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Abstract: A one-phase efficient method to solve linear 

programming (LP) problems for grasp analysis of 
robotic hands is proposed. Our method, named as KKT 
Simplex method, processes free variables directly while 
choosing the entering and leaving variables, which 
makes it a one-phase method able to start at any point 
of the set of feasible solutions. Besides, the proposed 
method lowers the number of simplex steps by an 
angular pricing strategy to choose the entering variable. 
Moreover, the method reduces the size of an LP 
problem by the identification of nonbinding constraints 
that preserves the Karush-Kuhn-Tucker (KKT) cone. 
We developed the KKT Simplex method by 
incorporating to the well-known revised simplex method 
the following components: a method to process free 
variables, a pricing strategy, and an identification 
method. We solve LP problems of grasp analysis to test 
the efficiency and the one-phase nature of the 
proposed method.  

Keywords. KKT Simplex method, linear programming, 

grasp analysis, nonbinding constraints.  

Un método simplex KKT para resolver 
eficientemente programas lineales 
para análisis de la sujeción basado 
en la identificación de restricciones 

no atadas 

Resumen: Se propone un método eficiente de una 

fase para resolver problemas de programación lineal 
(LP) para análisis de la sujeción por manos robóticas. 
El método, nombrado como método Simplex KKT, 
procesa variables libres directamente mientras 
selecciona las variables entrante y saliente, lo que lo 
convierte en un método de una fase que es capaz de 

iniciar en cualquier punto del conjunto de soluciones 
factibles. Además, el método disminuye el número de 
pasos simplex por una estrategia angular de costo para 
seleccionar la variable entrante. Aún más importante, el 
método reduce el tamaño del problema LP por 
identificación de restricciones no atadas que preserva 
el cono Karush-Kuhn-Tucker (KKT). Desarrollamos el 
método Simplex KKT por la incorporación al bien 
conocido método simplex revisado de los siguientes 
componentes: un método para procesar variables 
libres, una estrategia de costo, y un método de 
identificación. Resolvemos problemas LP de análisis de 
la sujeción para probar la eficiencia y la naturaleza de 
una fase del método propuesto.  

Palabras clave. Método Simplex KKT, programación 

lineal, análisis de la sujeción, restricciones no atadas.  

1 Introduction  

Linear programming (LP) is perhaps the most 
important and best-studied optimization problem. 
Many real problems can be formulated as linear 
problems [4, 10, 11, 12, 13, 21, 22, 23, 27, 34, 
35]. LP of grasp analysis we will deal with in this 
paper is an example [11, 23]. In this kind of 
problems, the analytic center of the polyhedron of 
feasible solutions is known. Therefore, for real-
time grasp analysis, two important challenges are 
addressed: to solve an LP problem by starting at 
an interior point and to solve it in a computational 
time as small as possible. Ding [11] reported 238 
milliseconds to solve an LP problem with 400 
constraints using the simplex method, and Roa 
and Suárez [32] reported about 687 milliseconds 
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to solve the grasp analysis which involves 32 
constraints by a geometrical approach.  

The problem of starting at an interior point has 
been solved by simplex methods using two 
strategies: (i) two simplex phases [3, 24, 28] and 
(ii) the transformation of free variables into 
nonnegative variables [4]. The first strategy has 
the disadvantage of solving two LP problems. The 
second increases the original size of the LP 
problem. The criss-cross method is worth to 
mention here because it is also a one-phase 
simplex method that can start at any, not 
necessarily infeasible, basis solution [13, 14, 18, 
20, 36, 37, 45]. This method is useless if the 
starting point is an interior point of the polyhedron. 

The problem of efficiency has been addressed 
by reducing the number of simplex steps. One 
approach consists in bringing the initial solution 
closer to the optimal solution [1, 3, 9, 16, 19, 40]. 
An outstanding instance of this approach is the 
work of Andersen et al. [3], which combines an 
interior-point method and two simplex phases to 
solve LP problems in standard form. The second 
approach simplifies a given LP problem by 
suppressing superfluous constraints [7, 15, 21, 
29, 30, 38, 39]. A drawback of these works is that 
they are computationally expensive.  

The main purposes of this paper are (i) to 
design a one-phase simplex method by dealing 
with free variables directly while choosing the 
entering and leaving variables, (ii) to reduce the 
size of a given LP problem by means of a method 
of identification of nonbinding constraints that 
preserves the Karush-Kuhn-Tucker (KKT) cone, 
and (iii) to lower the number of simplex steps by a 
pricing strategy based on angular measures to 
choose the entering variable.  

The paper is organized as follows: in Section 2 
we state the problem to be solved, in Section 3 
we develop the KKT Simplex method, in Section 4 
the performance of the proposed method is 
tested, in Section 5 conclusions are presented.  

2 Problem Statement 

The notation described below will be used in this 
paper. There may be some alterations where 
appropriated. Upper-case letters will be used to 
represent matrices. Vectors are regarded as 

column vectors and will be denoted by boldface 
characters. Lower indexes           denote the 

different components of the vector  . The 

superscript   denotes transpose operation.  
- 

 

denotes the inverse of a matrix  . The identity 
matrix is denoted by I,       is the Euclidian norm 

of a vector  .  

2.1 Linear Programming Problem for Grasp 
Analysis  

The LP problem with free variables to deal with in 
this paper is stated as follows:  

        
 

      

                   

                         

                            

(1) 

where     - ,      ,      ,      ,       , 

      ,                  ,          -   
        is a 

slack variable,         is the linear objective 

function,     
     with           

   -       , 

           are linear constraints functions, and 

the gradient of the  -   constraint function is the 

constant vector           . We will assume 

         and         for convenience.  

