
O. Gervasi and M. Gavrilova (Eds.): ICCSA 2007, LNCS 4707, Part III, pp. 697–709, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Local Search Algorithm for a SAT Representation of
Scheduling Problems

Marco Antonio Cruz-Chávez1 and Rafael Rivera-López2

1 CIICAp, Autonomous University of Morelos State
Av. Universidad 1001, Chamilpa, 62209, Cuernavaca, Morelos, México

mcruz@uaem.mx
2 Technological Institute of Veracruz

Miguel Ángel de Quevedo 2779, Formando Hogar, 91860 Veracruz, Veracruz, México
rrivera@itver.edu.mx

Abstract. This paper presents the application of a local search algorithm for a
logical representation of the Job Shop Scheduling Problem (JSSP). This logical
representation represents the JSSP transformed as a satisfiability problem
(SAT). The proposed algorithm uses a local search in a wide neighborhood.
This algorithm, called Walk Wide Search - SAT, is a variant of the WalkSAT
algorithm. This search is possible because the included tabu list prevents an ex-
cessive number of repetitions of movements during the search process. This pa-
per describes the algorithm and compares results of Walk Wide Search - SAT to
WalkSAT.

Keywords: Job shop, satisfiability, SAT formula, disjunctive graph, Reduced
SAT Codification of JSSP.

1 Introduction

The complexity theory groups computational problems according to the inherent dif-
ficulty of solving them. This classification is used to classify decision problems [1],
which require a yes/no answer in order to obtain their solution. The best-known prob-
lem in this classification is the satisfiability problem, which is classified as NP-
complete. The objective of the satisfiability problem is to confirm or deny the
existence of an assignment of truth-values for the literals of a logic formula (SAT for-
mula) which make the formula true. A SAT formula is usually written in its conjunc-
tive normal form (CNF) that has the following three features: (1) a conjunction C of
clauses Ci, i.e. C = C1 ∧ C2,…, ∧ Cn, (2) each clause Ci is a disjunction of literals
Xiv….vXk, (3) each literal Xj is a Boolean variable (negated or not).

Some decision problems could be defined like discrete optimization problems. An
instance of a discrete optimization problem is defined by the function RFc →: ,
where F is the finite set of solutions that defines the problem instance, R is the set of
discrete values that define each solution in F, and c is the objective function. In an in-
stance of a discrete optimization problem, it is necessary to find the solution Ff ∈

for which () () Fyycfc ∈∀≤ , .

698 M.A. Cruz-Chávez and R. Rivera-López

The Job Shop Scheduling Problem (JSSP) [2] is one of the most difficult problems
within the NP-complete classification [1]. As a discrete optimization problem, it is an
NP-hard practical problem [3] found in the area of manufacturing. For these two rea-
sons, JSSP is a problem of great interest to the scientific community.

The JSSP is frequently treated as a discrete optimization problem; in this paper, the
JSSP is treated as a decision problem based on its representation in the form of a sat-
isfiability problem, in order to work with a proposed local search algorithm. By work-
ing in this way, the proposed local search algorithm looks for the satisfiability of a
SAT formula that represents JSSP. The satisfiability of the SAT formula provides a
feasible schedule of the JSSP. With this schedule, the proposed local search algorithm
for the satisfiability problem could be applied in the search for solutions in a discrete
optimization problem, as JSSP is generally treated.

Various methods have been proposed for manipulate the JSSP using several mod-
els. Two of the most commonly used models are disjunctive graphs [4] and integer
programming [5]. The methods used with these models can be divided into two
groups, local search methods and optimization methods.

Local search methods are iterative procedures that allow movement from one solu-
tion in F to another. These methods search for a local optimum in the solutions space
of the problem through the use of a neighborhood function, which is defined as fol-
lows: Given a feasible point Ff ∈ in an instance of a problem, a neighborhood of f

is defined as a set N(f) of feasible points near f. The set N(f) called the neighborhood f,
indicates that each solution ()fNf ∈' can be reached directly from f in one step. In

accordance with this the neighborhood is defined by the function N: F → 2F. Some of
the most well-known local search methods are Hill-climbing, Steepest-descent, Itera-
tive improvement, GSAT and WalkSAT.

