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Abstract. This paper presents a new algorithm that obtains an approximation of 
the Critical Path in schedules generated using the disjunctive graph model that 
represents the Job Shop Scheduling Problem (JSSP). This algorithm selects a 
set of operations in the JSSP, where on the average ninety nine percent of the 
total operations that belong to the set are part of the critical path. A comparison 
is made of cost and performance between the proposed algorithm, CPA (Criti-
cal Path Approximation), and the classic algorithm, CPM (Critical Path 
Method). With the obtained results, it is demonstrated that the proposed algo-
rithm is very efficient and effective at generating neighborhoods in the simu-
lated annealing algorithm for the JSSP.  
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1   Introduction 

The job shop scheduling problem (JSSP) is considered to be one of the most difficult 
to solve in combinatorial optimization. It is also one of the most difficult problems in 
the NP-hard class [1]. Due to this, the importance of finding new algorithms that help 
in the solution of this problem is understandable. The search for more efficient algo-
rithms has been focused in the area of non-deterministic algorithms, given the charac-
teristics of JSSP. 

Given the good results obtained in JSSP for some non-deterministic algorithms of 
local search, such as simulated annealing (SA) [2, 3, 4, 5, 6, 7, 8], great interest has 
been taken in improving the operation of these metaheuristics. Most work has been 
done in searching for better neighborhood structures [2, 5, 6, 7, 9] that permit more 
efficient selection of neighbors. 

At the moment, a very effective neighborhood structure exists, N1 [4], that allows 
for the selection of neighbors in a schedule such that the search space of the JSSP de-
creases considerably. This allows more rapid advancement in the search for the global 
optimum. In order to use the structure of neighborhood N1, it is necessary find the 
critical path (CP) of the schedule, which is formed by a set of operations of the JSSP. 
These operations are called critical operations. In this way, the only neighbors with 
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the possibility of being chosen are those that are generated by a permutation of a pair 
of critical operations. 

A metaheuristic has the characteristic of generating repeated local searches. There-
fore, when N1 is used, it is necessary to calculate the CP every time that a neighbor in 
the neighborhood [4] of the schedule is chosen. Because of this, the execution of the 
metaheuristic tends to be slower in large problems of job shop because of the repeated 
calculation of the CP. This is true even though [10] the algorithms that are used in or-
der to calculate the CP are polynomial [11].  

In JSSP, it has been proven [4] that only neighbors that are obtained through the 
permutation of pair of operations that belong to the CP of a schedule could have a 
makespan1 less than that of the original schedule. Due to this, when working with 
metaheuristics in JSSP where the objective function is obtaining the minimum 
makespan, the structure of neighborhood N1 or one of its derivatives [2, 3, 4, 5, 6,  
7, 8] is used.   

Several options exist that could improve the efficiency of the metaheuristics that 
use the neighborhood structure N1. One option is to generate algorithms that calculate 
the critical path in a more efficient form. Another option is to generate algorithms that 
do not calculate the critical path. In place of this calculation, these algorithms would 
have a high probability of generating neighbors by a permutation of a pair of critical 
operations. The second option is presented in this paper. This option involves generat-
ing an algorithm that, based on certain heuristics approaches, selects a set Ω  of op-
erations from all the existent operations in the job shop. This set is selected such that 
it contains all of the operations that form the CP and a few others operations as well. 
Within the set Ω , the largest percentages of operations are critical operations, that is, 
Ω  possesses a minimum number of non critical operations. In order to explore this 
second option, an algorithm was generated called CPA (Critical Path Approximation), 
which selects an operations set from a schedule. This operations set has the character-
istic of containing all the operations belonging to the CP. These critical operations 
constitute 99 percent of all the operations in the set Ω .  

This research contributes to the effort to find more efficient ways to use metaheu-
ristics for JSSP with the neighborhood structure N1 by proposing an efficient algo-
rithm for calculating the CP. 