The free optimization variable   is feasible for 
(1) if              . The polyhedron of feasible 

solutions of the primal problem, denoted by  , is 
defined as:  

  {         }. (2) 

For LP problem (1) we will consider the 
following assumptions:  

1. The polyhedron   is full-dimensional. 

2. The polyhedron   is bounded towards the 
optimization direction. 

3. The number of constraints   is greater than 

the number   of optimization variables.  

4. The origin of the  
 
 space is at the analytic 

center of  , which implies the optimization 

variables are free and                 .  

5.            .  
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Assumptions 3 and 4 are critical for LP 
problems of grasp analysis. In a more general 
problem, where assumption 4 is not satisfied, the 
analytic center of   should be computed from an 

interior or exterior point of   by maximizing the 

logarithmic barrier function      ∑        
 
    in the 

way shown in [43]. In grasp analysis, however, 
    and the analytic center is given as part of 
the LP problem [11, 23]. Notice that problem (1) is 
neither in standard nor in canonical form, but it is 
adequate for treating the free variables directly 
avoiding their conversion to nonnegative 
variables. 

The dictionary for (1) can be written as 

                

    
         

          
(3) 

where    is a vector of non-basic variables 
             ,    is a vector of basic variables 

             ,               is the non-basic     

matrix,               is the basic     matrix, 

and      
  

- 
. The pair         with      is 

called a basic feasible solution (BFS). In any BFS 
               are in general real numbers in case 

the optimization variables are free. However, the 
slack variables must remain nonnegative. If all 
components of    are slack variables, the BFS is 

a vertex of the polyhedron  . It may happen in 
dealing with free variables that all or some 
components of    are optimization variables; in 
such a case     BFS is not a vertex, it is just a 
feasible point.  

2.2 Test Problem 

In order to illustrate the methodology that will be 
presented in this paper, we will refer to the 
following test LP problem:  

        
 

                         [
  
  

] 

                       

           -          +    = 0.7707  
           -          +    = 1.3858  
           +          +    = 1.5148  
           +          +    = 2.7004  
           +          +    = 3.4183  
           +          +    = 2.5059 (4) 
           +          +    = 1.7007  
           +          +    = 1.2121  
           -          +    = 1.3960  
           -          +     = 1.9045  
           -          +     = 2.1082  

-                   , 

                          . 

The polyhedron   of the test problem is shown 
in Fig. 1. Constraints from 1 to 11 are shown as 

lines. An initial vertex    and the optimal vertices 

   are also shown in the figure. The gradient   of 
the objective function, the gradients of constraints 
                  and a cone   

 
 delimited by    

and     are also shown there. The entities 

 
 
   

 
   

  
   

  
, Q, and      will be described in the 

next section.  

The following definitions classify sets of 
constraints that will be used in this paper.  

Definition 1. Let   be the set of constraints in a 
given LP problem. For the test problem we have 
                           .  

Definition 2. Let the set of binding constraints, 

denoted by      
 

, be the set of constraints whose 

slack variables are zero at the optimal vertex   : 
     

 
             .      

 
        for the 

test problem.  

 

Fig. 1. Orthogonal projection of gradients 

               onto    
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Definition 3. Let the Karush-Kuhn-Tucker cone 

(KKT cone), denoted by   
, be the set of points 

determined by a positive linear combination of 
gradients         of constraints        

 
:  

  
 {     |   ∑     

 

       
 

         (5) 

In Fig. 1 we have the KKT cone: 

  
 {     |                        , which is 

characterized by constraints in      
 

       . The 
definition (5) of the KKT cone is derived from the 
concept of the Karush-Kuhn-Tucker optimality 
conditions presented in [4].   

3 The KKT Simplex Method 

In this section we propose a method, which we 
name as the KKT Simplex method, to efficiently 
solve LP problems for grasp analysis. As it will be 
shown here, this method will be the result of the 
incorporation of three different methods into the 
revised simplex method (RSM) [8]: (i) a method of 
identification of nonbinding constraints, (ii) a 
method to processes free variables directly while 
choosing the entering and leaving variables, and 
(iii) an angular pricing strategy to choose the 
entering variable. 

3.1 Method of Identification of Nonbinding 
Constraints 

Computing the solution of a LP problem in the  
 
 

space can be reduced to find a set of     linearly 
independent hyperplanes such that their 
intersection point is feasible and optimal [6]. The 
corresponding     constraints are binding 
constraints, which are known after an optimal 
solution has been computed. The rest of 
constraints are superfluous. Constraints can be 
superfluous in two ways: nonbinding constraints 
which, although they delimit the polyhedron of 
feasible solutions, are over fulfilled at the optimal 
solution, and redundant constraints which do not 
delimit the polyhedron [38].  

Since nonbinding constraints can be identified 
after a problem has been solved, a question that 
arises is whether there is a way to force them to 
be manifested as nonbinding before the optimal 

solution is reached. In this subsection, we show 
that the nonbinding condition may be identified by 
means of angular information of constraints 
before the simplex algorithm starts. In formulating 
a LP problem for grasp analysis of robotic hands 
[11, 23], there appear a lot of nonbinding 
constraints at the optimal solution. Many of these 
constraints may be suppressed, then the 
dimension of the problem could be decreased and 
the computational effort reduced.  

