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Abstract. Simulated annealing (SA) converges by means of a probability of ac-
ceptance toward a minimum value of the cost function to a minimum tempera-
ture. When the cost function is very high, the probability of acceptance is
minimum when temperature descends to a minimum value, for this, the prob-
ability is controlled for the temperature. An incorrect tuning of this parameter
makes that the distribution of the probabilities of acceptance along the whole
process of SA is slanted toward values very low or very high, what cause fall
easily in local optimum. In this paper an analysis of correlation between the
standard deviation and the distribution of probabilities of Boltzmann is mads
The experimental results demonstrate that the standard deviation obtained
through a sample of the solutions space of the problem, allow for a good tune of
the initial temperature in SA.

1 Introduction

Many of the combinatorial optimization problems are classified like NP-hard. bemng
JSSP (Job Shop Scheduling Problem) one of the most difficult problems to solve =
this classification [2]. The required time to solve JSSP is increased exponentially ac-
cording to the size of the problem. Benchmarks with 20 jobs and 20 machines =
considered large because at the moment the solution is not know For great instamces
of these problems, there are no deterministic algorithms that can solve them. For Sus
reason, they use a kind of metaheuristic nondeterministic that limits in polymomsi
time the approach to the global optimum in this set of problems [4].

Diverse metaheuristics have been proposed to the search of the global optrmem.
These include SA (Simulated Annealing) [5], [6], Tabu Search([7], [8], [9]. Ant Cal-
ony [10] and Memetics Algorithms which are Genetic Algorithms used in 2 local
search [10], [11], [12], [13] .The main characteristic that shares this algorithm is she
great amount of time that us required to find or to approach a global optimum far
very great instances by means of searches in neighborhoods of nondeterministic form
For JSSP, the metaheuristics work generates new solutions (Schedules) and review &
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- @ualiey 5y means of evaluation of its scheduling, which assigns the times of beginning
‘e emding for each one of the operations involved in the instance of the problem in
% e zble 10 evaluate the objective function that is desired, for example the
The Makespan is defined as the time taken to complete the last O; opera-
sgmed in the process and is equal to the sum of the time of beginning of O, plus
'ﬁhd’ processing of O,
- I ®us document, a new approach tune the temperature of beginning of SA help to
- @mmwergs or 0 approach faster to the global optimum for JSSP. The more critical
# presented SA it has to do with the tuning of its parameters, specially the
- of beginning that is considered within SA like a control parameter, of the
“&:pmds There are other parameters not less important as the area quality
W% e gemerated solutions, the probability distribution for metropolis for the accep-
: ¢ === solutions, as well as the speed of cooling there are diverse approaches to
% I= [15] an approach uses a method that consists of the selection of an upper
e =mperature for each restart of SA. This upper level is selected when ran-
w2y solunions are generated to take the best solution found in a time defined by
#mZ o, the value of the upper level obtained when evaluating the objective
Smmcmen of e chosen solution. This improves the SA efficiency. In [17] an approach
@ e s=mperature fluctuates between a maximum and a minimum (feedback), the
me= of semperature will depend on a variable that can take positive or negative
: sandom way) during each execution from SA.
ﬁ-: than half a century, the mathematicians Bienaymé y Chebyshev [19] ex-
et separacely the property of the variability of the data around the average. They
& l=ast that, regardless how a data set is distributed the percentage of observa-
= = contzined within distances of plus-less k Standard deviations around the
must e (1-1/k7)100% (rule of Bienaymé y Chebyshev). By means of an

i of the behavior of the process of SA with respect to the distribution of the
@ zoplication of this rule, in this document it is considered that the initial
s egual to twice the Standard deviation of solutions generated randomly,
%= amalysis of the Boltzmann function to accept or to reject a solution will
& @e new solutions are in a rank (upper limit and lower limit) determined by
of the generated solutions plus or less twice the Standard deviation. In
so=oe 25 2 matter of principle probabilistic 75% of all the solutions generated
grocsss, that is equivalent to 95% in processes that follow a normal distri-

wark s composed of the following sections. Section 1 introduces the subject.
- @sscribes a generalized scheme of the algorithm of simulated annealing and
parameters. Section 3 proposes a new approach to tune the temperature pa-

amc e probability Boltzmann distribution function for the acceptance or re-
m af me= neighbors using the Standard deviation of the quality of the generated
Shere are at quality is also important and shows the algorithm of Simulated
@smz this approach. Section 4 presents the computational study and the
i=sis using instances of problems known for JSSP. Section 5 presents the
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2 Generalized Scheme of Simulated Annealing

