used to calculate the lower bound and the
upper bound, respectively.

In the experimental tests, a set of n students
was used, which corresponds to the number of stu-
dents assigned to a set of events in all classrooms
in a timeslot (i, j) at a time. The values of n were
50, 1000, and 1, 000, 000 students. In the case of
the B-TREE algorithm, the number of iterations to
find a specific student depends on the depth and the
amount of pointers on the tree.

The theoretical tests in the B-TREE algorithm
were performed using three different keys (20,
1000, and 1000000). Based on the iterations, the
lower and upper bounds were calculated for each
number of keys. There is a range of iterations re-
quired to find a specific student when using the B-
TREE algorithm. The obtained results are shown in
Figure 7.

The range shown in Figure 7 for each quantity
of students indicates the possible number of itera-
tions required to find a specific student, which is a
function of the input size. The range could be de-
fined as R = UB – LB, where UB is the maximum
number of iterations, and LB refers to the minimum
number of iteration that can be generated by the B-
TREE search according to Equations 3 and 4. It is
worth mentioning that for any value of n, the value
of R will be large if the number of pointers is small.
Therefore, the value of R decreases and remains al-
most constant as the number of pointers increases.

As was done with the B-TREE search, theoreti-
cal calculations were made with the Binary search.

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO . . .

Figure 7. Theoretical results of B-TREE search using different values of keys

The number of iterations required to find a sought
student was calculated, using the same number of
students as in B-TREE. The calculations were per-
formed using Equation 2. These results were com-
pared with results obtained from Equations 3 and 4
for a B-TREE with m = 5. The comparison is shown
in Figure 8.

The graph shown in Figure 8 represents a com-
parison between the analyzed algorithms, Binary
search and B-TREE search, with respect to the
number of iterations required to find a desired stu-
dent if the quantity of students varies (Keys). The
results showed that the B-TREE search needs less
iterations than Binary search in all the cases. In
the case of B-TREE (Figure 8), while the number
of students (keys) increases, the number of itera-
tions becomes constant. Binary search, on the other
hand, increases its number of iterations.

According to the results shown in Figure 8, it
can be concluded the B-TREE search is more ef-
ficient than Binary search for 5 ≤ n ≤ 200, due to
the theoretical analysis which demonstrated that B-
TREE needs fewer iterations to find a specific stu-
dent than Binary search, working under the same
conditions (number of students n, and value of m).

Nevertheless, the exact number of iterations re-
quired for the B-TREE search will depend on the
implementation of the algorithm.

5.2 Experimental Results

The experimental tests of both algorithms B-
TREE search (Figure 6), and Binary search (Fig-
ure 5) were performed in a personal computer with
an Intel Xeon processor 3.0 GHz, 2 GB RAM, and
windows XP professional as the operating system.

The compiler used to program both algorithms was
Visual C++ 2008.

The testing problems used during the experi-
mental tests were randomly generated. The sets of n
students evaluated by both algorithms to prove their
efficiency were generated using pseudo-random
numbers ranked in ascending order. Each testing
problem was evaluated using both algorithms (Fig.
5 and Fig. 6). In the case of B-TREE search, the
experimental tests were performed using different
m (m = 3, m = 4, m = 5 and m = 30).

The experimental tests were computed using
several testing problems varying the value of n (stu-
dents), where 5≤ n≤ 1000. Each algorithm was ex-
ecuted until a sought student was found 10,000,000
times, each testing problem was executed 30 times
by each algorithm, and the average was calculated,
which is shown in Figure 9.

The comparison presented in Figure 9 shows the
relationship between the number of students used
and the time required to find a specific student for
both algorithms. Some changes were applied to the
B-TREE algorithm; the variations were the value of
m used in the tree.

According to the experimental results shown in
Figure 9, it can be seen that the efficiency of both
algorithms, taking into account the three versions
of B-TREE search, is similar when n is between 5
and 10 students. After 15 students, the behavior of
B-TREE search (according to the number of itera-
tions), using trees with different m, is not uniform;
it varies depending on the number of students. This
is unlike the behavior shown by the Binary search,
which is a function of the number of students con-
sidered.

The theoretical evaluation of the complexity of the Binary search algorithm was 
performed using Equation 2, which calculates the number of iterations needed to find 
a sought student in the worst case. In case of B-TREE search, Equations 3 and 4 were 
used to calculate the lower bound and the upper bound, respectively. 