Optimization methods try to find the best solution evaluating the objective function
of the problem in order to find their maximum or minimum value. Generally, optimi-
zation methods use local search methods within their procedure. The methods based
on Branch and Bound [6], Simulated Annealing [7], Genetic Algorithms (GA) [8] and
Shifting Bottleneck [9], [10] are optimization methods, which try to determine the
best solution according to definite criteria of the objective function. At the moment
the line has been taken of working with hybrid algorithms, which combine in their
procedure global and local searches. El-Mihoub et al. [11] and Shannon [12], present
a revision of hybrid algorithms that combine the power of the GA and the local
search. In this revision, it is affirmed that a GA could quickly locate the region which
contains the global optimum, but it takes a relatively long time to locate the local op-
timum in the region of convergence. The combination of the GA and a local search
method could accelerate the search in order to locate the global optimum. All of these
works demonstrate that a GA combined with local search improves greatly their effi-
ciency in a wide variety of problems. This type of GA combined with local search
methods is known as the Memetic Algorithm [13].

Because optimization methods incorporate the use of local search methods into
their procedures, local search methods that provide feasible solutions in an efficient
manner can be very useful in providing a good starting point for the optimization
methods [14].

Most of the methods used to find solutions to the satisfiability problem [15], [16],
[17] are local search methods. This paper presents an algorithm of local search called

 A Local Search Algorithm for a SAT Representation of Scheduling Problems 699

Walk Wide Search - SAT (WWS-SAT) for SAT problems, which can be applied to
the JSSP encoded as satisfiability (SAT) using a codification format called reduced
SAT [18]. The algorithm proceeds first to generate a propositional formula in con-
junctive normal form called this SAT formula that represents the JSSP. Next, the al-
gorithm looks for an assignment of truth-values for the variables in the SAT formula
which satisfy the formula. If the satisfiability of the SAT formula is obtained, it im-
plies that the result is a feasible schedule of the problem. In general, all the possible
assignments of truth-values that satisfy a SAT formula form the set of feasible sched-
ules of a JSSP instance. The paper presents experimental results of WWS-SAT which
present it like a local search method very efficient and that one could apply as the
base on the optimization methods in order to make them more efficient.

This paper is organized in five sections. Section one is the introduction. Section
two describes the model of the disjunctive graph of JSSP. Section three presents the
process of SAT codification for JSSP [18], which is explained briefly. Section four
presents the proposed algorithm and an example of the assignment of truth-values to a
SAT formula derived for an instance of JSSP. Section five presents the experimental
results. Section six presents the conclusions and future work.

2 The Disjunctive Graph Model

The disjunctive graph model represents JSSP as a disjunctive graph G [4], [5], which
is a 3-tuple where G = (N, E, A). N is the set of operations which includes two ficti-
tious operations, the start and the end of the JSSP. These operations are represented in
the nodes of G. E and A are two sets, edges and arcs (disjunctive and conjunctive) re-
spectively. The set of edges (resource capacity constraints) is formed of subsets of
these edges, each one of these subsets represents a machine Mi, E = {M1, M2, M3, ..,
Mm}. The set of arcs (precedence constraints) is formed of subsets of these arcs, each
one of these subsets represents a job, Ji, A = {J1, J2, J3, .., Jn}.

Figure 1 represents the JSSP of two jobs and two machines (2x2). The problem has
four operations, numbered 1 to 4, which are represented by the nodes of the graph.
The start and the end operations are I and * respectively. The processing time of each
operation is noted beside the corresponding node. Job 1 consists of operations 1 and
2, while job 2 consists of operations 3 and 4. P1 and P2 are the precedence constraints
and they connect each pair of operations that belong to the same job. P1 means that in
job 1, operation 2 cannot begin before operation 1 finishes. Likewise, P2 prohibits the
starting of job 4 until job 3 is finished. Machine M1 executes the operations 1 and 4,
while machine M2 executes operations 2 and 3. R1 and R2 are the resource capacity
constraints and they connect each pair of operations that are executed by the same
machine. R1 means that for M1, operation 1 can be executed before 4 or 4 can be exe-
cuted before 1, but the two operations cannot be simultaneously executed. Similarly,
R2 means that M2 can carry out operations 2 and 3 in any order, but not simultane-
ously. In order to find a feasible schedule for this model, it is necessary to find the di-
rection of each edge R, such that the formed schedule does not contain cycles.

700 M.A. Cruz-Chávez and R. Rivera-López

3 Reduced SAT Codification

The reduced SAT codification of JSSP [18] is a SAT formula that contains a smaller
number of clauses than other proposed SAT encodings for problems of scheduling
[16], [17].