Simulated Annealing is a technique of stochastic local search approximates the mini-
mum value of the cost function f :S — R on a finite set of § . It is an iterative
method that moves in the space of solutions using a function of neighborhood N(x).
When generating a new solution x” of x, the solution candidate X" is accepted as the
new solution if f(x) < f(x) or if f(x")> f(x)is rejected or accepted in grasp
of the function of probability of acceptance of Boltzmann P(x), which involves the
parameter of control T. and the difference of the values of the quality of the solution
(x-x). Initially T has very high values and according to the algorithm progress. T de-
creases and influences in the probability of acceptance of the solution x”". The general
procedure of SA [5] is defined in the following form:

1. Select a value of high beginning to Ty, a limit T; to decrement to T, and an
initial state x,

T.-" T X € X,

2. For each iteration k, k=1... k¢ to do the following:
a. Repeat until the balance is reached:
i. Calculate the value of state x by means of the cost func-

tion: £, « f(x)

ii. Generate a new state x' using a neighborhood function,
X'« N(x)

iii. Calculate the value of the state x" by means of the cost
function, E, « f(x")

iv. Assign x «— X" according to the probability determined
by the function of acceptance P(x)

3. Reduce T to k+/ using a control factor}/.TM — ;f*Tk. where

O<y<l.
4. When T:m is less than Tf , finish

5. Return the best found solution x and their value of cost E.

On the whole the method of Simulated Annealing consists of a system of states x
and the relations between the following functions

I. f(x): A function of costs to be minimized

2. N(x): A mechanism of generation of neighborhood (it generates new states)

3. P(x): An acceptance function that decides if the new state is accepted or is rejected
4. T(k): A parameter of control of the annealing
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For problems of numerical optimization, x is defined as a vector of integer or real
numbers, and the function of Boltzmann P (x) is used for the acceptance of new
states.

The Boltzmann distribution function uses a probability density function of the
Gaussian type. This is defined as:

it f(x)<=f(x) 1)

Ly Yo
P(x ) i { (=F(x)=f (NI T otherwise
e ;

For JSSP, a state x is defined by a solution S (schedule) of the problem. The cost
function f (x) is defined in this work by makespan Cpax (S). Neighborhood N (S) of S
is defined as a set of feasible solutions that can be generated from S by means of only
one step. This step is a disturbance of a pair of operations (i, j) assigned in a M; ma-
chine.

3 Parameters for Simulated Annealing using a dispersion
measurement

The algorithm of Simulated Annealing requires that the used parameters have certain
values which are determined generally a priori. Within the required parameters are in-
cluded the parameters of control T, y T}, the factor of temperature  that defines the

speed of decrement of T, as well as the length of the Markov chain which defines the
number of iterations to carry out in the algorithm of Metropolis [25] in which some
trades before generating a decrement in 7. Each problem of scheduling has different
characteristics, and consequently different degrees of difficulty. For this reason it is
necessary to find the suitable values of the parameters involved in the process of
simulated annealing. In order to tune SA, it is required that the indices witch allow
knowing throughout the process if the values of the used parameters are the correct
ones. Two of the indices are the uniform distribution P (x) of the probability of accep-
tance of the Boltzmann distribution function (equation 3) and the distribution P¢n/ at
random n number generated and evenly distributed between (0,1) to determine the
acceptance or rejection of a solution regarding the Boltzmann distribution function.
Equation 2 indicates that the sum of the distribution of the probability of acceptance
of the Boltzmann function must approximately be equal to the sum of the probability
distribution P (n) generated randomly (See figure 1). The problem obtained to
achieve the equality as far as the uniform distribution of probabilities is

that P(e'™/ )7/ T) has a Poisson distribution, whereas P(n) has a normal dis-

tribution. By probabilistic principle it is accepted that P(e T ENTY has g

greater dispersion, this by the own behavior of the phenomenon of SA ,that at first ac-
cepts great variations of energy (very high probabilities) when T is very high, and in
agreement T decreases and tends to zero, the variation of accepting by P (x) is mini-
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mum. Therefore the equation (2) is taken like a valued parameter which is composed
of two indices, to evaluate the SA behavior (to see figure 2).

Z P(e(—!(.r‘l—f(xli’r)gz P(n) ?

N

Fig. 1. Distribution of P(n)

:

-

Fig. 2. Probability distribution of P(e™/ "™/ DTy and P(n)

Aside from the equation 2 that shows the behavior of the SA process, it is another
index that allows us to tune the parameters required in SA. This index is the standard
deviation of the quality of the generated solutions that enter the process of SA within
the procedure of Metropolis. This index shows us the dispersion degree that presents
the variations in SA. In the statistic area, it is useful to know the degree dispersion
that has the solutions in order to consider the degree of acceptance of these solutions.
Regardless now a data set is distributed, the percentage of observations that are con-
tained within distances £ k standard deviations around the average must be, at least:

(1 —%-)IOO% @)

Therefore, for the data whose polygons adopt any form, in the case of SA, at least
[1 (1/22)]100%=75.0% of the observations must be contained within distances of 2
standard deviations T around the average. 88.89% must be contained within dis-
tances plus or minus 3 standard deviations, and 93,75 standard deviations plus or less.
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This is applicable when it is known that a particular random phenomenon did not fol-
low the normal distribution pattern. In the case of SA, it follows a distribution pattern
of Poisson.

