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Abstract

We present a solution for an inverse heat transfer prob-
lem involving internal heat generation using artificial neu-
ral networks. The problem involves a heat conduction
problem with internal heat source in cylindrical coordi-
nates. The network is a feedforward with backpropaga-
tion algorithm. We compare the results with the Levenberg-
Marquardt Method and discuss advantages and disadvan-
tages. The two methods recover very well the optimum pa-
rameters.

1. Introduction

Accordingly to Oleg Mikhailovich Alifanov [1], one of
the great proponents of inverse problems: Solution of an
inverse problem entails determining unknowncausesbased
on observation of theireffects. This is in contrast to the cor-
responding direct problem, whose solution involves finding
effects based on a complete description of their causes.

Here, according to the accepted methodology, we mean
by causal characteristicsof heat transfer in the body or in
the system a boundary conditions and their parameters, ini-
tial conditions, thermophysical properties, internal sources
of heat and conductivities as well as geometric characteris-
tics of the body or the system. Then theeffectis a heat state
which is determined by the temperature field of an object
studied.

In this paper we present an application of Artificial Neu-
ral Networks (ANN) in the solution of an Inverse Heat
Transfer Problem (IHTP). There are many applications
[7][8][10] but nonetheless recover the heat source genera-
tion. First, we present the direct problem related with the
inverse problem. Then, we show the steps for the solution.
Finally, we compare the results and conclusions are made.

2. Direct Problem

The guarded hot plate apparatus is generally recognized
as the primary absolute method for measurement of the ther-

mal transmission properties of homogeneous insulation ma-
terials in the form of flat slabs. This test method has been
standardized as ASTM Test Method (C 177)[2] and ISO In-
ternational Standard (IS0 8302) [6], with the two test meth-
ods being very similar, but not identical. This test apparatus
realizes the laboratory measurement of the steady-state heat
flux through flat, homogeneous specimen when their sur-
faces are in contact with solid, parallel boundaries held at
constant temperatures. In this kind of device, an electrical
current is applied inside the hot plate and inside the guard
for obtaining a constant temperature. Experimental test for
guard and hot plate involves measurement of temperature
until steady state is held. We use this test to analyze the
ANN performance for solving inverse heat transfer prob-
lems.

The mathematical model [3] for the hot plate is given by
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T = T0 0 ≤ r ≤ b (3)

The solution [9] for this problem is given by
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whereR0 (β, r) = J0 (βr) are eigenfunctions for the next
eigenvalue problem
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The heat generation functiong is supposed to be con-
stant. Therefore, it can be expressed as

g = P1 (7)

We can simulate different input conditions with this so-
lution to train the ANN.

3. Inverse Problem

An inverse solution can be understood [10] as an attempt
to find out the inverse operatorP−1 (or an approximation
G for it):

P [g(t)] = T (r, t) ⇒ g(t) = P−1[T (r, t)] (8)

A typical approach to compute the unknowng(t) is to
formulate the inverse problem as a non-linear optimization
problemmin S(g) where:

S(g) = ‖T exp − T mod(g)‖2 + α∗Ω[g(t)] (9)

beingT exp measured quantities,T mod are computed quan-
tities from a mathematical model, andΩ is a regularization
operator. The approach based on the artificial neural net-
works is to design a non-linear mapping to obtain an ap-
proximated inverse solution:g(t) = GNN [T (r, t)], where
GNN ∼ P−1.

4. Artificial Neural Network Model

An artificial NN is an arrangement of units character-
ized by: a large number of very simple neuron-like pro-
cessing elements; a large number if weighted connections
between these elements, where the knowledge of the net-
work is stored; highly parallel, distributed processing. The
processing element in an ANN is a linear combiner with
multiple weighted inputs, followed by an activation func-
tion.

ANN have two stages in their application, which are the
learning and activation steps. During the learning step, the
weights and bias corresponding to each connection are ad-
justed to some reference examples. For activation, the out-
put is obtained based on the weights and bias computed in
the learning phase (Fig. 1). There are many possible ar-
rangements and learning strategies. For the present inverse
problem, the neural network architecture implemented is
a multilayer perceptron (MP) with backpropagation algo-
rithm. See references [4, 5] for a full description of these
ANN architectures.

The MP-NN has one input layer, one or more hidden
layers, and one output layer. It is a feed-forward network
and employs a back-propagation algorithm for the learning
process.
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Figure 1. Neural Network Model

5. Simulations

For the ANN, the training sets are constituted by syn-
thetic data obtained from the forward model, i.e., time-
series for a measure point close to the boundary (r =
0.0762 m). The training step data set is the time-series ob-
tained from

g = 0.5n (10)

with n = 1, . . . , 19. The validation step data set is obtained
from

g =
nπ

3
(11)

with n = 1, . . . , 4. And we include a test step data obtained
from

g =
ne

3
(12)

with n = 1, . . . , 4. For all data sets a random noise gener-
ated by

Tperturbed= Tanalytical+ cos(rand ∗ π) (13)

was added, simulating the real experimental data. Fig. 2
show temperature field for both analytical and perturbed
data sets in every step.

The ANN was trained with 25 inputs (a time step of
1500 seconds). Three neurons with hyperbolic tangent sig-
moid transfer function were use in the hidden layer and just
one neuron with linear transfer function in the output layer
(Fig. 3). In this work, the Levenberg-Marquardt training
algorithm –in the Matlab Neural Network Toolbox [4]– was
used.

6. Results

Simulation with experimental and perturbed data was
made and the correlation coefficient between the outputs
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Figure 2. Temperature distributions.
Training(-). Validation(+). Test ( ◦)

and the targets are shown in Table 1. It is a measure of how
well the variation in the output is explained by the targets.
If this number is equal to 1, then there is a perfect correla-
tion between targets and outputs. In the three data sets, the
number is close to 1, which indicates a good fit.

In Fig. 4 the network outputs are plotted versus the tar-
gets as open circles. The best linear fit is indicated by a dash
line. The perfect fit (output equal to target) is indicated by
the solid line. For training, it is difficult to distinguish the
best linear fit line from the perfect fit line because the fit is
so good. For validation, there is a little bit difference. But
for test, the difference increase and it is notorious.

In the experimental test for hot plate a 5 W heat source
was induced. Measurements was taken and used with ANN
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Figure 3. Neural Network used for simulation

Table 1. Correlation coefficient for simulation
of training, validation and testing data sets.

Type r
training 0.99904909335456

validation 0.999771262730603
test 0.985638935321031

model. The results are shown in Table 2. It shows the com-
parison with Levenberg-Marquardt method [3]. From the
results it is evident that ANN improves the results obtained
with Levenberg-Marquardt method.

7. Conclusions

A neural network model was developed for solving in-
verse problems in heat conduction. Results with training,
validation and test data sets were shown for performance
analysis of the neural network. The neural network was ap-
plied to recover the heat generation functiong of the hot
plate in a Guarded Hot Plate Apparatus. Results were im-
proved respect to Levenberg-Marquardt method.

Artificial neural networks are a good tool for solving in-
verse problems. There is a combination of neural networks
with other methods such as Levenberg-Marquardt method
[11] for improving results.

Table 2. Comparison of the Artificial Neu-
ral Network (ANN) model and Levenberg-
Marquardt (LM) method.

Model rse
ANN 0.000349679638717
LM 0.000397264805109
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Figure 4. Regression analysis between the
network response and the corresponding tar-
gets