In the experimental tests, a set of n students was used, which corresponds to the 
number of students assigned to a set of events in all classrooms in a timeslot (i, j) at a 
time. The values of n were 50, 1000, and 1, 000, 000 students. In the case of the B-
TREE algorithm, the number of iterations to find a specific student depends on the 
depth and the amount of pointers on the tree. 

The theoretical tests in the B-TREE algorithm were performed using three different 
keys (20, 1000, and 1000000). Based on the iterations, the lower and upper bounds 
were calculated for each number of keys. There is a range of iterations required to 
find a specific student when using the B-TREE algorithm. The obtained results are 
shown in Figure 7. 

 

 
Fig. 7. Theoretical results of B-TREE search using different values of keys 

The range shown in Figure 7 for each quantity of students indicates the possible 
number of iterations required to find a specific student, which is a function of the 
input size.  The range could be defined as R = UB – LB, where UB is the maximum 
number of iterations, and LB refers to the minimum number of iteration that can be 
generated by the B-TREE search according to Equations 3 and 4. It is worth mention-
ing that for any value of n, the value of R will be large if the number of pointers is 
small. Therefore, the value of R decreases and remains almost constant as the number 
of pointers increases. 

As was done with the B-TREE search, theoretical calculations were made with the 
Binary search. The number of iterations required to find a sought student was calcu-
lated, using the same number of students as in B-TREE. The calculations were per-

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



260 Cruz Chvez M. A., Martnez Oropeza A.

Figure 8. Comparative graph of theoretical results of B-TREE search vs. Binary search

Figure 9. Experimental results: B-TREE search (applying different orders) vs. Binary search,
5 ≤ key ≤ 50.

Figure 10. Experimental results: B-TREE search (applying different orders) vs. Binary search,
50 ≤ key ≤ 100.

In spite of the theoretical results obtained in section 5.2, where the B-TREE search 
was the most efficient algorithm, the experimental results presented in Figure 9 show 
a different situation. Binary search demonstrated convincingly that it is more efficient 
than any variation of B-TREE search for small ranges; in this case a range of 5 ≤ n ≤ 
50 was used. 

In spite of the theoretical results obtained in section 5.2 that show the B-TREE 
search as the most efficient algorithm, Figure 10 shows a different situation for up to 
75 students. Binary search demonstrated convincingly that it is more efficient than 
any variation of B-TREE search for small ranges, where 50 ≤ n ≤ 75. 

 

 
Fig. 10. Experimental results: B-TREE search (applying different orders) vs. Binary search, 50 
≤ key ≤ 100. 

In Figure 11, the student ranges increase, where 50 ≤ n ≤ 1000. For B-TREE 
search, trees of the order 3, 5, and 30 were used. The obtained results show a different 
situation when compared with Figures 9 and 10. In this case, Binary search is not the 
best algorithm. It can be observed that, unlike for small ranges, for large values of n, 
the m value of the tree used in B-TREE search is important.  

According to Figure 11, B-TREE search is the best option, because it involves less 
computing time than Binary search. It is interesting because according to the results 
for 75 < n ≤ 1000, the best option is B-TREE search using a tree order 5. B-TREE 
with a tree order 30 is a good option too because it is more efficient than Binary 
search. On the contrary, B-TREE with a tree order 3 presents worse behavior than 
Binary search.    
 

formed using Equation 2. These results were compared with results obtained from 
Equations 3 and 4 for a B-TREE with m = 5. The comparison is shown in Figure 8. 

The graph shown in Figure 8 represents a comparison between the analyzed algo-
rithms, Binary search and B-TREE search, with respect to the number of iterations 
required to find a desired student if the quantity of students varies (Keys). The results 
showed that the B-TREE search needs less iterations than Binary search in all the 
cases. In the case of B-TREE (Figure 8), while the number of students (keys) increas-
es, the number of iterations becomes constant. Binary search, on the other hand, in-
creases its number of iterations. 

 

 
Fig. 8. Comparative graph of theoretical results of B-TREE search vs. Binary search.  

According to the results shown in Figure 8, it can be concluded the B-TREE search 
is more efficient than Binary search for 5 ≤ n ≤ 200, due to the theoretical analysis 
which demonstrated that B-TREE needs fewer iterations to find a specific student 
than Binary search, working under the same conditions (number of students n, and 
value of m). 

