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Abstract. This paper presents the application of a local search algorithm for a 
logical representation of the Job Shop Scheduling Problem (JSSP). This logical 
representation represents the JSSP transformed as a satisfiability problem 
(SAT). The proposed algorithm uses a local search in a wide neighborhood. 
This algorithm, called Walk Wide Search - SAT, is a variant of the WalkSAT 
algorithm. This search is possible because the included tabu list prevents an ex-
cessive number of repetitions of movements during the search process. This pa-
per describes the algorithm and compares results of Walk Wide Search - SAT to 
WalkSAT. 
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1   Introduction 

The complexity theory groups computational problems according to the inherent dif-
ficulty of solving them. This classification is used to classify decision problems [1], 
which require a yes/no answer in order to obtain their solution. The best-known prob-
lem in this classification is the satisfiability problem, which is classified as NP-
complete. The objective of the satisfiability problem is to confirm or deny the  
existence of an assignment of truth-values for the literals of a logic formula (SAT for-
mula) which make the formula true. A SAT formula is usually written in its conjunc-
tive normal form (CNF) that has the following three features: (1) a conjunction C of 
clauses Ci, i.e. C = C1 ∧  C2,…, ∧ Cn, (2) each clause Ci is a disjunction of literals 
Xiv….vXk, (3) each literal Xj is a Boolean variable (negated or not).  

Some decision problems could be defined like discrete optimization problems. An 
instance of a discrete optimization problem is defined by the function RFc →: , 
where F is the finite set of solutions that defines the problem instance, R is the set of 
discrete values that define each solution in F, and c is the objective function. In an in-
stance of a discrete optimization problem, it is necessary to find the solution Ff ∈   

for which ( ) ( ) Fyycfc ∈∀≤ , .  
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The Job Shop Scheduling Problem (JSSP) [2] is one of the most difficult problems 
within the NP-complete classification [1]. As a discrete optimization problem, it is an 
NP-hard practical problem [3] found in the area of manufacturing. For these two rea-
sons, JSSP is a problem of great interest to the scientific community. 

The JSSP is frequently treated as a discrete optimization problem; in this paper, the 
JSSP is treated as a decision problem based on its representation in the form of a sat-
isfiability problem, in order to work with a proposed local search algorithm. By work-
ing in this way, the proposed local search algorithm looks for the satisfiability of a 
SAT formula that represents JSSP. The satisfiability of the SAT formula provides a 
feasible schedule of the JSSP. With this schedule, the proposed local search algorithm 
for the satisfiability problem could be applied in the search for solutions in a discrete 
optimization problem, as JSSP is generally treated. 

Various methods have been proposed for manipulate the JSSP using several mod-
els. Two of the most commonly used models are disjunctive graphs [4] and integer 
programming [5]. The methods used with these models can be divided into two 
groups, local search methods and optimization methods.  

Local search methods are iterative procedures that allow movement from one solu-
tion in F to another. These methods search for a local optimum in the solutions space 
of the problem through the use of a neighborhood function, which is defined as fol-
lows: Given a feasible point Ff ∈  in an instance of a problem, a neighborhood of f 

is defined as a set N(f) of feasible points near f. The set N(f) called the neighborhood f, 
indicates that each solution ( )fNf ∈'  can be reached directly from f in one step. In 

accordance with this the neighborhood is defined by the function N: F → 2F. Some of 
the most well-known local search methods are Hill-climbing, Steepest-descent, Itera-
tive improvement, GSAT and WalkSAT. 

Optimization methods try to find the best solution evaluating the objective function 
of the problem in order to find their maximum or minimum value. Generally, optimi-
zation methods use local search methods within their procedure. The methods based 
on Branch and Bound [6], Simulated Annealing [7], Genetic Algorithms (GA) [8] and 
Shifting Bottleneck [9], [10] are optimization methods, which try to determine the 
best solution according to definite criteria of the objective function. At the moment 
the line has been taken of working with hybrid algorithms, which combine in their 
procedure global and local searches. El-Mihoub et al. [11] and Shannon [12], present 
a revision of hybrid algorithms that combine the power of the GA and the local 
search. In this revision, it is affirmed that a GA could quickly locate the region which 
contains the global optimum, but it takes a relatively long time to locate the local op-
timum in the region of convergence. The combination of the GA and a local search 
method could accelerate the search in order to locate the global optimum.  All of these 
works demonstrate that a GA combined with local search improves greatly their effi-
ciency in a wide variety of problems. This type of GA combined with local search 
methods is known as the Memetic Algorithm [13]. 