Fig. 1. JSSP of 2x2 represented by a disjunctive

Each clause in the reduced SAT codification is formed using only the restrictions
of R and not involving the restrictions of P (Figure 1) due to the use of the latest start-
ing time (LST) as the start time s of each operation [18]. The restrictions R, are de-
fined as si + pi ≤ sj ∨ sj + pj ≤ si [5] for a pair of operations i, j, where s and p are the
start time and processing time of the operation. The obtained clauses can be seen in
Table 1; they are the result of mapping the resource capacity constraints as a set of
variables that take values only of true or false. For each R, two clauses are obtained.
In Table 1, it is shown that for each set of variables sak,t where k represents any opera-
tion, the operation k begins at or after the time t. In addition, saj,t+pi means that the
operation j begins at or after the time t+pi. Pri,j means that the operation i precedes j if
the truth-value that it possesses is true. If however the truth-value is false then j pre-
cedes i.

Table 1. Set of clauses that compose the SAT formula

Clauses of R CNF Interpretation
sai,t pri,j saj,t+pi ~sai,t ~pri,j saj,t+pi If i Starts at or after t and j follows i then j cannot

start until i is finished.
saj,t prj,i sai,t+pj ~saj,t ~prj,i sai,t+pj If j Starts at or after t and i follows j then i cannot

start until j is finished

In order to find a feasible schedule for JSSP, it is only necessary to find a truth as-
signment that satisfy the SAT formula which is formed by the set of clauses defined
in Table 1. In order to be able to evaluate the set of variables sak and saj,t+pi, it is nec-
essary to know the start time t of each operation. These times are calculated using the
digraph that is obtained from the disjunctive graph that represents the JSSP. The di-
graph represents a sequence of execution of operations, which is generated with the
truth-values of the set of variables Pri,j assigned in random form. The time t (LST) of
each operation i is equal to the critical path (longest path) [18] generated in the

 A Local Search Algorithm for a SAT Representation of Scheduling Problems 701

digraph between the operation i and the operation initial I. When there is an assign-
ment of truth-values that satisfy the SAT formula, a feasible schedule is obtained as a
result.

4 The Local Search Algorithm

An algorithm of local search always requires the assignment of truth-values to the
variables that compose the SAT formula, which is formed by the clauses in Table 1.
In order to reduce the solution space where the search will be carried out, a set of con-
trol variables is designated. By designating a set of control variables, it is possible to
determine the truth-values of the remaining variables. The variables used as control
variables are the variables pri,j (Table 1), because a finite number of sequences of
pairs of operations in a problem exists. In contrast, by using the variables sa as the
control variables, the situation becomes more complicated because the variables sa
involve start times, of which there are an infinite number for each operation. By des-
ignating the variables pri,j as control variables, and assigning truth-values to these
variables, the formation of a sequence of the execution of operations in the problem
results. With the defined sequence, a digraph of the disjunctive graph is generated
which allows the LST for each operation to be calculated. Because the LST is calcu-
lated in this way, the first variable (sai,t) in each clause will always be true and its ne-
gation false (~sai,t). The previous observation leaves the SAT formula as a formula
2SAT, that is, a formula where each clause contains only two variables (~pri,j ∨
saj,t+pi). The LST and the number of clauses are obtained by simplifying the digraph.
The simplification involves using only the Hamilton routes [19] that are generated for
each machine. The calculation of the LST is then one of linear order [10], [19] and the
number of clauses decreases because the number of edges R is decreased.

One could see that the local search algorithm proposed in this paper is an hybrid
algorithm because it requires of an assignment of truth-values to the control variables
(pri,j) and also LST must be calculated in order to be able to evaluate the remaining
variables (saj,t+pi) of the SAT formula, this last is not common in algorithms for satis-
fiability. After obtaining the complete assignment of truth-values for the SAT for-
mula, the satisfiability of the SAT formula is evaluated in a following step.

4.1 Example of Assignment of Truth-Values to the SAT Formula

Next is the presentation of an example of the assignment of truth-values to the vari-
ables of control in the SAT formula. This example is the 2x2 JSSP represented by the
disjunctive graph found in Figure 1. The total number of clauses involved is deter-
mined by equation (1) and is equal to four clauses, where nmaq is the number of ex-
isting machines.