Given the set   of constraints of a LP 
problem, we will identify a set of candidates of 
binding constraints of reduced cardinality by using 
angular measures of them with respect to 
the objective.  

3.1.1 Angular Coordinates  

Let  
 
 be a one-dimensional coordinate on the real 

axis   corresponding to the orthogonal projection 

of     onto  . Fig. 1 shows  
 
, j=1, 2, 10, 11. Based 

on this definition, the following theorem is 
obtained easily.  

Theorem 1. The coordinate  
 
 of the orthogonal 

projection of       
 onto   is  

 
 
    

           . (6) 

Proof: Since   is spanned by  , the orthogonal 
projector onto   is the following     idempotent 
and symmetric matrix [31]:  

      
   

- 
  . (7) 

Therefore, the orthogonal projection of    onto 

the axis   can be computed as follows:  

         
   

  
       (8) 

After some algebraic manipulation we have:  

        
    . (9) 

From (9) the result (6) follows.  

The coordinate  
 
 will be named as angular 

coordinate because it is an angular measure of 
the gradient    of the constraint     with respect 

to the gradient   of the objective function. Since 

         and        ,  
 
 has the property: 
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           -      where    is the angle between    

and  . 

3.1.2 Improvement Cone 

Taking advantage of angular coordinates, we will 
introduce the concept of improvement cone, 

denoted as     . The improvement cone is 

referred to a hyperplane in  
 
 orthogonal to the 

axis  , illustrated as the line   in the  
 
 space in 

figure 1, and specified by vectors   that improve 
the value of the objective function:  

         
 
       . (10) 

As it can be seen from  
 
 given in (6),    

belongs to      if its angular coordinates  
 
  . 

That is, a constraint     such that        , or 

equivalently  
 
  , is a candidate constraint to 

determine the optimal solution.  

Notice that      may be specialized to the 

finite set of vectors        . Even better, instead 

of grouping vectors, we may group constraints 
    using the criterion  

 
   to isolate a set of 

candidates of binding constraints. The following 
partition of the set   into a set    of candidates 

of binding constraints and    of candidates of 

superfluous constraints 

         
 
     

         
 
    

(11) 

may be a good selection if      
 

      &  

     
 

   . However, for the test problem with 

     
 

       , we have:  
 
 -     and  

  
      . 

Since constraint 1 belongs to      
 

, the fact  
 
   

excludes constraint 1 from the set   .  Therefore, 

the criterion  
 
   that leads to the partition (11) is 

not useful to identify      
 

 as a subset of   . In 

other words, the improvement cone      does not 

always contain the KKT cone   
. 

3.1.3 Identification of Nonbinding Constraints 

The KKT cone   
 is not always a subset of the 

improvement cone     . Equivalently, the set 

     
 

 is not always a subset of   . If we could find 

a set    that satisfies      
 
   , we would 

immediately identify    as a set of superfluous 

constraints.  

Since constraints        
 

 correspond to    

whose hyperplane delimit the KKT cone   
, we 

name the property      
 

    as the KKT binding 

condition and specify it as follows:   

     
 

      &       
 

    (12) 

Notice that (12) is satisfied when     . 

However, a set    of reduced cardinality is 

preferred. Therefore, for our purpose      is 

the worst case while         
 

 is the best case.  

Let us consider the angular coordinate  
 
   

that excludes constraint 1 from the set: 
         

 
  

  
  for a threshold coordinate 

 
  

  . From the axis   located at the right side 

of figure 2 below we have:  

                    

              . 
(13) 

Since      
 

         and  
 
  , we find that 

    , that is,      
 

   . However, to make 

     
 

     all we have to do is to move  
  
   to a 

negative value.  

Since  
 
 -    , we may propose  

  
 -   .  

Proposition 1: From the foregoing discussion, a 
method of identification of nonbinding constraints 

is proposed which consists in partitioning   into 

the set    of candidates of binding constraints 

and    of candidates of superfluous constraints:  

         
 
   

  
   

         
 
   

  
   

(14) 

where the threshold coordinate  
  

 must be 

chosen such that    and    satisfy the KKT 

binding condition. If so,    may be discarded and 

   recast as  . At this point, the identification of 

nonbinding constraints ends and the KKT Simplex 
method starts solving the given LP problem by 

processing the reduced set  .   

3.1.4 Tuning Threshold Coordinate  

As an illustration for proposing the adequate 

threshold coordinate  
  
     -   we will identify    
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in three test problems with:  
  
 -           -   . 

The graphs of figures 3, 4, and 5 show constraints 
in the dashed areas that belong to   , whose 

coordinates satisfy  
 
  

  
.  

Since      
 

        , the coordinates above 

the line  
  
 -    belong now to    and the rest 

to   :                     ,              . 

A second test problem is obtained from the 
first one by changing the sign of the given 
gradient of the objective function: 

                 
 
. Since the set of binding 

constraints for this problem is      
 

       , we 
may propose  

  
      as it is shown in figure 4. 

In this case we have:         
 

.  

A third test problem has   [-      -      ]
 
 

and the set of constraints adapted from [19]:  

           +          +    = 0.5918  

           +          +    = 0.9044  

           +          +    = 2.8037  

          +          +    = 4.0949 (15) 

          +          +    = 0.4082  

          +          +    = 5.4082  

           -          +    = 1.1613  

Since the set of binding constraints for this 
problem is      

 
       , we ought to propose 

 
  
 -    as it is shown in figure 5.  