Because optimization methods incorporate the use of local search methods into 
their procedures, local search methods that provide feasible solutions in an efficient 
manner can be very useful in providing a good starting point for the optimization 
methods [14]. 

Most of the methods used to find solutions to the satisfiability problem [15], [16], 
[17] are local search methods. This paper presents an algorithm of local search called 
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Walk Wide Search - SAT (WWS-SAT) for SAT problems, which can be applied to 
the JSSP encoded as satisfiability (SAT) using a codification format called reduced 
SAT [18]. The algorithm proceeds first to generate a propositional formula in con-
junctive normal form called this SAT formula that represents the JSSP. Next, the al-
gorithm looks for an assignment of truth-values for the variables in the SAT formula 
which satisfy the formula. If the satisfiability of the SAT formula is obtained, it im-
plies that the result is a feasible schedule of the problem. In general, all the possible 
assignments of truth-values that satisfy a SAT formula form the set of feasible sched-
ules of a JSSP instance. The paper presents experimental results of WWS-SAT which 
present it like  a local search method very efficient and that one could apply as the 
base on the optimization methods in order to make them more efficient.   

This paper is organized in five sections. Section one is the introduction. Section 
two describes the model of the disjunctive graph of JSSP. Section three presents the 
process of SAT codification for JSSP [18], which is explained briefly. Section four 
presents the proposed algorithm and an example of the assignment of truth-values to a 
SAT formula derived for an instance of JSSP. Section five presents the experimental 
results. Section six presents the conclusions and future work. 

2   The Disjunctive Graph Model 

The disjunctive graph model represents JSSP as a disjunctive graph G [4], [5], which 
is a 3-tuple where G = (N, E, A). N is the set of operations which includes two ficti-
tious operations, the start and the end of the JSSP. These operations are represented in 
the nodes of G. E and A are two sets, edges and arcs (disjunctive and conjunctive) re-
spectively. The set of edges (resource capacity constraints) is formed of subsets of 
these edges, each one of these subsets represents a machine Mi, E = {M1, M2, M3, .., 
Mm}. The set of arcs (precedence constraints) is formed of subsets of these arcs, each 
one of these subsets represents a job, Ji, A = {J1, J2, J3, .., Jn}.  

Figure 1 represents the JSSP of two jobs and two machines (2x2). The problem has 
four operations, numbered 1 to 4, which are represented by the nodes of the graph. 
The start and the end operations are I and * respectively. The processing time of each 
operation is noted beside the corresponding node. Job 1 consists of operations 1 and 
2, while job 2 consists of operations 3 and 4. P1 and P2 are the precedence constraints 
and they connect each pair of operations that belong to the same job. P1 means that in 
job 1, operation 2 cannot begin before operation 1 finishes. Likewise, P2 prohibits the 
starting of job 4 until job 3 is finished. Machine M1 executes the operations 1 and 4, 
while machine M2 executes operations 2 and 3. R1 and R2 are the resource capacity 
constraints and they connect each pair of operations that are executed by the same 
machine. R1 means that for M1, operation 1 can be executed before 4 or 4 can be exe-
cuted before 1, but the two operations cannot be simultaneously executed. Similarly, 
R2 means that M2 can carry out operations 2 and 3 in any order, but not simultane-
ously. In order to find a feasible schedule for this model, it is necessary to find the di-
rection of each edge R, such that the formed schedule does not contain cycles. 
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3   Reduced SAT Codification 

The reduced SAT codification of JSSP [18] is a SAT formula that contains a smaller 
number of clauses than other proposed SAT encodings for problems of scheduling 
[16], [17].  