In order to tune the degree of acceptance of a new solution, it is possible to chose
between these three possibilities: for the SA process it is proposed to increase twice
the standard deviation to the average value to obtain its upper bound and to diminish
in the same proportion to obtain the lower bound (fig.3), which is equivalent to accept
the 75.00% of the solutions in SA or the 95.44% in other processes with normal dis-
tributions. Table | shows the variation of the data to the around of the average accord-
ing to the distribution pattern.

Xrio

LATEE .
v

U]

fig. 3. Minimum zone of occurrence to accept a 75% of the solutions for its evaluation
in the proposed SA

Table 1. Variation of the data to the around of the average

Percentage of observations contained be-
Number of k units tween average and k
of standard devia- | Poisson distribution | Normal Distribution
tion (Bienayme-
Chebyshev)
1 No calculable Exactly 68.26%
2 At least 75.00% Exactly 95.44%
3 At least 88.89% Exactly 99.73%
4 At least 93.75% Exactly 99.99%

There are only accepted energy differences AE, = —( f(x')— f(x)). which are
in the rank delimited by the 2* @, we can do that T, will be equal to the same 2* @
within the SA process (T;= 2*7) in order that the distribution s ARl

will be uniform within SA. The importance to choose a good solution of beginning in
SA to obtain good solutions already is mentioned in [15]. The values of each one of
the parameters involved in the SA process based on the standard deviation are defined
as follows:
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1. For each one of benchmarks used in the tests, to generate a set of solu-
tions Q at random sufficiently to identify the standard deviation of the
quality of the solutions that compose it, its average value, the minimum
and maximum value found.

2. The Speed of cooling (length of the Markov chain), will be given by the
double of large of the neighborhood of the problem [6] Ve = (n* (n-
1))*2; where n is the number of jobs, which determines the cycle of Me-
tropolis.

3. The value of To is equal to twice the Standard deviation (2 * 0 found
for a set of solutions generated in point 1. '

4. The decrement of the temperature is given by: T «— 7 *T . y is the

coefficient of temperature that controls the cooling of the system.
5. A S’ solution of the problem could be evaluated to be accepted or to be
rejected by means of the function of probability distribution of Boltz-

mann, as long as AE, it will not be greater to twice the found standard
deviation for the neighborhood upper bound and lower bound.

The previous parameters are used like an initial tuning to execute the process of
simulated annealing. At a figure 4 shows the Algorithm of Simulated Annealing that
allows to converge of faster way to optimal solutions for benchmarks of JSSP used

like test, where AE, =—(f(x")—f(x))= AS, =—(f(5")-1(S)) and
P(e{-ft.r')—flr)) T):P(eq—r(S')—rlSn‘T) )

1. Input Data: S, @

2. Result: Makespan

3. T=2%*0 Makespan = 10000;

4. SizeNeighborhood < Ve; //sampling size (n jobs)
5. while (T > 0){

6. Neighbor«0;

s while (NNeighbor< SizeNeighborhood){

8. Generate astate § ‘e N ( § ) by means of a perturbation in S
9. If(S'<S)

10. {

11: S=8"y

12. if (Makespan > S) Makespan <—S;

19, Neighbor++;

14. } //end if

15. else

16. {

17. AS « S-S

18. iffAS S2*F) |

19. With a randomly generated number « evenly distributed between (0,1)
20. " if(a<exp(-AS/T))) Then {

21. S « §’ //accept new solution
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22, Neighbor++;

23 } /fend if

24. else

25. S« S /lreject new solution
26. Mend if

27 else

28. S <« S; /reject new solution
29. } /end else

30. } //end while

3L, T« y*T
32. }/end while Ty>0

Fig. 4. Simulated Annealing Algorithm with standard deviation

4 Computational Results

The proposed mechanism was implemented in C language in a PC with 2 GHz, and 1
Gb in RAM. In order to prove the efficiency of the proposed mechanism a set of
benchmarks for JSSP of small size (Mt06, Mt10) [21], medium (La40) [22] and great
(Yn1) [23] were used. The space of feasible solutions to be explored was generated by
means of the neighborhood structure proposed in [20] and using the proposed mecha-
nism of partial rescheduling in [24]. In table 2 there are the values of the standard de-
viation that were generated for the test instances. The set Q is made up of 65.000 so-
lutions for each one of the problems. In the reported results, the value of ¥ was fixed

at 0.998, because it is the value at which the best results were obtained.