The test problem with positive threshold 
coordinate  

  
      of figure 4 exhibits the best 

reduction of         
 

       . In contrast, the test 

problem with the negative threshold coordinate 

 
  
 -    of figure 5 exhibits the worst reduction 

                 because  
  

 is near to the case: 

 
  
 - . Since  

  
 -    works for the best and a 

worst case, it may be used as a conservative 
value for a general LP problem. 

3.2 Entering Variable Selection  

As it will be shown in this subsection, the direct 
processing of free optimization variables modifies 
the way the entering and leaving variables are 
chosen. The new methods to determine these 
variables will endow the one-phase property to 
the KKT Simplex method.  

While moving from a vertex to an adjacent 
vertex, the free variables             are 
distributed among the components of the vectors 
of non-basic variables    and basic variables   . 

 

Fig. 2. Distribution of angular coordinates 

 

Fig. 3. Identification of    with   
  
 -    

 

Fig. 4. A positive threshold coordinate  
  
      

 

Fig. 5. A negative threshold coordinate  
  
 -    
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Recall that an entering variable is chosen from    

and the leaving variable from   . Here we will 
deal with the selection of an entering variable 
which consists of two steps. The first step 
determines a set of non-basic variables that are 
candidates to enter the basis. The second step 
chooses just one entering variable. 

3.2.1 Set of Candidates of Entering Variables 

Let us consider the equation for the objective 
function in terms of non-basic variables:  

    
  

- 
     

 -       . (16) 

The criterion to select a candidate to be an 
entering variable is to choose one entry     of    
whose cost coefficient increases the value of the 
objective function. In order to refer to non-basic, 
optimization, and slacks variables, we will use 
sets of their indices, denoted by   ,   , and    
respectively, which are defined as follows:  

            , 
          , 

            

 

(17) 

A non-basic variable           may be an 

optimization variable          or a slack variable 

        . Since    is free,     maybe positive or 

negative. In other words, the current zero value of 
    may change to a negative or positive value:   

         , (18) 

where the number     will be computed in 
subsection 3.3. Let us search (18) for its effect on 
the objective function. Replacing     into (16) the 
objective function is updated as follows:  

        
          (19) 

where    is the k-th column of the non-basic 
matrix  . Since     and due to the presence of 

the double sign  , the value of the objective 
function may be increased by the positive or 

negative signs of the cost coefficient     
 -     .  

Let us consider         
 -       which may be 

increased if we can find a positive coefficient:  

    
                  (20) 

If such a  -   coefficient exists, we record our 

finding by the sign indicator  
 
  , otherwise  

 
   

as it is shown in the second and third rows of 
table 1 below. Since           has been 

considered,     may be an optimization variable    
or a slack variable    as it is shown in the first 

column of table 1 below.  

Now let us consider    -    
 -       which is a 

consequence of taking        - . This negative 

value means that     must be just an optimization 

variable   , since a slack variable cannot be 
negative. The fact     is an optimization variable 

may be detected by its lower bound     -  as it is 
shown in the second column of table 1 below.  

Therefore,    -    
 -       may be increased by 

finding a negative  -   coefficient:  

    
 -              &     -  . (21) 

If such a coefficient exists, we record our 

finding by the sign indicator  
-
  , otherwise  

-
   

as it is shown in the fourth row of table 1 below. 
The table 1 summarizes the way the sign of the 

 -   cost coefficient     
 -      determines the 

index   of an entering variable     that increases 
the value of the objective function.  

Table 1. Selection of an entering variable 

        
The  -   

coefficient 

Indices of     

 
 
          

-
 

     (   
      )   k   

      (   
      )   k   

      (   
      )   0 k 

In a LP problem with nonnegative variables, 
the detection of positive coefficients is enough. 
With free variables, however, it is critical to detect 
the negative coefficients because these may also 
improve the value of the objective function.  

Based on the foregoing analysis, the following 
proposition is stated. 

Proposition 2: The non-basic variables 

          that are candidates to enter the basis 

are identified in two sets    and  -, which are 
determined from table 1:  

               
 -       }, 

 -             
 -        &     - }. 

(22) 
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3.2.2 Angular Pricing Strategy 

In this subsection we propose a pricing strategy 
based on angular coordinates for the KKT 
Simplex method to choose one entering variable 

from the sets    and  - defined in (22).  

Some pricing strategies have been suggested 
[10, 17, 44]. One of the most widely used is the 
D      ’             w                  v           

an element of the set      - which corresponds 
to the maximum cost coefficient among those that 
improve the value of the objective function. The 
basic idea of a pricing strategy based on an 
angular criterion has been developed for LP 
problems with nonnegative variables [44].  

Here, we develop a pricing strategy in the 
context of free variables, which we name as 
angular pricing strategy. The strategy will use the 

angular coordinates  
 
       introduced in 

subsection 3.1.1 and angular coordinates of the 
Cartesian axis which will be introduced in 
this subsection.  

Assume that the origin      of the  
 
 space is 

at the analytic center of the polyhedron  . The 

KKT Simplex method should start at   , migrate to 

a feasible vertex    on the boundary of the 

polyhedron  , and proceed until the optimal 

vertex    is reached. Therefore, the non-basic 

vector    contains n optimization variables 

         at   , n-1 optimization variables at       

and zero optimization variables at   . However, 

   contains just slack variables          from    to 

  . Since the angular coordinate  
 
 is defined for 

each constraint     , it must be associated to a 

vertex from    to   .  

Let us consider          
 
   

  
  that contains 

the set of binding constraints      
 

. Since 

 
 
            -     , the fact  

 
    when      , for 

some   chosen from  , means the  -   constraint 

may determine the optimal vertex    when  
 
   . 