 

Fig. 1. JSSP of 2x2 represented by a disjunctive 

Each clause in the reduced SAT codification is formed using only the restrictions 
of R and not involving the restrictions of P (Figure 1) due to the use of the latest start-
ing time (LST) as the start time s of each operation [18]. The restrictions R, are de-
fined as si + pi ≤ sj ∨ sj + pj ≤ si [5] for a pair of operations i, j, where s and p are the 
start time and processing time of the operation. The obtained clauses can be seen in 
Table 1; they are the result of mapping the resource capacity constraints as a set of 
variables that take values only of true or false. For each R, two clauses are obtained. 
In Table 1, it is shown that for each set of variables sak,t where k represents any opera-
tion, the operation k begins at or after the time t.  In addition, saj,t+pi means that the 
operation j begins at or after the time t+pi. Pri,j means that the operation i precedes j if 
the truth-value that it possesses is true. If however the truth-value is false then j pre-
cedes i. 

Table 1. Set of clauses that compose the SAT formula 

Clauses of R CNF Interpretation
sai,t pri,j saj,t+pi ~sai,t  ~pri,j saj,t+pi If i Starts at or after t and j follows i then j cannot 

start until i is finished.
saj,t prj,i sai,t+pj ~saj,t  ~prj,i sai,t+pj If j Starts at or after t and i follows j then i cannot 

start until j is finished  

In order to find a feasible schedule for JSSP, it is only necessary to find a truth as-
signment that satisfy the SAT formula which is formed by the set of clauses defined 
in Table 1. In order to be able to evaluate the set of variables sak and saj,t+pi, it is nec-
essary to know the start time t of each operation. These times are calculated using the 
digraph that is obtained from the disjunctive graph that represents the JSSP. The di-
graph represents a sequence of execution of operations, which is generated with the 
truth-values of the set of variables Pri,j  assigned in random form. The time t (LST) of 
each operation i is equal to the critical path (longest path) [18] generated in the  
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digraph between the operation i and the operation initial I.  When there is an assign-
ment of truth-values that satisfy the SAT formula, a feasible schedule is obtained as a  
result. 

4   The Local Search Algorithm 

An algorithm of local search always requires the assignment of truth-values to the 
variables that compose the SAT formula, which is formed by the clauses in Table 1. 
In order to reduce the solution space where the search will be carried out, a set of con-
trol variables is designated. By designating a set of control variables, it is possible to 
determine the truth-values of the remaining variables. The variables used as control 
variables are the variables pri,j  (Table 1), because a finite number of sequences of 
pairs of operations in a problem exists. In contrast, by using the variables sa as the 
control variables, the situation becomes more complicated because the variables sa 
involve start times, of which there are an infinite number for each operation. By des-
ignating the variables pri,j as control variables, and assigning truth-values to these 
variables, the formation of a sequence of the execution of operations in the problem 
results. With the defined sequence, a digraph of the disjunctive graph is generated 
which allows the LST for each operation to be calculated. Because the LST is calcu-
lated in this way, the first variable (sai,t) in each clause will always be true and its ne-
gation false (~sai,t). The previous observation leaves the SAT formula as a formula 
2SAT, that is, a formula where each clause contains only two variables (~pri,j ∨ 
saj,t+pi). The LST and the number of clauses are obtained by simplifying the digraph. 
The simplification involves using only the Hamilton routes [19] that are generated for 
each machine. The calculation of the LST is then one of linear order [10], [19] and the 
number of clauses decreases because the number of edges R is decreased.  

One could see that the local search algorithm proposed in this paper is an hybrid 
algorithm because it requires of an assignment of truth-values to the control variables 
(pri,j) and also LST must be calculated in order to be able to evaluate the remaining 
variables (saj,t+pi) of the SAT formula, this last is not common in algorithms for satis-
fiability. After obtaining the complete assignment of truth-values for the SAT for-
mula, the satisfiability of the SAT formula is evaluated in a following step. 

4.1   Example of Assignment of Truth-Values to the SAT Formula 

Next is the presentation of an example of the assignment of truth-values to the vari-
ables of control in the SAT formula. This example is the 2x2 JSSP represented by the 
disjunctive graph found in Figure 1. The total number of clauses involved is deter-
mined by equation (1) and is equal to four clauses, where nmaq is the number of ex-
isting machines. 