Table 2. Obtained standard deviation for @ = 65000

Problem Size o
Mt06 6x6 13.54

Mt10 10x10 153.63
La40 15x15 179.43
Ynl 20x20 108.91

The degree of dispersion of the solutions can be appreciated in figure 5. If to the

obtained average they add plus or less twice for the O | then we accept 75% of the
solutions generated in the process of SA, that as it can be seen, the distribution pattern

which it follows AE, is similar to a Poisson distribution, where the greater number of
optimal solutions is when AE, it is approximated to zero (difference of energy be-

tween S’ y S is minimum), reason why only good solutions when Tg is minimum (it1s
approximate to zero) are accepted.
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as
Fig. 5. Dispersion of the generated neighborhood for Ynl 20x20 problem

When limiting 75% of all the solutions within the space search of feasible solutions
and tuning the initial temperature Tg=2 * @, it allows us to accelerate the convergence
to a global optimum, when process of SA is controlled.

i
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Fig. 6. Performance comparison using the Benchmark Ynl 20x20 problem

Figure 6 shows the results obtained for the Ynl problem executing the algorithm
of Simulated Annealing proposed using @ (controlled process) and to the algorithm
of Simulated Annealing typical (without @) or process no controlled, which initiates
with an equal temperature to 2 * @ and accepting dependent solutions only by the cri-
terion of Metropolis. The proposed algorithm manages to converge to makespan of
930 in 5526 seconds using like initial parameter of temperature 2 * 0 and in addi-
tion. verifies that the new the proposed solutions as are within the fixed limits, that is

to say, that AE, < 2 *9 . All the solutions were evaluated under this rule and her

acceptance depended on the probability distribution of Boltzmann. The solutions that
were outside the fixed limits were rejected automatically. In figure 6 one is in the con-
trolled process that the time of convergence 10 obtain makespan of 1010 was of 4786
seconds. whereas in the no controlled process, the makespan was of 13960 seconds.
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Table 3. Results for 4 instances of test for JSSP. using Controlled and Non-Controlled SA

Controlled SA Non-Controlled SA
Problem Size Best RE RE
Jobs x Know Cmin tmin C'min tmin
Machines Sec Sec
Mt06 6x6 55 55 0.000 | 1200 57 3.6 5700

Mt10 10x10 930 930 | 0.000 | 2600 | 1010 8.6 | 7200
Lad40 15x15 1222 1240 1.4 | 4786 | 1278 48 | 12351

Ynl 20x20 886 930 49 | 5526 | 1010 | 13.99 | 13960

Table 3 show the best results of 5 executions for the 4 problems used as test, the
data that appear corresponds to the relative error (RE) of the best solution (C_ )

min

found and the required time to find this solution ;, for the four cases for the con-

trolled and for non controlled process.

In this table it is observed that there is a great difference in the effectiveness of algo-
rithms. The SA controlled in two small problems obtains optimal the global one and
for the problems medium and great the relative error is of 1.4 and 4.9 respectively.
These results contrast with the ones obtained by the non-controlled SA because the
obtained relative error of 3.6, 8.6, 4.8 and 13.99 is much greater.

In order to show the efficiency of the controlled SA with respect to the non controlled
SA, in figure 7, are shown the required times to obtain the same makespan in both
processes. Analyzing the behavior of both SA one demonstrates that the efficiency of
the SA is much better that in the no controlled SA, since little problems to larges
problems (36 to 400 operations, for 6x6, 10x10, 15x15, and 20x20 problems).

15000 NonCaontrolled SA
14000 )
13000 4 e
12000 .
11000 "
10000 -‘- 2
9000 :
8000 - 4
7000 4 -
6000 - a7 Controlled SA

Time (sec)

5000
4000 4
3000 3
2000 4
1000 4

T T T T T T T T 1
0 50 100 150 200 250 300 350 400 450

Number of Operations

Fig. 7. Performance comparison using Mt06, Mt10, La40 and Ynl problems
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5 Conclusions

The tuning of the parameters used in SA represent the main challenge at the time of
using this metaheuristics, The results observed in this document show that it is possi-
ble to tune the initial parameters for Simulated Annealing according to the degree of
dispersion of the quality of the solutions, by means of the Standard deviation. De-
pending on the complexity of the problem, the values of the parameters change radi-
cally, reason why the Standard deviation turns out suitable like an average one to ini-
tialize the parameter of control for each kind of problem. The same Standard
deviation is used to discriminate the solutions that will not be evaluated by means of
the probability Boltzmann distribution function. The generated solution (S°) from a

present solution (S) whose difference AS, are greater to the 2* O s rejected and it

is not evaluated as a feasible solution (this outside of range established by the inferior
and the superior limit), this in order that P(e!~! /50Ty s distributed of more uni-

form way. In the experimental test was observed that the mechanism, allows us to
have a process of controlled SA. with a fast convergence to the global optimum.
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