Nevertheless, the exact number of iterations required for the B-TREE search will 
depend on the implementation of the algorithm. 

5.2 Experimental Results 

The experimental tests of both algorithms B-TREE search (Figure 6), and Binary 
search (Figure 5) were performed in a personal computer with an Intel Xeon proces-
sor 3.0 GHz, 2 GB RAM, and windows XP professional as the operating system. The 
compiler used to program both algorithms was Visual C++ 2008. 

 
The testing problems used during the experimental tests were randomly generated. 

The sets of n students evaluated by both algorithms to prove their efficiency were 
generated using pseudo-random numbers ranked in ascending order. Each testing 
problem was evaluated using both algorithms (Fig. 5 and Fig. 6). In the case of B-
TREE search, the experimental tests were performed using different m (m = 3, m = 4, 
m = 5 and m = 30). 

The experimental tests were computed using several testing problems varying the 
value of n (students), where 5 ≤ n ≤ 1000. Each algorithm was executed until a sought 
student was found 10,000,000 times, each testing problem was executed 30 times by 
each algorithm, and the average was calculated, which is shown in Figure 9.  

The comparison presented in Figure 9 shows the relationship between the number 
of students used and the time required to find a specific student for both algorithms. 
Some changes were applied to the B-TREE algorithm; the variations were the value 
of m used in the tree. 

 

 
Fig. 9. Experimental results: B-TREE search (applying different orders) vs. Binary search, 

5 ≤ key ≤ 50. 
 
According to the experimental results shown in Figure 9, it can be seen that the ef-

ficiency of both algorithms, taking into account the three versions of B-TREE search, 
is similar when n is between 5 and 10 students. After 15 students, the behavior of B-
TREE search (according to the number of iterations), using trees with different m, is 
not uniform; it varies depending on the number of students. This is unlike the behav-
ior shown by the Binary search, which is a function of the number of students consid-
ered. 

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



261Cruz Chvez M. A., Martnez Oropeza A.

Figure 8. Comparative graph of theoretical results of B-TREE search vs. Binary search

Figure 9. Experimental results: B-TREE search (applying different orders) vs. Binary search,
5 ≤ key ≤ 50.

Figure 10. Experimental results: B-TREE search (applying different orders) vs. Binary search,
50 ≤ key ≤ 100.

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO . . .

In spite of the theoretical results obtained in sec-
tion 5.2, where the B-TREE search was the most
efficient algorithm, the experimental results pre-
sented in Figure 9 show a different situation. Binary
search demonstrated convincingly that it is more
efficient than any variation of B-TREE search for
small ranges; in this case a range of 5 ≤ n ≤ 50 was
used.

In spite of the theoretical results obtained in sec-
tion 5.2 that show the B-TREE search as the most
efficient algorithm, Figure 10 shows a different sit-
uation for up to 75 students. Binary search demon-
strated convincingly that it is more efficient than
any variation of B-TREE search for small ranges,
where 50 ≤ n ≤ 75.

In Figure 11, the student ranges increase, where
50 ≤ n ≤ 1000. For B-TREE search, trees of the or-
der 3, 5, and 30 were used. The obtained results
show a different situation when compared with Fig-
ures 9 and 10. In this case, Binary search is not the
best algorithm. It can be observed that, unlike for
small ranges, for large values of n, the m value of
the tree used in B-TREE search is important.

According to Figure 11, B-TREE search is the
best option, because it involves less computing time
than Binary search. It is interesting because accord-
ing to the results for 75 < n ≤ 1000, the best option
is B-TREE search using a tree order 5. B-TREE
with a tree order 30 is a good option too because it
is more efficient than Binary search. On the con-
trary, B-TREE with a tree order 3 presents worse
behavior than Binary search.

Using 5 ≤ key ≤ 50, some experimental tests
were performed with the B-TREE search increas-
ing the order of the tree (m = 8, 9, 10, 18, 19, and
20) to analyze how the order of the tree affects the
efficiency of the algorithm. The results are shown
in Figure 12.

According to Figure 12, we can conclude that
increasing the tree order does not necessarily im-
prove the algorithm efficiency, considering that the
behavior of the algorithm is very similar in the six
cases shown for a specific range of key.

Contrary to their theoretical complexity re-
ported in literature, Binary search demonstrated it-
self to be better than B-TREE search in all cases
on all the tests performed using a small rage of stu-
dents 5 ≤ key ≤ 75. For bigger values of key > 75,

B-TREE search with m = 5, and m = 30, demon-
strated itself to be more efficient than Binary search.