Clauses = 2 nmaq (nmaq-1) (1)

Variables of Control = nmaq (nmaq-1) (2)

The number of variables of control (pr) is determined by equation (2) and is equal
to two, one variable for each pair of operations. The possible assignments of

702 M.A. Cruz-Chávez and R. Rivera-López

Table 2. Assignment of truth-values for the SAT formula of a JSSP of 2x2

Variables Truth-values
CASES

C D 1 2 3 4
P1,4 F F T T

 P4,1 T T F F
P3,2 F T F T

 P2,3 T F T F

truth-values are obtained using the relationship (nmaq!)nmaq. In this example, the
possible number of assignments of truth-values is four, as shown in Table 2.

C are the variables of control and D are variables whose value depends on C. The
resulting SAT formula is
() () () ()

22334411 ,33,2,22,3,11,4,44,1 PrPrPrPr ptptptpt SaSaSaSa ++++ ∨¬∧∨¬∧∨¬∧∨¬ . As could

be seen in this SAT formula, the number of Boolean variables pltlkSa +, is equal to

the number of generated clauses. That means that the existence of a variable

pltlkSa +, is observed for each existent operation in the problem, where k= 1, 2, ... ,

nxm, n is the number of jobs, m is the number of machines and nxm is the number of
operations for a symmetrical problem of JSSP. The characteristic of generation of a
small amount of Boolean variables in order to represent an instance of JSSP is charac-
teristic of the reduced SAT codification [18], in this codification the variables

pltlkSa +, are not generated in each unit of time pltl + as in other proposed SAT en-

codings for JSSP [16], [17]. Instead, variables pltlkSa +, only exist as defined by the

units of time LST calculated in the operations of the problem. In order to evaluate a
SAT formula only an LST for each operation is calculated.

When the four cases of assignment are proven in the SAT formula, it is found that
in the first case, satisfiability of the formula is not obtained, but in the following three
cases it is. A closer examination of case 1 and case 2 follows.

Case 1
The truth-values from Table 2 are assigned to the variables of control (C) and de-
pendents (D). Then the LST of each operation can be calculated using the digraph
generated by Figure 1 and Table 2. This digraph can be seen along with the LST of
each operation in Figure 2. The start times of each operation grow to an infinite value
because the operations in the digraph in Figure 2 belong to global cycles. Each opera-
tion is assigned a start time with a very high value, in this case 1000 is the designated
start time. Substituting the times in each variable of the SAT formula results in the

following:
() () () ()1004,33,21003,22,31005,11,41002,44,1 SaPSaPSaPSaP ∨¬∧∨¬∧∨¬∧∨¬ .

Through the evaluation of each variable using Table 2 and Figure 2, it can be seen
that the satisfiability of the formula is not obtained, that is
(T ∨ F) ∧ (F ∨ F) ∧ (T ∨ F) ∧ (F ∨ F).

 A Local Search Algorithm for a SAT Representation of Scheduling Problems 703

Evaluation of Boolean variables pltlkSa +, . In this case, all variable pltlkSa +, take

the truth-value of false because the start time obtained by LST in each operation k
grown to an infinite value.

 LST
t1 = 1000
t2 = 1000
t3 = 1000
t4 = 1000

Fig. 2. Digraph and the assignment of LST in Case 1

Case 2
The truth-values from Table 2 are assigned as the control variables (C) and depend-
ents (D). Then the LST of each operation can be calculated using the digraph gener-
ated by Figure 1. This can be seen along with the LST of each operation in Figure 3.
By substituting the times in each variable of the SAT formula, the result is
() () () ()14,33,23,22,38,11,410,44,1 SaPSaPSaPSaP ∨¬∧∨¬∧∨¬∧∨¬ . Through the
evaluation of each variable using Table 2 and Figure 3, it can be seen that the satisfi-
ability of the formula is obtained, that is (T ∨ F) ∧ (F ∨ T) ∧ (F ∨ T) ∧ (T ∨ F).

Evaluation of Boolean variables pltlkSa +, . In this case, the operation does not have

a start time that grown to an infinite value (see Figure 3).

Clause 1. The Boolean variable 4,1P takes the truth-value of false, this means that

operation 1 does not precede operation 4 (see Figure 3), therefore, operation 4
should start before and end before or at the same time that operation 1 starts. This is
not true because in clause 1 it can be observed that operation 4 starts in 10 and ends
in 15 (processing time is added, see Figure 3) and operation 1 stars in 8 (see Figure

3) Therefore, the Boolean variable 10,4Sa takes the truth-value of false.