That is, coordinates with the property  
 
    may 

be used to choose an entering variable that better 
improve the value of the objective function at 

vertices from    to   .  

For the migration from    to    there is not yet 
any angular measure. We propose the direction 
cosines of the gradient   of the objective function 

as an angular measure of each Cartesian axis of 
         with respect to  . Let us name this 
angular measure as Cartesian angular 
coordinate, denoted as  

 
  and defined as the 

absolute value of the direction cosines of  :  

 
 
            . (23) 

Notice that  
 
        . The usefulness of  

 
  

relays on the fact that   is directed toward a 

region of   where the optimal vertex    is located. 

That is, coordinates with the property  
 
     may 

be used to choose an entering variable that better 
improve the value of the objective function. Since 
    ,   

  may be used just when    is a member of 

the non-basic vector   . That is,  
 
  may be used 

during the migration from    to   .  

As it is stated in proposition 2,    
  is a 

candidate to enter the basis if         - . Notice 
that for each candidate    

  there must be an 

angular Cartesian coordinate  
 
        or an 

angular coordinate  
 
      . Since both angular 

coordinates will be used to choose one entering 

variable, they must be associated to    and  - 
as follows:  

If             we may group  
 
  in the set: 

   
    

 
                (24) 

If         -  we may group  
 
  in the set:  

   
-
   

 
            -  . (25) 

If            we may group  
 
 in the set:  

  
    

 
            . (26) 

Since  
 
    and  

 
     means that the best 

improvement of the value of the objective function 
may be obtained, we propose the following 
strategy to choose the entering variable.  

Proposition 3: For        -  use  
 
  to determine 

the entering variable indicated by  
 
 or  

-
:  

 
 
        

 
         

  , 

 
-
    -   

 

-
        

-
 , 

if  
 
    

 

-
,  

-
   otherwise  

 
  . 
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For         use  
 
 to determine the entering 

variable indicated by  
 
:  

  
 
        

 
        

  . 

Based on proposition 3, we propose the 
angular pricing strategy presented in Algorithm 1 

to determine the entering variable    , whose 

      “ ”     
 
 or  

-
. The strategy is implemented 

in two parts for an iteration of the KKT Simplex 
method. The first part, named the Cartesian 
pricing strategy, chooses one entering variable at 

each feasible solution from    to   -  using  
 
 . 

The second part, named the constraint pricing 
strategy, chooses one entering variable at each 

basic feasible solution from    to    using  
 
. 

3.3 Leaving Variable Selection  

Assume that the entering variable     has been 
selected. Then the current zero value of     may 

change to a negative or positive value:          . 

The positive number     will be computed here.  

Let us consider the system of equations given 
in the dictionary (3) at a simplex iteration    :  

    
- 
 - 

- 
    . (27) 

When the new value           is substituted 

in k-th element of   , the vector of basic variables 

   is updated as follows: 

         
      (28) 

To preserve its feasibility,    should let one of 
its components     become zero, which is called 
the leaving variable. In this way, the entering 

variable           becomes nonzero and one 

leaving variable     becomes zero.  

The number   must be chosen such that    

given in (28) and the entering variable           
remain feasible, that is:  

                , 

        - 
        . 

(29) 

Since      ,     - ,       , and    , the 
first inequality in (30) does not impose any bound 

to  . Let us define    
- 
            

 
 and 

express the second inequality of (29) for each 
element of   :  

                              (30) 

Let us substitute in (30):        and  

    {
                          v           

                               v            
 (31) 

Then, we get from (30) two inequalities which 
depend on the nature of basic variable     or, 

more precisely, on the values of its lower 
bound    :  

    (       )                           

   (       )                           
 (32) 

Algorithm 1. The angular pricing strategy at an 

iteration “ ” 

Reset the indexes of the entering variable:  

  
 
  ,   

 
    

PART I: The Cartesian pricing strategy:        -  

                            v        “ ” (use  
 
 ):  

     ,  -   ,    
    ,    

-
   ,  

 
   ,  

 

-
    

for k=1 to n construct:   ,    
 ,  -, and    

-
:  

if       

if     
 -         

            

   
    

     
 
    

if     
 -        &     -   

 -  -       

   
-
   

-    
 
    

if    
   ,  

 
        

 
         

   

if    
-
  ,  

-
    -   

 

-
        

-
  

if  
 
    

 

-
,  

-
   otherwise  

 
    

if  
 
  ,         

 
   

if  
-
  ,         

-    

PART II: The constraint pricing strategy:         

if t                       v        “ ” (use  
 
):  

     ,   
    ,   

 
     

for k=1 to n construct:    and   
 :  

if      

if     
 -         

            

  
    

     
 
   

if   
   ,  

 
        

 
        

  

END of the algorithm 1. 
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If the non-basic variable is increased 
         , the basic variable is changed to 

(       ) and the first inequality of (32) derives 

in the result:  

 
 
     

   

  
                                   (33) 

Since the value of the objective function must 
increase with   by means of          , we have 

to choose  
 
 as large as constraint (33) allows:  

 
 
  

   

  
                      

 
  . (34) 

The formula (34) is valid when: (i)      , and 

(ii) the non-basic variable is increased          , 

which is detected by  
 
  .  