This study proves that B-TREE search is a very
efficient algorithm when it is necessary to manage
a lot of data. Due to this, B-TREE search and its
variants are commonly used in Relational Database
Management Systems to access data quickly [10,
11].

The theoretical complexity is an asymptotic
complexity which is evaluated in the worst case.
The results in Section 5.1 are justified for large val-
ues of n. This is seen in Figure 11, where B-TREE
shows better performance for a value of m ≥ 5. One
of the reasons that the Binary search is more effi-
cient than B-TREE search for small ranges of stu-
dents is the number of instructions that must be
evaluated. B-TREE requires fewer iterations, but
it evaluates more instructions in each one, unlike
Binary search, which performs a greater number of
iterations, but each iteration evaluates fewer instruc-
tions.

6 Conclusion

In conclusion, according to theoretical com-
plexity of B-TREE search and Binary search, the
number of iterations to be evaluated is smaller in B-
TREE search than in Binary search, but the number
of instructions evaluated experimentally in Binary
search is smaller than B-TREE to n ¡ 200.

Theoretically, there are two cases for B-TREE.
The first one generates a complete tree and the sec-
ond one generates an incomplete one. In the second
case, due to its incompleteness, the tree depth tends
to be higher than a complete one. As a result, the
number of iterations required to find a sought stu-
dent increases.

Experimental results showed that Binary search
is more efficient than any version of B-TREE search
evaluated in this research, for less than 200 stu-
dents. However, for more than 200 students, B-
TREE demonstrated itself to be faster. The reason
for this behavior is the number of instructions to be
evaluated. B-TREE requires fewer iterations, but it
evaluates more instructions in each one. This is un-
like Binary search, which performs a greater num-
ber of iterations, but it evaluates fewer instructions
per iteration.

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



262 Cruz Chvez M. A., Martnez Oropeza A.

Figure 11. Experimental results: Comparison between B-TREE search, and Binary search using large
student ranges, 50 ≤ key ≤ 1000.

Figure 12. Experimental results: B-TREE search increasing the order of the tree for 5 ≤ key ≤ 50

quires fewer iterations, but it evaluates more instructions in each one, unlike Binary 
search, which performs a greater number of iterations, but each iteration evaluates 
fewer instructions. 

 

 
Fig. 12. Experimental results: B-TREE search increasing the order of the tree for 5 ≤ key ≤ 50. 

6 Conclusion 

In conclusion, according to theoretical complexity of B-TREE search and Binary 
search, the number of iterations to be evaluated is smaller in B-TREE search than in 
Binary search, but the number of instructions evaluated experimentally in Binary 
search is smaller than B-TREE to n < 200. 

Theoretically, there are two cases for B-TREE. The first one generates a complete 
tree and the second one generates an incomplete one. In the second case, due to its 
incompleteness, the tree depth tends to be higher than a complete one. As a result, the 
number of iterations required to find a sought student increases. 

Experimental results showed that Binary search is more efficient than any version 
of B-TREE search evaluated in this research, for less than 200 students. However, for 
more than 200 students, B-TREE demonstrated itself to be faster. The reason for this 
behavior is the number of instructions to be evaluated. B-TREE requires fewer itera-
tions, but it evaluates more instructions in each one. This is unlike Binary search, 
which performs a greater number of iterations, but it evaluates fewer instructions per 
iteration. 

 
Fig. 11. Experimental results: Comparison between B-TREE search, and Binary search using 
large student ranges, 50 ≤ key ≤ 1000. 

Using 5 ≤ key ≤ 50, some experimental tests were performed with the B-TREE 
search increasing the order of the tree (m = 8, 9, 10, 18, 19, and 20) to analyze how 
the order of the tree affects the efficiency of the algorithm. The results are shown in 
Figure 12. 

According to Figure 12, we can conclude that increasing the tree order does not 
necessarily improve the algorithm efficiency, considering that the behavior of the 
algorithm is very similar in the six cases shown for a specific range of key.  

Contrary to their theoretical complexity reported in literature, Binary search 
demonstrated itself to be better than B-TREE search in all cases on all the tests per-
formed using a small rage of students 5 ≤ key ≤ 75. For bigger values of key > 75, B-
TREE search with m = 5, and m = 30, demonstrated itself to be more efficient than 
Binary search. 

