Polish J. of Environ. Stud. Vol. 17, No. 4C (2008), 240-245

General Methodology for Converting
Sequential Evolutionary Algorithms into
Parallel Algorithms with OpenMP as Applied
to Combinatorial Optimization Problems

O. Diaz-Parra, M. A. Cruz-Chavez

CIICAp, Universidad Auténoma del Estado de Morelos
Cuemnavaca, Morelos, México

Abstract

This paper presents a general methodology for the conversion of sequential evolutionary algorithms into
parallel evolutionary algorithms using OpenMP, independent of the problem being approached. Because of
the diversity of existing problems and the variation between each one, it is difficult to find a standard or a

method to make problems parallel. Analyses that are specific to problems being approached exist, but there

is not a general methodology. This article shows its methodology by applying it to a combinatorial optimiza-

tion problem of Vehicle Routing with time windows, using an evolutionary heuristic with intelligent muta-

tion and k-means clustering as a solution method. This paper shows the analysis of the sequential algorithm
and the task assignment to each processor in the parallel algorithm. The justification of the elements used for
the conversion of sequential and parallel versions is also shown.

Keywords: sequential algorithm, parallel algorithm, genetic algorithm, Vehicle Routing Problem with

time windows.

Introduction

Heuristics can be effectively used to approach solu-
tions of combinatorial problems, but because the compu-
tation times can be very long, parallel computation has
arisen as an alternative in order to decrease the time spent
searching for solutions [1].

The process of decomposition of a sequential algo- .

rithm to a parallel algorithm implies the data parallel-
ism and the functional or control parallelism. The first,
data parallelism, is when several processors are as-
signed data items and each processor conducts the same
operation concurrently on its data. In other words, it
executes SIMD (Simple Instruction Multiple Data),
which utilizes the same sequence of instructions on dif-
ferent data items. The second, functional or control

parallelism, involves applying different operations si-
multaneously on different data items, which are execut-
ed on MIMD machines (Multiple Instruction Multiple
Data). In order to make a process parallel, it is neces-
sary to take into account its granularity (number of se-
quential instructions that the process includes). When it
is a process with many instructions, it is considered
coarse-grained, when it is a process with a smaller
number of sequential instructions, it is considered fine-
grained.

There are different ways to design a parallel algorithm.
In this paper, a sequential genetic algorithm is converted
into a parallel genetic algorithm, exploiting the parts that
are able to be parallelized [2]. The initial sequential evolu-
tionary algorithm is a genetic algorithm that yields a solu-
tion to the Vehicle Routing Problem with Time Windows

General Methodology for Converting...

241

 PROBLEM
g [soioTieN
1 ‘wmeTHoD
é’@ﬁ ALGORITHM [z ?AR»&LLEL me&mm%%
: . : e el | %
4 el COMBUIER &
FUN‘C".F?ONS MAF-’ " jv;EMODﬁim_'_:{f};? PARA,LLEL
R, pe e
'ZONE IDENTIFICATION « s
S gesieNoE

L oo
. MECHANISM

Fig. 1. Algorithm Conversion Methodology.

(VRPTW). It 1s necessary to take inte account that the
genetic algorithm is a heuristic algorithm and so it is dif-
ficult to parallelize [3]. Cantu-Paz [4] classify parallel ge-
netic algorithms into three categories: a) global paralleli-
zation, which consists of carrying out iterations of the
search method with the primary intention of reducing the
run time of the method, not obtaining greater exploration
of solutions, b} coarse-grained, and c) fine- grained. The
last two classifications are defined according to the popu-
lation size.

The steps suggested by Corona and Moreno [5] to par-
allelize a genetic algorithm are: to identify the components
in which a significant computational gain can be obtained
(for example: evaluation of the neighboring solutions in
the landscape); to make a hierarchic scheme with coopera-
tive techniques searching multithreads to improve the
time, solution quality, computational efficiency, and the
robustness of the search; to define the control functions of
the processes to parallelize. In section two, this paper
show the general methodology for the conversion of a se-
quential genetic algorithm to a parallel genetic algorithm.
The methodology applied is the one proposed by the au-
thors of this paper. In section three the general methodol-
ogy for conversion is applied to the GA-VRPTW sequen-
tial genetic algorithm. Section four includes the
conclusions drawn.