Now, if the non-basic variable is decreased: 
         , the basic variable is changed to 

(       ) and again the first inequality of (32) 

derives now in the result:  

 
 
   

   

  
                                     (35) 

Since the value of the objective function 

increases with   by means of        - , we have 

to choose  
 
 as small as constraint (35) allows:  

 
 
 -

   

  
                     

-
  . (36) 

The formula (36) is valid when: (i)      , and 

(ii) the non-basic variable is decreased        - , 

which is detected by  
-
  .  

The second inequality in (32) derives simply 
into the following constraint:  

 
 
  -     |,         ,     -   (37) 

Condition (37) means that  
 
 is a real number. 

However, it is valid just when:       , which is 

detected by     - .  

For a non-degenerated LP problem, numbers 
 
 
   are computed by formulas (34) or (36), which 

are characterized by the condition      . The rest 

numbers must be zero; as it is implied by 
constraint (37); these zero valued numbers are 

identified by the condition     - :  

 
 
  ,                   -  (38) 

Summarizing formulas (34), (36) and (38) that 
compute the numbers  

 
         , we have:  

 
 
 

{
 
 

 
 
   

  
                         

 
   

 
   

  
                        

 
   

          

 (39) 

Let us name  
 
          given in (39) as 

simplex coordinates because they are delivered 
by the KKT Simplex method in the context of free 
variables. Let us notice that for each constraint 
          there is just one number  

 
.  

Let us remark that the set { 
 
         } are 

calculated at the current vertex    at each iteration 
“ ”        KKT Simplex method. Also, as it is 
shown in [8, 26] the strictly positive coordinate, 
denoted as  

 
, specified by:  

 
 
    

 
   

 
  
 
    (40) 

defines the adjacent vertex      at which the 
value of the objective function is improved. 
Therefore, the leaving variable     corresponds to 

 
 
. Then the desired value for     in           

should be  
 
. 

3.4 The KKT Simplex method  

The KKT Simplex method is presented in 
Algorithm 2. Steps 1 to 5 were transcribed from 
the RSM as it is presented in [8] and adapted to 
solve LP problems for grasp analysis. The 
identification of nonbinding constraints is 
incorporated in step 0 as a pre-solution procedure 
[7, 39]. The entering variable     is chosen in step 
2 by the angular pricing strategy of table 2. In step 

4 the leaving variable     is selected. Step 5 
updates the dictionary. Steps 1 and 3 are the 
same as that of the RSM in [8]. The input data 
may be obtained from (1) and (3). 

3.5 Discussion of the KKT Simplex Method 

The one-phase property of the KKT simplex 
method is derived from the direct processing of 
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the free variables. We distinguish three different 
classes of starting points:  

(i) Points in the interior of  , 

(ii) Points on a face of  , 

(iii) Vertices on the boundary of    

Therefore, the KKT simplex method generates 

in general a sequence of feasible points:   ,   , 

           in just one simplex phase. If the 

starting point is a vertex of   the sequence begins 

at   . If the starting point is   , the first vertex    
is reached in exactly n simplex steps. As a 
consequence, the KKT simplex method is able to 

start at any point on the polyhedron  . Therefore, 
the KKT Simplex method is suitable to be 
combined with an interior-point method for solving 
LP problems [2, 3, 42].  

The efficiency of the KKT simplex method is 
due to: (i) the reduction of the size of the LP 
problem and (ii) the reduction of the number of 
simplex steps by means of the angular pricing 
strategy. However, the method bears the same 
complexity as the usual simplex method. That is, 
the number of simplex steps taken to solve a LP 
problem is bounded [2] by 

     (
   

 
) 

      

     
   (41) 

However, this bound changes as a result of the 
reduction of the size of the LP problem from m to 
0.6m, as it will be shown graphically in section 4. 

4 Numerical Experiments 

In this section we test the performance of the KKT 
Simplex method with respect to the RSM [8] in 
solving LP problems for grasp analysis. These LP 
problems are discussed in Appendix A. A single 
problem with 400 constraints and a sequence of 
probl                                 w       
solved using the same threshold coordinate 

 
  
 -    . The starting point is the analytic center 

of  .  

In particular, we will test the efficiency and the 
one-phase nature of the KKT Simplex method.   

 
 
    

            
             

 
 
 {

   

  
         

            

 

 
 
 {

    

  
         

              

 

Algorithm 2. The KKT Simplex method 

Step 0. Identify the set of candidates of binding 

constraints   :  

Propose the threshold coordinate:  
  
 -     just for 

LP of grasp analysis. 
Compute the angular coordinates:  

Partition the set   of constraints:  

         
 
  

  
 ,          

 
   

  
  

Recast    as   and proceed. 

An iteration "t" of the KKT Simplex method: 

Step 1. Solve the system       
 .   

Step 2. Choose an entering variable     by means of the 

angular pricing strategy of table 2. If there is no such 

entering variable   
 
   and  

-
   , then the current 

solution is optimal.  

Step 3. Solve the system      ,            
 
.  

Step 4. Find the living variable    :   

Compute the simplex coordinates  
 
          

       If  
 
        -

  : 

       If  
 
   and  

-
  :  

Find  
 
              .  

If there is no such  
 
, the problem is unbounded; 

otherwise, at least one component     of    -    equals 

zero if  
 
  , or         equals zero if  

 
  , and the 

associated variable     is leaving the basis.  

Step 5. Set the value of the entering variable     equals 

to   
 
 if  

 
  , or to - 

 
 if  

-
  . Replace    by    - 

 
   if 

 
 
  , or by          if  

-
  . Replace the leaving column 

   of the basic matrix   by the entering column   , and 

replace the leaving variable     by the entering 

variable    . 