This study proves that B-TREE search is a very efficient algorithm when it is nec-
essary to manage a lot of data. Due to this, B-TREE search and its variants are com-
monly used in Relational Database Management Systems to access data quickly [10, 
11].  

The theoretical complexity is an asymptotic complexity which is evaluated in the 
worst case. The results in Section 5.1 are justified for large values of n. This is seen in 
Figure 11, where B-TREE shows better performance for a value of m > = 5. One of 
the reasons that the Binary search is more efficient than B-TREE search for small 
ranges of students is the number of instructions that must be evaluated. B-TREE re-

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos



263Cruz Chvez M. A., Martnez Oropeza A.

Figure 11. Experimental results: Comparison between B-TREE search, and Binary search using large
student ranges, 50 ≤ key ≤ 1000.

Figure 12. Experimental results: B-TREE search increasing the order of the tree for 5 ≤ key ≤ 50

B-TREE ALGORITHM COMPLEXITY ANALYSIS TO . . .

With the results obtained experimentally, it can
be concluded that in the case of the University
Course Timetabling Problem, the best option is to
implement a combination of a Binary search and a
B-TREE algorithm, because the number of students
is different in each class, ranging from 5 to 300 stu-
dents in a typical case of UCTP. To find overlaps
of students in timeslots when a class has up to 75
students, a Binary search should be used. When a
class has over 75 students, a B-TREE search should
be used. Following these guidelines, testing to en-
sure satisfaction of H1 and H2 type constraints in
UCTP models can be done more efficiently.

References
[1] M.R. Garey, and D.S. Johnson, Computers and

Intractability, A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company,
New York, USA, ISBN 0-7167-1044-7, 1979.

[2] S. Even, A. Itai, and A. Shamir, On the Complex-
ity of Timetable and Multicommodity Flow Prob-
lems, SIAM Journal on Computing, 5(4):691-
703, ISSN 0097-5397, 1976.

[3] C. H. Papadimitriou and K. Steiglitz, Combina-
torial Optimization: Algorithms and Complex-
ity, Dover Publications Inc., U.S.A., ISBN 0-486-
40258-4, p. 496, 1998.

[4] R. Johnsonbaugh, Discrete Mathematics, 6th Edi-
tion, Prentice Hall, U.S.A., ISBN 0-13-117686-2,

ISBN 0-13-117686-2.

[5] B. Paechter, R. C. Ranking, A. Cumming and T.
C. Fogarty, Timetabling the Classes of an En-
tire University with an Evolutionary Algorithm.
Parallel Problem Solving from Nature (PPSN)
V. Lectures Notes in Computer Science 1498,
Springer-Verlag, Berlin, pp. 865-874, 1998.

[6] O. Rossi-Doria, M. Samples, M. Birattari, M.
Chiarandini, M. Dorigo, L. M. Gambardella,
J. Knowles, M. Manfrin, M. Mastrolilli, B.
Paechter, L. Paquete, and T. Sttzle. A Comparison
of the Performance of Different Metaheuristics on
the Timetabling Problem, Lecture Notes in Com-
puter Science, Vol. 2740 pp. 329-351. Springer-
Verlag, Berlin, Germany, 2003.

[7] J. F. Korsh, Data Structures, Algorithms and Pro-
gram Style, ISBN: 0871509369, PWS Computer
Science, USA, p. 499, 1986.

[8] O. Cair, and S. Guardati., Data Structures, ISBN:
9701059085, McGraw-Hill, p. 423, Mxico 2006.

[9] D. F. Stubbs and N. W. Webre, Data Struc-
tures with Abstract Data Types and Pascal, ISBN:
0534092640, Brooks/Cole Pub. Co., p. 471, 1994.

[10] T. H. Cormen, C. E. Leiserson and C. D. Stein, In-
troduction to Algorithms, 2nd Edition. Mit Press,
U.S.A., ISBN 0-262-03293-7, 2001.

[11] T. Cunnolly and C. Begg, Database Systems, A
Practical Approach to Design, Implementation
and Management, Fourth Edition, Addison Wes-
ley, U.S.A., ISBN 0-201-70857-4, 2004.

 - 10.2478/jaiscr-2014-0018
Downloaded from PubFactory at 07/27/2016 12:26:43AM

via Universidad Autonoma del Estado de Morelos