4
R

st

PROCESS T
DISTRIBUTION

DEPLOYMENT OF
THE ALGORITHM

General Methodology for the Conversion

Work has been done on parallel algorithms for differ-
ent types of problems in order to diminish the run time
on the solution search, as mentioned in section one of
this work. Nevertheless, because of the diversity of exist-
ing problems and the variation between each one, it is
difficult to find a standard or a method to parallelize
problems. Only specific analyses for the specific prob-
lem being approached exist, but there is not a general
method. This paper proposes a general methodology for
the conversion of a sequential algorithm into a parallel
algorithm, independent of the problem being approached.
For most problems there is: a model (implied definition
of the problem, restrictions, and variables), a solution
method (depending on the problem) and a type of algo-
rithm that better solves it (deterministic, nondeterminis-
tic). For combinatorial optimization problems, for exam-
ple, the objective is to find a solution to difficult
problems to solve, by applying nondeterministic algo-
rithms that approximate as closely as possible the opti-
mal solution and require a considerable amount compu-
tational time. This activity implies the analysis of the run
times of the proposed algorithm. Depending on the input
instance, it is possible to determine whether it is comput-
able or non-computable. Figure 1, shows the proposed

242

Diaz-Parra O., Cruz-Chdvez M. A

Task GERNETIC

| Task NEXT GENERATION

: LRl e ALGORITHN ;
Task MAIN() POPULATION : AR N
] B e | i NEXT.GENERATION()
 cREATION: R T
: . INSTANCE- P O BERECTION: READ-LIST()
£ . : TE { § THEBEST{() i B
Task REaD- : = S.—— i
ANGE = : . CALCULATE-
fNSTA)NCi’:-{} i :i _ QESTANGEE%TU L

SERTLST)

i | | PRINT-SGLUTION

SORT-LIST(

;2

Task DISTANCES- -
MODES

RUTATION-S(; :

i
i
i

VERIFIER-DATA{)

-
L i
AT UM
£ | R Q\\ GEN=207 ‘//
Rt o
=

Fig. 2. Decomposition of the sequential genctic algorithm for the problem VRPTW into main tasks.

conversion methodology which consists of three main
blocks: the identification of the problem, the solution
technique and the algorithm.

Step 1. The problem block refers to the type of the
problem to be solved.

Step 2. The solution block refers to the analysis of the
construction of the solution based on the type of problem
that is being analyzed.

Step 3. The algorithm block shows three options: first,
starting with a sequential algorithm and constructing its
equivalent parallel; second, starting with a parallel algo-
rithm and finding a solution; third, improving an existing
parallel algorithm.

Step 4. The sequential solution algorithm is analyzed
and a functions map is constructed to show clearly the in-
teraction of data between functions within the sequential
algorithm and to identify dependent versus independent
functions implied in the algorithm. By running the se-
quential algorithm, run times for each of the functions are
assigned (dependent or independent).

Step 5. The zone identification is completed by detect-
ing the functions with longer run timie.

Step 6. Once the analysis of the sequential algorithm
is finished, the computer architecture which will paral-
lelize is examined. According to the Flynn [6] taxonomy,

there are two main branches: a) the computers based on
number of processors and number of programs that are
executed and b) the computers based on the structure of
the memory. The first branch is classified in four types:
SISD (Simple Instruction Simple Data), SIMD (Simple
Instruction Multiple Data), MISD (Multiple Instruction
Simple Data), MIMD (Multiple Instruction Multiple
Data). The second branch is classified in two types,
shared memory and distributed memory. Shared memory
has two types of access: uniform access to memory,
which involves identical processors SMP (Symmetric
Multi Processing) and non uniform access, which in-
volves different access to memory for each processor. In
distributed memory, each single processor has access to
its own memory and the communication between proces-
sors is by passing messages MPI (Message Passing Inter-
face).