END of the algorithm 2. 
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4.1 Reduction of the Problem Size  

Fig. 6 shows the graph of reduced sizes      vs. 

the initial size   of the sequence of LP problems 
solved by the KKT Simplex method with respect 
to the RSM. A slope of 0.6 is exhibited in the 
graph for the reduced sizes     . That is, a 
reduction of 40% of the size of each of these 
problems was reached.  

Fig. 7 shows the ratio 

  
       

    
 (42) 

of the reduced bound         to the original 

bound      for problem                    .   

From figure 7 we can see that a size reduction 
from m to 0.6m causes a bound reduction from 
C(m) to about C(0.6m)=0.05C(m) for      .   

4.2 Reduction of the Number of Simplex Steps 

The two graphs in figure 8 show the reduction of 
the number of simplex steps due to the angular 
pricing strategy implemented in the KKT Simplex 
method in solving a LP problem of 400 
constraints.  

The optimal solution is reached in 35 steps 
when the angular pricing strategy is implemented, 
w                        w        D      ’       
is used. 

4.3 Computation Time of the Problem 

A single problem: The time in milliseconds 

       of the KKT Simplex method is compared 

with        of the RSM spent per step in solving 
a LP problem of 400 constraints, as it is shown in 
figure 9. The identification of nonbinding 
constraints takes           milliseconds as part of 

the above methods. That is,       is on the order 
of     .  

Therefore, the KKT Simplex method is about 

    times faster than the RSM in this experiment.    

In 2001 Ding [11] reported 238 milliseconds for 
solving the same LP problem of 400 constraints 
by means of a Simplex method; in 2009 Roa and 
Suárez [32] reported about 687 milliseconds to 

solve the grasp analysis which involves 32 
constraints by means of a convex hull based 
method; the KKT Simplex method solves a LP 

problem of 400 constraints in           
milliseconds. Since these results were obtained 
on different machines and/or methods, we just 
may say that the KKT Simplex method solves a 
LP problem of grasp analysis in a reasonable 
computational time. We must point out that there 
is not still a benchmark on grasp analysis for 
execution time comparison.  

A sequence of problems: Figures 10 and 11 
below show the solution time spent by the KKT 
Simplex method and the IBM ILOG CPLEX 

 

Fig. 6. Reduced sizes of a sequence of problems 

 

Fig. 7. Bound ratio   

 

Fig. 8. Reduction of number of simplex steps 
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optimization software respectively in solving a 
sequence of LP problems.  

Graph ① of Fig. 10 shows the time spent by 

the RSM in solving a sequence of LP problems of 
                                          with 

no size reduction (using  
  
 - ). While graph ② 

shows the time spent by the KKT Simplex method 
in solving the same sequence but in the free 
variable form sated in (1) with size reduction 

(using  
  
 -    ). We can see that the KKT 

Simplex method is about 4.5 times faster than the 
RSM in solving each of these problems.  

In a grasp analysis situation, the user may 
choose the precision of the grasp linearization 
and the corresponding solution time    by 
changing the problem size m. A reasonable 
precision is obtained with m=400 [11].  

Fig. 11 shows the time spent by the IBM ILOG 
CPLEX optimization software in solving a 
sequence of LP problems of dimensions m=25, 
       400.  

From Fig. 11 we can see that the reduced LP 

problem (using  
  
 -    ) with free variables ② 

is solved about 2 times faster than the non-

reduced LP problem (using  
  
 - ) in standard 

form ①. Comparing the graphs of figures 10 and 

11 we see that the CPLEX software is completely 
faster than our Matlab implementation. We neither 
optimized the programming code nor performed 
any numerical improvement. Even though the 
great difference in time response, both 

implementations show that the solution ② of the 

reduced LP problem is better than that of ①. 

4.4 Combination of a Primal-Dual Interior-
Point Method and the KKT Simplex Method 

The one-phase nature of the KKT Simplex 
method is shown in Fig. 12 by means of its 
combination with a primal-dual interior-point 
method (PD-IPM) [2, 3, 42]. The figure shows the 
times      13 milliseconds and      2 
milliseconds spent per step by the PD-IPM and 
KKT Simplex method respectively in solving a LP 
problem of 400 constraints. The LP problem in 
standard form and the PD-IPM are briefly 
described in appendix B.  

 

Fig. 9. Time   per step 

 

Fig. 10. Solution time spent per LP problem of size “ ” 
by the KKT Simplex method 

 

Fig. 11. Solution time spent per LP problem of size “ ” 

by the IBM ILOG CPLEX optimization software 

 

Fig. 12. Time spent per step 
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The PD-IPM brings the starting point, denoted 
as     , of the KKT Simplex method close to the 

optimal vertex    in 40 steps as it is shown in the 
graph of figure 12. Then in just 6 more steps the 

KKT Simplex method reaches    in just one 
simplex phase:  

                                            
    

                                   -       . 
(43) 

Since      is close enough to   : 

‖  -    ‖   - 
, the first vertex found on the 

polyhedron   is   . The first vertex is reached in 
“ ”                                         
analysis). The tested combination is not efficient 
because the PD-IPM solved a LP problem in 
standard form. However, the KKT Simplex 
method maintains its efficiency. 

5 Conclusions 

In this paper, we have proposed a one-phase 
method, named as KKT Simplex method, which 
efficiently solves linear programming problems for 
grasp analysis of robotic hands. The proposed 
method possesses the three following properties: 
(i) The one-phase nature by dealing with free 
variables directly while choosing the entering and 
leaving variables, which enables the method to 
start at any point of the polyhedron of feasible 
solutions, (ii) the reduction of the problem size by 
the identification of nonbinding constraints as a 
pre-solution procedure which is based on an 
angular measure and preserves the KKT cone, 
and (iii) the reduction of the number of simplex 
steps by means of an angular pricing strategy.  