Clause 2. The Boolean variable 1,4P takes the truth-value of true, this means that

operation 4 precedes the operation 1 (see Figure 3), therefore, operation 4 should
start before and end before or at the same time that operation 1 starts. This is true
because operation 4 starts in 3 and ends in 8 (processing time is added, see Figure
3) and in clause 2 it can be observed that operation 1 starts in 8, therefore the Boo-

lean variable 8,1Sa takes the truth-value of true.

Clause 3. The Boolean variable 2,3P takes the truth-value of true, this means that

operation 3 precedes operation 2 (see Figure 3), therefore, operation 3 should start
before and end before or at the same time that operation 2 starts. This is true be-
cause operation 3 starts in 0 and ends in 3 (processing time is added, see Figure 3)
and in clause 3 it can be observed that operation 2 starts in 3. Therefore, the Boo-

lean variable 3,2Sa takes the truth-value of true.

704 M.A. Cruz-Chávez and R. Rivera-López

Clause 4. The Boolean variable 3,2P takes the truth-value of false, this means that

operation 2 does not precede the operation 3 (see Figure 3). Therefore, operation 3
should start before and end before or at the same time that operation 2 stars. This is
not true because in clause 4 it can be observed that operation 3 starts in 14 and ends
in 17 (processing time is added, see Figure 3) and operation 2 begins in 10 (see

Figure 3). Therefore, the Boolean variable 14,3Sa takes the truth-value of false.

LST
t1 = 8
t2 = 10
t3 = 0
t4 = 3

Fig. 3. Fig. 3 Digraph and the assignment of LST in Case 2

4.2 Walk Wide Search-SAT Algorithm

The local search algorithm, which is presented here and called Walk Wide Search-
SAT (WWS-SAT), is based on the WalkSAT algorithm [20]. WWS-SAT is an algo-
rithm that looks for the satisfiability of a SAT formula. This algorithm was developed
for practical problems of Job Shop Scheduling. In contrast to theoretical problems
[21], which are commonly used with the problem of satisfiability, the SAT formula
generated from JSSP presents different characteristics. One such characteristic is that
repeated variables do not exist. These differences cause changes in the behavior of the
algorithms that are frequently used in the SAT area, which results in their being less
efficient [16].

The WalkSAT algorithm begins with a randomly generated assignment of truth-
values for the SAT formula. This assignment of truth-values is defined as Assign-
ment-A. With a probability P, the search focuses on variables of clauses not satisfied.
With a probability 1-P, the search focuses on variables of clauses taken randomly and
chooses a change in the assignment of the truth-values of the variables. By changing
the assignment of truth-values, the number of clauses that are not satisfied is dimin-
ished. The WalkSAT algorithm requires three parameters: (1) The set of clauses that
generate the SAT formula to be evaluated, (2) the values of MAX-FLIPS that deter-
mine the number of exchanges that will be attempted, and (3) the value of MAX-
TRIES that determine the number of times the search will restart before finishing. The
algorithm presented here, WWS-SAT, can be described as a walk wide search be-
cause search in a wide neighborhood and carries out more than one movement in the
neighborhood. In Table 3, it can be seen that WWS-SAT is a modification of Walk-
SAT. With a probability P, WWS-SAT focuses the search on variables of clauses not
satisfied. WWS-SAT also generates a list of all the clauses not satisfied and includes
taboo movements as well. This list is defined as List-C. WWS-SAT eliminates from
list the clauses in which there are repeated operations of the control variables prij.

 A Local Search Algorithm for a SAT Representation of Scheduling Problems 705

Table 3. WalkWideSearch-SAT algorithm

WWS-SAT(FormulaSAT){

 For i=1 to MAX-TRIES{

 A = a randomly generated truth assignment;

 For j = 1 to MAX-FLIPS{

 If A is a solution return;

 Else{

 C = Choosing the total of unsatisfied clauses

 where they don't repeat operations in pr;

 With probability P

 Flip variables pri,j in C;

 Otherwise (with probability 1-P)

 Flip a variable in an unsatisfied

 clause of C;

 }

 }

 }

 return failure;