Clauses = 2 nmaq (nmaq-1) (1) 

Variables of Control = nmaq (nmaq-1) (2) 

The number of variables of control (pr) is determined by equation (2) and is equal 
to two, one variable for each pair of operations. The possible assignments of  
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Table 2. Assignment of truth-values for the SAT formula of  a JSSP of 2x2 

Variables Truth-values 
CASES 

C D 1 2 3 4 
P1,4  F F T T 

 P4,1 T T F F 
P3,2  F T F T 

 P2,3 T F T F 

truth-values are obtained using the relationship (nmaq!)nmaq. In this example, the 
possible number of assignments of truth-values is four, as shown in Table 2.  

C are the variables of control and D are variables whose value depends on C. The 
resulting SAT formula is 
( ) ( ) ( ) ( )

22334411 ,33,2,22,3,11,4,44,1 PrPrPrPr ptptptpt SaSaSaSa ++++ ∨¬∧∨¬∧∨¬∧∨¬ . As could 

be seen in this SAT formula, the number of Boolean variables pltlkSa +,  is equal to 

the number of generated clauses. That means that the existence of a variable 

pltlkSa +, is observed for each existent operation in the problem, where k= 1, 2, ... , 

nxm, n is the number of jobs, m is the number of machines and nxm is the number of 
operations for a symmetrical problem of JSSP. The characteristic of generation of a 
small amount of Boolean variables in order to represent an instance of JSSP is charac-
teristic of the reduced SAT codification [18], in this codification the variables 

pltlkSa +,  are not generated in each unit of time pltl + as in other proposed SAT en-

codings for JSSP [16], [17]. Instead, variables pltlkSa +,  only exist as defined by the 

units of time LST calculated in the operations of the problem. In order to evaluate a 
SAT formula only an LST for each operation is calculated. 

When the four cases of assignment are proven in the SAT formula, it is found that 
in the first case, satisfiability of the formula is not obtained, but in the following three 
cases it is. A closer examination of case 1 and case 2 follows.  

Case 1 
The truth-values from Table 2 are assigned to the variables of control (C) and de-
pendents (D). Then the LST of each operation can be calculated using the digraph 
generated by Figure 1 and Table 2. This digraph can be seen along with the LST of 
each operation in Figure 2. The start times of each operation grow to an infinite value 
because the operations in the digraph in Figure 2 belong to global cycles. Each opera-
tion is assigned a start time with a very high value, in this case 1000 is the designated 
start time. Substituting the times in each variable of the SAT formula results in the 

following: 
( ) ( ) ( ) ( )1004,33,21003,22,31005,11,41002,44,1 SaPSaPSaPSaP ∨¬∧∨¬∧∨¬∧∨¬ . 

Through the evaluation of each variable using Table 2 and Figure 2, it can be seen 
that the satisfiability of the formula is not obtained, that is 
(T ∨ F) ∧ (F ∨ F) ∧ (T ∨ F) ∧ (F ∨ F). 
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Evaluation of Boolean variables pltlkSa +, . In this case, all variable pltlkSa +,  take 

the truth-value of false because the start time obtained by LST in each operation k 
grown to an infinite value. 

 LST 
t1 = 1000 
t2 = 1000 
t3 = 1000 
t4 = 1000  

Fig. 2. Digraph and the assignment of LST in Case 1 

Case 2 
The truth-values from Table 2 are assigned as the control variables (C) and depend-
ents (D). Then the LST of each operation can be calculated using the digraph gener-
ated by Figure 1. This can be seen along with the LST of each operation in Figure 3. 
By substituting the times in each variable of the SAT formula, the result is 
( ) ( ) ( ) ( )14,33,23,22,38,11,410,44,1 SaPSaPSaPSaP ∨¬∧∨¬∧∨¬∧∨¬ . Through the 
evaluation of each variable using Table 2 and Figure 3, it can be seen that the satisfi-
ability of the formula is obtained, that is (T ∨ F) ∧  (F ∨ T) ∧  (F ∨ T) ∧  (T ∨ F). 

Evaluation of Boolean variables pltlkSa +, . In this case, the operation does not have 

a start time that grown to an infinite value (see Figure 3). 
 

Clause 1. The Boolean variable 4,1P  takes the truth-value of false, this means that 

operation 1 does not precede operation 4 (see Figure 3), therefore, operation 4 
should start before and end before or at the same time that operation 1 starts. This is 
not true because in clause 1 it can be observed that operation 4 starts in 10 and ends 
in 15 (processing time is added, see Figure 3) and operation 1 stars in 8 (see Figure 

3) Therefore, the Boolean variable 10,4Sa takes the truth-value of false. 