Step 7. The model of parallel programming to be used
is chosen. There are basically five models: shared memo-
ry, threads, MPI, data parallelization and hybrid paralleli-
zation. The choice is made depending on the equipment
that will be used.

Step 8. The algorithm is designed, taking into account
the main cycles that will conform it. It is important to
mention that when starting with a sequential algorithm
with polynomual complexity, the search with the parallel

General Methodology for Converting...

243

algorithm will be of inferior complexity, for example loga-
rithmic.

Step 9. Mechanisms of memory access control are es-
tablished in cases of shared memory. The control or syn-
chronization mechanisms commonly used in literature are
the semaphores, critical sections or passage of messages

Step 10. The load distribution is realized for each proc-
ess in processors or in threads, depending on the case.

Step 11. The algorithm is constructed using parallel
programming languages.

Applied Conversion Methodology to
Sequential Genetic Algorithm GA-VRPTW

Here the previously described methodology for a se-

quential genetic algorithm is applied to the Vehicle Rout-
ing Problem with Time Windows (VRPTW).

Step 1. The VRPTW is chosen as a combinatorial op-
timization problem.

Step 2. The solution method is Heuristic and evolu-
{lonary.

Step 3. The goal is to begin with a sequential algo-
rithm and construct its equivalent parallel algorithm. The
conversion is from a sequential algorithm to a parallel al-
gorithm, so it is necessary Lo separate it into processes.
Figure 2 shows the decomposition of the sequential algo-
rithm in its respective main tasks. The purpose is to visual-
ize the communication between data within the algorithm
and establish the run time for each task, to see which of the
tasks require greater run time which in turn affects the ef-
ficiency of the algorithm in general.

: ! E [NITIAL POPULATIONO GENETIC-ALGORITHMO NEXT GENERATION
3
1 = A : G A =
e S o ; g g = L -
EEeB) = £ 2 e e
R - - - : - - it B
£ i sEaN Ll L o v e e
il = = Py E B B K e
mip Al Nl sl R & : ‘R T Aoald oG
i N N St : 5 = e = e 2 u | e T A
i G = = 5] 5 s = : L
2 i 1 = ol i B __:_F'(-. A i s i 2 B E B
g pite Harliifiod. goilg 0 D e} o T | LB g
gt A v T e M 5 ; g - SN o 3
0 ! N 1 = i L : ¢ : ® S ah S
;]m e A e ol T ; S - R -5 é‘
slaps g L r wlos H Yoape ooobon Tl
£ | Pl = 0 B £ > o A T A i
0ls = a Ty o O B 0 o | i N o
| 0 0 2 - g ‘ - 2 g N
sl i - 5 (N =
i -8 i - : g 5. 0
i e & i e
Q phay = L
i - L T
: e Y i
- | |
de - i
ey ! !

%ui.ﬂmm___m“m,.; :

IR

4
4

! ’ Lo i
s e Sy |
1 i I a = ;
St e |
i | i ke 3 | == s
!] -
i saiaptimig . 1M, et v poinbe
i % } [| | o i t i |
1+ F

T TOTAL TIHE OF THE ALGORITHM = SUM OF FUNCTIONS TIMES

Fig. 3. Map of functions of the sequential genetic algorithm for VRPTW.

244 Diaz-Parra O., Cruz-Chdvez M. A.

P

{ MASTER

L Process
_‘ /‘J
e

MASTER THREAD
k3

e T e
e . /" B T .

o N 3 f{ . ;
g 4 \ (Process))
G e / roces
S \(Process| \ l\ /
{ ikPchess;\\ ~
s\ x_\\ / — - : o~ : L > : e i 1 W \\

ON THREL}

.

x /

™

g

_MEMORY

CONTROL OF ACCESS TO MEMORY

END PARALLEL

MASTER THREAD
. 8

;/," “w\\
{ MASTER
2“ Frocess ;

Fig. 4. Design and process load distribution of the sequential genetic algorithm for VRPTW .