}

For example, if there are three different clauses which are not satisfied, involving

the variables pr3,4, pr4,5 and pr5,6, with one variable pr in each clause, it can be ob-
served that operation 4 repeats in the first and second variable and operation 5 in the
second and third variable. If one of the clauses with variables that contain repeated
operations is eliminated, the result could be pr3,4 and pr5,6.. This avoids falling into
continuous cycles within a sequence of operations. This process enables the satisfi-
ability of a SAT formula to be found in a shorter amount of time because the satisfi-
ability of a SAT formula is a feasible schedule, which is a sequence of operations that
does not contain any cycles. Once the List-C has been diminished by the elimination
of clauses, the assignment of truth-values is changed for the control variables in re-
maining clauses of the List-C. It can then be seen whether assignment A is a solution
or not. Alternately, with a probability 1-P, an unsatisfied clause can be taken ran-
domly and the assignment of truth-values for the control variables can be changed.
Then the Assignment-A can be tried out as a solution.

5 Experimental Results

In order to carry out the tests, a personal computer with a processor of 1.0 GHz and 1
GB in RAM was used. The operative system was Windows Millennium and the pro-
gramming language was Visual C++ 6.0.

In order to prove the efficiency of the WWS-SAT algorithm, we carried out several
comparative tests between it and the WalkSAT algorithm. The reported time in this
paper is the time that takes the algorithm to satisfy the SAT formula, it does not in-
clude the time spent loading the program in memory or generating the SAT formula,

706 M.A. Cruz-Chávez and R. Rivera-López

because the time to generate the SAT formula is very short because a reduced codifi-
cation with few clauses is always generated [18]. The problems that were used in the
tests can be found in the OR library [22]. They include: FT06 of 6x6, FT10 of 10x10,
LA16 to LA20 of 10x10, ORB1 to ORB10 of 10x10, and LA36 of 15x15. For both
algorithms, the probability used was P = 1. This was necessary because for a smaller
probability, the results become much less efficient. The decrease in efficiency can be
seen in Figure 4 where the graph of the problem FT06 using WalkSAT is presented.
For each value of P, the number of flips in an average of 700 tests was obtained. It
can be observed that as the value of P decreases, a higher number of flips are neces-
sary in order to find the satisfiability of the SAT formula. As a consequence of the
high number of flips, the time increases. The same behavior can be observed with
WWS-SAT, so it was decided to use P= 1 for both algorithms when conducting the
comparative tests. The results for WalkSAT and WWS-SAT used with problems of
different sizes are shown in Tables 4 and 5 respectively. The presented results are av-
erages of 2000 tests for FT06, 2000 for FT10, and 2000 for LA36. The percentage of
achievements by each algorithm has a maximum of 100%. The number of flips, which
are changes in the assignment of truth-values for a variable, is smaller in WWS-SAT
than in WalkSAT. For FT06 the number of flips is 74% less, for FT10 it is 91% less,
and for LA36 it is 6% less. The time to obtain the satisfiability of the SAT formula is
also less for WWS-SAT. For FT06 the time is 81% less, for FT10 it is 45% less, and
for LA36 it is 21% less. This indicates that in problems of varying sizes the efficiency
of WWS-SAT is much better than that of WalkSAT. In addition, the efficiency of the
generation of flips using WWS-SAT is better than that of WalkSAT.

100

1000

10000

100000

0.4 0.5 0.6 0.7 0.8 0.9 1
p

Fl
ip

s

Fig. 4. Problem FT06. Flips vs. P. WalkSAT

Table 4. Experimental results in problems of several sizes for WalkSAT

WalkSAT
JSSP Success rate Flips
FT06 100 00272
FT10 100 03853
LA36 100 47858

 A Local Search Algorithm for a SAT Representation of Scheduling Problems 707

Table 5. Experimental results in problems of several sizes for WWS-SAT

WWS-SAT
JSSP Success rate Flips
FT06 100 00072
FT10 100 00358
LA36 100 45066

Table 6 shows the results for the eighteen problems of 10x10 presented in the OR

library. The results were obtained by running an average of 50 tests per problem.
From Table 6, it can be noted that for the problems Orb3 and Orb8, it is difficult to
satisfy the SAT formula with the WalkSAT algorithm because it takes an average of
0.017 and 0.01933 seconds respectively. That is not the case with WWS-SAT because
the same problems only take 0.00124 and 0.00112 seconds to satisfy the SAT for-
mula. It can also be observed that in most of the problems, WWS-SAT requires a
smaller number of flips.