Clause 2. The Boolean variable 1,4P  takes the truth-value of true, this means that 

operation 4 precedes the operation 1 (see Figure 3), therefore, operation 4 should 
start before and end before or at the same time that operation 1 starts. This is true 
because operation 4 starts in 3 and ends in 8 (processing time is added, see Figure 
3) and in clause 2 it can be observed that operation 1 starts in 8, therefore the Boo-

lean variable 8,1Sa  takes the truth-value of true. 

Clause 3. The Boolean variable 2,3P takes the truth-value of true, this means that 

operation 3 precedes operation 2 (see Figure 3), therefore, operation 3 should start 
before and end before or at the same time that operation 2 starts. This is true be-
cause operation 3 starts in 0 and ends in 3 (processing time is added, see Figure 3) 
and in clause 3 it can be observed that operation 2 starts in 3. Therefore, the Boo-

lean variable 3,2Sa  takes the truth-value of true. 
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Clause 4. The Boolean variable 3,2P takes the truth-value of false, this means that 

operation 2 does not precede the operation 3 (see Figure 3). Therefore, operation 3 
should start before and end before or at the same time that operation 2 stars. This is 
not true because in clause 4 it can be observed that operation 3 starts in 14 and ends 
in 17 (processing time is added, see Figure 3) and operation 2 begins in 10 (see 

Figure 3). Therefore, the Boolean variable 14,3Sa  takes the truth-value of false. 

LST
t1 = 8 
t2 = 10 
t3 = 0 
t4 = 3  

Fig. 3. Fig. 3 Digraph and the assignment of LST in Case 2 

4.2   Walk Wide Search-SAT Algorithm 

The local search algorithm, which is presented here and called Walk Wide Search-
SAT (WWS-SAT), is based on the WalkSAT algorithm [20]. WWS-SAT is an algo-
rithm that looks for the satisfiability of a SAT formula. This algorithm was developed 
for practical problems of Job Shop Scheduling. In contrast to theoretical problems 
[21], which are commonly used with the problem of satisfiability, the SAT formula 
generated from JSSP presents different characteristics. One such characteristic is that 
repeated variables do not exist. These differences cause changes in the behavior of the 
algorithms that are frequently used in the SAT area, which results in their being less 
efficient [16].  

The WalkSAT algorithm begins with a randomly generated assignment of truth-
values for the SAT formula. This assignment of truth-values is defined as Assign-
ment-A. With a probability P, the search focuses on variables of clauses not satisfied. 
With a probability 1-P, the search focuses on variables of clauses taken randomly and 
chooses a change in the assignment of the truth-values of the variables. By changing 
the assignment of truth-values, the number of clauses that are not satisfied is dimin-
ished. The WalkSAT algorithm requires three parameters: (1) The set of clauses that 
generate the SAT formula to be evaluated, (2) the values of MAX-FLIPS that deter-
mine the number of exchanges that will be attempted, and (3) the value of MAX-
TRIES that determine the number of times the search will restart before finishing. The 
algorithm presented here, WWS-SAT, can be described as a walk wide search be-
cause search in a wide neighborhood and carries out more than one movement in the 
neighborhood. In Table 3, it can be seen that WWS-SAT is a modification of Walk-
SAT. With a probability P, WWS-SAT focuses the search on variables of clauses not 
satisfied. WWS-SAT also generates a list of all the clauses not satisfied and includes 
taboo movements as well. This list is defined as List-C. WWS-SAT eliminates from 
list the clauses in which there are repeated operations of the control variables prij. 