Step 4. After detecting the tasks that consume greater
run times, the map of functions is made, which is shown
in Figure 3.

Step 5. The zone identification consists of analyz-
ing the processes of the tasks that require more time to
carry out. Those processes are candidates for paralleli-
zation or are the identified zones. For example, this can
be seen in the mutation function that is presented in
Figure 3.

Step 6. The architecture of the computer is an IBM
Series 690 Parallel Supercomputer.

IBM p690 with 32 processors, 1.3GHz, and 32GB
RAM. This equipment supports directives based on shared
memory as in Open MultiProcessing (OpenMP) and direc-
tives based on distributed memory or Message Passing
Interface (MPI).

Step 7. According to the structure of the equipment,
the programming model can be hybrid. That means that
some blocks of the algorithm work with shared memory
and other blocks work with distributed memory.

Step 8. The design of the parallel algorithm and its

process load distribution will depend much on the style of
the programmer and the environment of programming
used. Different options of parallel programming exist, us-
ing a specialized programming language, using an exist-
ing sequential programming language with adapted con-
structors to establish parallelism, or using an existing
sequential programming language and library of proce-
dures to parallelize. Some parallel programming languag-
es are: OpenMP, HPF (High Performance Fortran), jade,
and Parallel APL., among others.

Step 9. Because the programming model can be hybrid
when it works with shared memory, it is necessary to es-
tablish control mechanisms for the access to memory, ac-
cording to the style of the programmer by means of sema-
phore, critical section or passage of messages. In this case,
the work was done with critical sections using the thread
model combined with the passage of messages.

Step 10. The process load distribution can be-done by
functional decomposition or data decomposition. In this
case processes with threads were used, so the distribution
was by data decomposition (Fig. 4).

General Methodology for Converting. ..

245

Sor(i=00<individuals;i+=2)

¥
&

: for{erossrutes Lorossrare=50000cross rare 4)
£ : :
: Ri =14rand(Wlnodesize-1);
R2- I+rand(j%olnodesize-1);
Loperossthi
cross=Verifier-restrictions():
s
Hlerosy=0)
[Crossover():}
3
o

Fig. 5. The code in Open MP.

Step 11. The construction of the algorithm is done tak-
ing into consideration all the previous steps. The follow-
ing is a fragment of the code in OpenMP (Fig. 5).

Conclusions

One of the reasons for using parallelism for most of the
authors who have worked with combinatorial problems is
to optimize the time it takes the algorithm to find a solu-
tion. The time for a parallel algorithm does not depend on
the number of processors used, but on the granularity of
each process. The proposed methodology in this paperis a
guide for parallelizing algorithms. Its purpose is to pro-
vide an auxiliary tool in the process of conversion or con-
struction of parallel algorithms. This methodology, ap-
plied to the sequential genetic algorithm, generated
information on how to design the parallel genetic algo-
rithm. Future work will show the experimental results of
the parallel genetic algorithm.

References

GILL S S., Parallel programming. The computer jour-
nal,1: 2-10, 1958.

SEYED H., Parallel processing and parallel algorithm.
Theory and computation. Roosta, editor. Springer-
Verlag, 1999.

CRAINIC T. G.,, TOULOUSE M., Parallel strategies
for metaheuristics, volume Handbook of metaheuris-
tics, pp 475-513. Kluwer academic publisher, 2003.
CANTU-PAZ E_, A summary of parallel genetic algo-
rithms. Calculateurs Parallels Reseaux et Systemes
Repartis, 10:141-170, 1998.

CRUZ CORONA C., MORENO J. M., Estrategias
cooperativas paralelas en la solucién de problemas de
optimizacion, Revista Iberoamericana de Inteligencia
Artificial, ISSN 1137-3601, No. 34, Granada, Espana,
pp- 129-143, 2007.

FLYNN M. J., RUDD K. W., Parallel architectures.
ACM computing surveys, 28(1): 67-70, 1996.