Table 6. Experimental results of the scheduling problems of 10x10, in OR Library

WalkSAT WWS-SAT JSSP
10x10 Flips Time (s) Flips Time (s)

FT10 3968 0.00388 350 0.00176
Abz5 5495 0.00170 5071 0.00094
Abz6 5471 0.00163 5304 0.00096
La16 5113 0.00167 5117 0.00118
La17 5284 0.00160 5354 0.00116
La18 5652 0.00190 5212 0.00136
La19 5416 0.00157 5521 0.00126
La20 5486 0.00170 4741 0.00086
0rb1 4209 0.00476 366 0.00214
0rb2 5006 0.00167 5003 0.00136
0rb3 3259 0.01700 332 0.00124
0rb4 4521 0.00207 4305 0.00162
0rb5 4630 0.00280 4244 0.00190
0rb6 4321 0.00390 353 0.00207
0rb7 12631 0.00508 11819 0.00407
0rb8 3425 0.01933 341 0.00112
0rb9 4474 0.00200 4526 0.00136

0rb10 4551 0.00280 4547 0.00228

The exceptions are for LA16, LA19 and ORB9, which require fewer flips for

WalkSAT. Even in these exceptions, the number of flips used by both WalkSAT and
WWS-SAT is very similar but WWS-SAT wins in most of the problems, see FT10,
Orb1, Orb3, Orb6 and Orb8 where the difference in flips is bigger. It should be noted
that in all cases, WWS-SAT requires less time. By taking an average of all the prob-
lems listed in Table 6, it can be seen that WWS-SAT is more efficient because it
generates 19% less flips and satisfies the SAT formula 63% more quickly than
WalkSAT.

708 M.A. Cruz-Chávez and R. Rivera-López

6 Conclusions

It has been demonstrated here that for tests carried out in practical problems like
JSSP, WWS-SAT is superior to WalkSAT. For the SAT formula in JSSP, it is most
convenient use a P = 1, due to the characteristics of the formula. This is because each
pair of variables present in each clause does not repeat in any another clause. The use
of a taboo list in WWS-SAT avoids returning to previous movements and avoids fal-
ling continually in sequences of operations that form cycles, consequently, allowing
WWS-SAT to be applied to a bigger neighborhood. This larger neighborhood accel-
erates the acquisition of an assignment of truth-values that satisfy the SAT formula.
For several problems of the same size, it is demonstrated that the use of WWS-SAT is
uniform and does not change, as does WalkSAT. This constancy is achieved by the
walk wide applied in WWS-SAT’s local search. Instead of making a change in the as-
signment of a single variable, several changes are conducted in several variables that
do not belong to the taboo list. These changes prevent stagnation in the local search,
which happens in the search of WalkSAT because WalkSAT changes the assignment
of one truth-value for one variable in one instant of time. The experimental results
present to WWS-SAT like a local search method very efficient, because it find feasi-
ble solutions in a very simple form. This presents to WWS-SAT very attractive for
their use in the optimization methods.

As seen when using the WWS-SAT algorithm (Section 4), the assignment of truth-
values to the prij variables is random. This allows for better distribution of the feasible
schedules generated; they are located throughout the entire solution space of a JSSP.
This characteristic could be of great interest for those who use Genetic Algorithms,
because the better distribution of populations that are generated in the solution space
could improve the search in a JSSP.

7 Future Work

WWS-SAT will be implemented with the algorithms of Simulated Annealing and
GA in order to evaluate the efficacy of this local search method. In these optimization
methods the Makespan as an objective function will be used in order to evaluate the
efficacy of WWS-SAT. Efficacy will be evaluated as the ease with which solutions
near the global optimum are found for the objective function in question.