  A Local Search Algorithm for a SAT Representation of Scheduling Problems 705 

Table 3. WalkWideSearch-SAT algorithm 

WWS-SAT(FormulaSAT){ 

 For i=1 to MAX-TRIES{ 

  A = a randomly generated truth assignment; 

   For j = 1 to MAX-FLIPS{ 

    If A is a solution return; 

     Else{ 

     C = Choosing the total of unsatisfied clauses  

          where they don't repeat operations in pr;  

          With probability P 

             Flip variables pri,j in C; 

          Otherwise (with probability 1-P) 

             Flip a variable in an unsatisfied  

               clause of C; 

     } 

   } 

 } 

 return failure; 

} 

 
For example, if there are three different clauses which are not satisfied, involving 

the variables pr3,4, pr4,5 and pr5,6, with one variable pr in each clause, it can be ob-
served that operation 4 repeats in the first and second variable and operation 5 in the 
second and third variable. If one of the clauses with variables that contain repeated 
operations is eliminated, the result could be pr3,4 and pr5,6..  This avoids falling into 
continuous cycles within a sequence of operations. This process enables the satisfi-
ability of a SAT formula to be found in a shorter amount of time because the satisfi-
ability of a SAT formula is a feasible schedule, which is a sequence of operations that 
does not contain any cycles. Once the List-C has been diminished by the elimination 
of clauses, the assignment of truth-values is changed for the control variables in re-
maining clauses of the List-C. It can then be seen whether assignment A is a solution 
or not. Alternately, with a probability 1-P, an unsatisfied clause can be taken ran-
domly and the assignment of truth-values for the control variables can be changed. 
Then the Assignment-A can be tried out as a solution. 

5   Experimental Results 

In order to carry out the tests, a personal computer with a processor of 1.0 GHz and 1 
GB in RAM was used. The operative system was Windows Millennium and the pro-
gramming language was Visual C++ 6.0. 

In order to prove the efficiency of the WWS-SAT algorithm, we carried out several 
comparative tests between it and the WalkSAT algorithm. The reported time in this 
paper is the time that takes the algorithm to satisfy the SAT formula, it does not in-
clude the time spent loading the program in memory or generating the SAT formula, 
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because the time to generate the SAT formula is very short because a reduced codifi-
cation with few clauses is always generated [18]. The problems that were used in the 
tests can be found in the OR library [22]. They include: FT06 of 6x6, FT10 of 10x10, 
LA16 to LA20 of 10x10, ORB1 to ORB10 of 10x10, and LA36 of 15x15. For both 
algorithms, the probability used was P = 1. This was necessary because for a smaller 
probability, the results become much less efficient. The decrease in efficiency can be 
seen in Figure 4 where the graph of the problem FT06 using WalkSAT is presented.  
For each value of P, the number of flips in an average of 700 tests was obtained. It 
can be observed that as the value of P decreases, a higher number of flips are neces-
sary in order to find the satisfiability of the SAT formula. As a consequence of the 
high number of flips, the time increases. The same behavior can be observed with 
WWS-SAT, so it was decided to use P= 1 for both algorithms when conducting the 
comparative tests. The results for WalkSAT and WWS-SAT used with problems of 
different sizes are shown in Tables 4 and 5 respectively. The presented results are av-
erages of 2000 tests for FT06, 2000 for FT10, and 2000 for LA36. The percentage of 
achievements by each algorithm has a maximum of 100%. The number of flips, which 
are changes in the assignment of truth-values for a variable, is smaller in WWS-SAT 
than in WalkSAT. For FT06 the number of flips is 74% less, for FT10 it is 91% less, 
and for LA36 it is 6% less. The time to obtain the satisfiability of the SAT formula is 
also less for WWS-SAT. For FT06 the time is 81% less, for FT10 it is 45% less, and 
for LA36 it is 21% less. This indicates that in problems of varying sizes the efficiency 
of WWS-SAT is much better than that of WalkSAT. In addition, the efficiency of the 
generation of flips using WWS-SAT is better than that of WalkSAT. 
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Fig. 4. Problem FT06. Flips vs. P. WalkSAT 

Table 4. Experimental results in problems of several sizes for WalkSAT 

WalkSAT 
JSSP Success rate Flips 
FT06 100 00272 
FT10 100 03853 
LA36 100 47858 



  A Local Search Algorithm for a SAT Representation of Scheduling Problems 707 

Table 5. Experimental results in problems of several sizes for WWS-SAT 

WWS-SAT 
JSSP Success rate Flips 
FT06 100 00072 
FT10 100 00358 
LA36 100 45066 

 
Table 6 shows the results for the eighteen problems of 10x10 presented in the OR 

library. The results were obtained by running an average of 50 tests per problem. 
From Table 6, it can be noted that for the problems Orb3 and Orb8, it is difficult to 
satisfy the SAT formula with the WalkSAT algorithm because it takes an average of 
0.017 and 0.01933 seconds respectively. That is not the case with WWS-SAT because 
the same problems only take 0.00124 and 0.00112 seconds to satisfy the SAT for-
mula. It can also be observed that in most of the problems, WWS-SAT requires a 
smaller number of flips.  