The one-phase property of the KKT simplex 
method is derived from the direct processing of 
the optimization free variables. The efficiency of 
the KKT Simplex method derives from: (i) the 
suppression of nonbinding constraints, and (ii) the 
reduction of the number of simplex steps by 
means of the angular pricing strategy.  

Numerical experiments on LP problems for 
grasp analysis show a reduction of 40% of the 
problem size by the identification of nonbinding 
constraints. Although a high size reduction is 
achieved, the computational cost of the 
identification is negligible: on the order of the time 

for one simplex step, at least when solving a LP 
problem of 400 constraints.  

The fact that the KKT Simplex method can 
start at any point of the polyhedron and reach the 
first vertex on the polyhedron of feasible solutions 
   “ ”                                                  
makes the KKT Simplex method suitable to be 
combined with an interior-point method as it was 
shown in the experiments. Since the PD-IPM is a 
polynomial-time method in solving LP problems 
[2, 43] and that the KKT Simplex method reaches 
the optimal solution in a reduced number of steps 
when it starts at the solution delivered by the PD-
IPM, we suggest, as a future work, to search the 
proposed combination for a polynomial-time 
property [3].  

Although the method of identification of 
nonbinding constraints works in LP problems for 
grasp analysis, the method is subjected to the 
tuning of the threshold coordinate  

  
 for a 

general LP problem. However,  
  
 -    is 

suggested as a conservative value.   

Appendix A.  
LP Problem for Grasp Analysis 

In grasp and manipulation planning, the two most 
important classes of grasp are known as form- 
closure and force-closure grasps [5, 25, 41]. In 
this paper, grasp analysis refers to the decision 
whether a grasp is force-closure or not.  

Many works have been reported to solve grasp 
analysis, among them are: [11, 23, 25, 32, 33, 
35, 41]. Liu [23] and Ding [11] proposed a new LP 
formulation of the grasp analysis based on the 
duality between convex hull and convex 
polytopes. Roa and Suárez [32, 33] presented a 
geometrical approach to compute force-closure 
grasp with or without friction.  

We will focus on the LP problem introduced by 
Liu [23] and Ding [11]. The details of the LP 
formulation may be found in these works.   

Assume a polyhedral rigid object is grasped 
with 4 fingers in a 3D workspace. Each finger is in 
a point to point frictional contact with the object 
with the same frictional coefficient       . The 

grasping position    and normal    vectors, with 
respect to the center of mass of the object, are 
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the same as that used in [11]:           
 
, 

            
 
,           

 
,         -    

 
, 

          
 
,           

 
,           

 
,       -    

 
. 

At each contact points, the friction cone is 
linearized by a polyhedral convex cone with   
sides. Therefore, the number of constraints of the 

resultant LP problem is     . 

Appendix B. PD-IPM 

By applying to (1) the following transformation [4]  

     - -       -   , (B.1) 

we get the LP problem in the standard form: 

        
 

    

                             ,    , 
(B.2) 

where the parameters and variables have been 
recast as follows:  

   [   -    ]        
, 

     -      
        

, 

       -   
 
  

      
, 

                                
 
. 

(B.3) 

The parameters and variables in the right hand 
side of (B.3) correspond to the LP problem (1) 
with free variables, while those in the left hand 
side correspond to the standard form (B.2), which 
will be used just in this appendix.  

The first order optimality conditions to (B.2) are  

[

    

 
 
     

      

]    (B.4) 

where the first equality enforces primal feasibility, 

the second enforces dual feasibility,    
 

 are 

Lagrange multipliers,    
      

 are dual slacks 

variables,          
 
  

      
,             , and 

        is proposed. Assuming     and    , then 
by a Taylor approximation of (B.4) to the first 
order, we obtain [2, 42]  

[
   

  
 

 

   

] [

  
  

  

] - [

  - 

 
 
   - 

  -   

] , (B.5) 

where  

       v   v         (B.6) 

                      

    -  , 

      
 
     

              

The PD-IPM of the Algorithm A.1 computes a 
feasible solution      to the LP problem in the 

standard form (B.2) with parameters       given 
in the left hand side of (B.3). We choose 

(        )               as the initial point, the 

parameter    0.00007 to terminate the algorithm, 

       , and      . 

     
    

 
 
  
       

 
     

Algorithm A.1. The PD-IPM adapted from [2, 42] 

Step 1. Choose            such that        ,     , and 

    . Let k = 0. 

Step 2. Let   
   -   -  ,   

   - 
 
  -  , and 

       
 
         .  

Step 3. If     
 
     , then terminate.  

Step 4. Pick         and compute the increments 

          :  

    
- 
 , 

     
 - 

 
  ,  

where      
 
 
- 
 
 
 
 
 and        

 
 
- (    

 -    ).  

Step 5. Compute the step size:                 for 

some        , where:             
     D

    , 

  
         -  

            ,  D
         -v 

   v   v    .  

Step 6. Update:  

[
    

    

    
] [

  

  

  
]  [

  
  
  

] . 

Step 7. Let k = k+1 and return to step 2. 

Step 8. Recover the optimal solution to the original LP 

problem:                 
 
-           

 
 from: 

                                 
 
. 

END of the algorithm A.1. 
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