References

1. Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and complexity,
p. 496. Dover Publications, Mineola (1998)

2. Garey, M.R., Johnson, D.S., Sethi, R.: The complexity of Flow shop and Job shop Sched-
uling. Mathematics of Operations Research 1(2), 117–129 (1976)

3. Brucker, P.B.: Scheduling algorithms, 5th edn. Springer, Heidelberg (2007)
4. Balas, E.: Machine Sequencing via Disjunctive Graphs. An Implicit Enumeration Algo-

rithm, Operations Research 17, 941–957 (1969)
5. Conway, R.W., Maxwell, W.L., Miller, L.W.: Theory of Scheduling. Addison Wesley,

Massachusetts (1967)

 A Local Search Algorithm for a SAT Representation of Scheduling Problems 709

6. Jalilvand, A., Khanmohammadi, S., Shabaninia, F.: Scheduling of sequence-dependant
jobs on parallel multiprocessor systems using a branch and bound-based Petri net, Emerg-
ing Technologies. In: Proc of the IEEE, pp. 334–339 (September 17-18, 2005) ISBN: 0-
7803-9247-7

7. Cruz-Chávez, M.A., Frausto-Solís, J., Zavala-Díaz, J.C., Sanvicente-Sánchez, H., Cruz-
Rosales, M.H.: A Simulated Annealing Algorithm with Cooperative Processes for Sched-
uling Problems. LNCS. Springer, Heidelberg (to appear, 2006) ISSN: 0302-9743

8. Zalzala, P.J., Flemming.: Genetic algorithms in engineering systems, in A.M.S. Inst. of
Electrical Engineers (1997)

9. Defu, Z., Tangqiu, Li., Shaozi, Li.: An improved shifting bottleneck algorithm for job shop
scheduling problem. In: Proceedings of the Ninth International Conference on Computer
Supported Cooperative Work in Design. vol. 2, pp. 1112–1116, 24-26 (May 2005)

10. Schutten, M.J.: Practical job shop scheduling. In Annals of Operations Research 83, 161–
177 (1988)

11. El-Mihoub, T.A., Hopgood, A.A., Nolle, L., Battersby, A.: Hybrid Genetic Algorithms: A
Review, Engineering Letters (2006) ISSN: 1816-0948, 13:2, EL_13_2_11

12. Shannon Land, M.W.: Evolutionary Algorithms with Local Search for Combinatorial Op-
timization, Ph.D. Thesis, University of California, San Diego, p. 169 (1998)

13. Krasnogor, N., Smith, J.: A Memetic Algorithm With Self-adaptive Local Search: TSP as
a case study. In: Whitley, Goldberg, Cantu-Paz, Spector, Parmee, Beyer (eds.) Proceedings
of GECCO 2000, pp. 987–994. Morgan Kaufmann, San Francisco (2000)

14. Cruz-Chávez, M.A., Frausto-Solís, J.: Simulated Annealing with Restart to Job Shop
Scheduling Problem Using Upper Bounds. In: Rutkowski, L., Siekmann, J.H., Ta-
deusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 860–865.
Springer, Heidelberg (2004)

15. Ullman, J.D.: NP-complete scheduling problems. Journal of Computer System Sci-
ences 10, 384–393 (1975)

16. Crawford, J.M., Baker, A.B.: Experimental Results on the Application of Satisfiability Al-
gorithms to Scheduling Problems. In: Proc. of the 12th National Conf. on Artificial Intelli-
gence, Austin, TX, pp. 1092–1098 (1994)

17. Memik, S.O., Fallah, F.: Accelerated SAT-based scheduling of control/data flow graphs
Computer Design: VLSI in Computers and Processors, pp. 395–400, Proc IEEE (Septem-
ber 16-18, 2002)

18. Frausto-Solís, J., Cruz-Chávez, M.A.: A Reduced Codification for the Logical Representa-
tion of Job Shop Scheduling Problems. In: Laganà, A., Gavrilova, M., Kumar, V., Mun,
Y., Tan, C.J.K., Gervasi, O. (eds.) ICCSA 2004. LNCS, vol. 3046, pp. 553–562. Springer,
Heidelberg (2004)

19. Garey, M.R., Johnson, D.S.: Computers and intractability: a guide to the theory of NP-
completeness, p. 340. W.H. Freeman and Company, New York (1991)

20. Selman, B., Kautz, II, A.: Local search strategies for satisfiability testing. In: Procceding
DIMACS Workshop on Maximum Clique, Graph Coloring and Satisfiability (1993)

21. Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT. In: Gent,
I.P., Maaren, H.v., Walsh, T. (eds.), pp. 283–292. IOS Press, Amsterdam (2000) 2006,
SATLIB is available online at www.satlib.org

22. Beasley, J.E.: OR Library, Imperial College, Management School, Last Update (October
2005) (2007), http://people.brunel.ac.uk/~mastjjb/jeb/info.html

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