Table 6. Experimental results of the scheduling problems of 10x10, in OR Library 

WalkSAT WWS-SAT JSSP 
10x10 Flips Time (s) Flips Time (s) 

FT10 3968 0.00388 350 0.00176 
Abz5 5495 0.00170 5071 0.00094 
Abz6 5471 0.00163 5304 0.00096 
La16 5113 0.00167 5117 0.00118 
La17 5284 0.00160 5354 0.00116 
La18 5652 0.00190 5212 0.00136 
La19 5416 0.00157 5521 0.00126 
La20 5486 0.00170 4741 0.00086 
0rb1 4209 0.00476 366 0.00214 
0rb2 5006 0.00167 5003 0.00136 
0rb3 3259 0.01700 332 0.00124 
0rb4 4521 0.00207 4305 0.00162 
0rb5 4630 0.00280 4244 0.00190 
0rb6 4321 0.00390 353 0.00207 
0rb7 12631 0.00508 11819 0.00407 
0rb8 3425 0.01933 341 0.00112 
0rb9 4474 0.00200 4526 0.00136 

0rb10 4551 0.00280 4547 0.00228 

 
The exceptions are for LA16, LA19 and ORB9, which require fewer flips for 

WalkSAT. Even in these exceptions, the number of flips used by both WalkSAT and 
WWS-SAT is very similar but WWS-SAT wins in most of the problems, see FT10, 
Orb1, Orb3, Orb6 and Orb8 where the difference in flips is bigger. It should be noted 
that in all cases, WWS-SAT requires less time. By taking an average of all the prob-
lems listed in Table 6, it can be seen that WWS-SAT is more efficient because it 
generates 19% less flips and satisfies the SAT formula 63% more quickly than 
WalkSAT. 
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6   Conclusions 

It has been demonstrated here that for tests carried out in practical problems like 
JSSP, WWS-SAT is superior to WalkSAT. For the SAT formula in JSSP, it is most 
convenient use a P = 1, due to the characteristics of the formula. This is because each 
pair of variables present in each clause does not repeat in any another clause. The use 
of a taboo list in WWS-SAT avoids returning to previous movements and avoids fal-
ling continually in sequences of operations that form cycles, consequently, allowing 
WWS-SAT to be applied to a bigger neighborhood. This larger neighborhood accel-
erates the acquisition of an assignment of truth-values that satisfy the SAT formula. 
For several problems of the same size, it is demonstrated that the use of WWS-SAT is 
uniform and does not change, as does WalkSAT. This constancy is achieved by the 
walk wide applied in WWS-SAT’s local search. Instead of making a change in the as-
signment of a single variable, several changes are conducted in several variables that 
do not belong to the taboo list. These changes prevent stagnation in the local search, 
which happens in the search of WalkSAT because WalkSAT changes the assignment 
of one truth-value for one variable in one instant of time. The experimental results 
present to WWS-SAT like a local search method very efficient, because it find feasi-
ble solutions in a very simple form. This presents to WWS-SAT very attractive for 
their use in the optimization methods. 

As seen when using the WWS-SAT algorithm (Section 4), the assignment of truth-
values to the prij variables is random. This allows for better distribution of the feasible 
schedules generated; they are located throughout the entire solution space of a JSSP. 
This characteristic could be of great interest for those who use Genetic Algorithms, 
because the better distribution of populations that are generated in the solution space 
could improve the search in a JSSP. 

7   Future Work 

WWS-SAT will be implemented with the algorithms of Simulated Annealing  and 
GA in order to evaluate the efficacy of this local search method. In these optimization 
methods the Makespan as an objective function will be used in order to evaluate the 
efficacy of WWS-SAT. Efficacy will be evaluated as the ease with which solutions 
near the global optimum are found for the objective function in question. 
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