Following this brief introduction, section two explains the disjunctive graph model 
of the job shop scheduling problem that is used to generate schedules where the CP 
and Ω  are obtained. Section three presents the neighborhood structure N1, section 
four introduces the algorithm proposed that generates the configuration generation 
mechanism for neighborhoods, called Critical Path Approximation (CPA). Section 
five presents the experimental results. The final section draws conclusions about the 
information presented in the previous sections.  

2   The Disjunctive Graph Model of the JSSP 

Figure 1 shows the disjunctive graph model G = (A, E, O) for a JSSP of 3x3 (three ma-
chines and three jobs). This disjunctive graph is formed by three sets. The operations 
                                                                 
1 Maximum completion time of the jobs. 
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set, O, is made up of the nodes G, numbered one to nine. The processing time appears 
next to each operation. The beginning and ending operations (I and * respectively) are 
fictitious, with processing times equal to zero. The set A is composed of conjunctive 
arcs, each one of these arcs unites a pair of operations that belong to the same job. The 
operations 1, 2, and 3 are connected by one of these arcs and therefore form job one. 
Jobs two and three are made up of the operations 4, 5, 6 and 7, 8, 9 respectively. Each 
arc of A represents a precedence constraint. For example, in job one, operation two must 
finish before operation three begins. Set E is composed of disjunctive arcs. Each arc that 
belongs to E unites a pair of operations that belong to the same machine. It can be seen 
that operations 1, 5 and 7 are executed by machine one and united by these arcs. Like-
wise, machines two and three execute the operations 3, 4, 9 and 2, 6, 8 respectively. 
Each machine forms a clique (a subset of E completely connected). Each arc of E repre-
sents a resources capacity constraint between a pair of operations that belong to the 
same machine. This type of constraint indicates that the machine cannot execute more 
than one operation in the same interval of time. 
 

 

Fig. 1. Representation of a JSSP with three jobs and three machines using a disjunctive graph 

3   The N1 Neighborhood Function 

The selection of the neighborhood structure strongly influences the performance of 
the metaheuristics [12] because the neighborhood has to be evaluated constantly. 
Consequently, this evaluation is the most critical one in the metaheuristics. In JSSP, 
the neighborhood N1, introduced by Van Laarhoven et al. [4], has been used with great 
success to minimize the makespan. The evaluation of this neighborhood is made 
based on the set of solutions that are generated by the disjunctive graph G. Each solu-
tion (schedule) represents a digraph that does not contain cycles. In order to evaluate 
the neighborhood of the schedule, S, using N1, it is necessary to find the CP of S.  
The neighbors in an N1 neighborhood are generated by a permutation in a pair of ad-
jacent operations that belong to the set of operations that form the CP of S. Figure 2 
presents a schedule, S, for the JSSP shown in Figure 1, where the CP of S is demon-
strated by a thicker line. The only pairs of adjacent operations that could swap in the 
CP are the compound pairs of operations that are executed by the same machine. For 
S in Figure 2, the pair of operations 1 and 7, which are executed by machine one, can 
be swapped. Likewise, the pair of operations 8 and 2 executed by machine two can be 
swapped. As one can see, in order to obtain a neighbor of S (permutation of a pair of 
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operations of S), it is necessary to calculate the CP of S. If N1 is used in a local search, 
every time that a new S is formed, it is necessary to recalculate the CP to continue 
evaluating N1. 

Great advantages are gained by using N1 in local searches [4]. For example, any 
permutation carried out in order to find a new schedule, S', obtains a feasible sched-
ule, as long as S' = f (S, N1). It is also possible to obtain an S' with a makespan which 
is less than S, although this does not happen if the swap is made with a pair of opera-
tions that do not belong to the CP.  

 

Fig. 2. A schedule of 3x3 where the operations that form the critical path are shown 

An easily noted disadvantage of using N1 is the necessity of calculating the CP 
constantly when N1 is used in local searches.  

The following section presents an alternate proposal to the use of N1, which avoids 
repeatedly calculating the critical path of the job shop scheduling problem, conse-
quently allowing for a reduction in the calculation time. 

4   Critical Path Approximation Algorithm 

The Critical Path Approximation (CPA) algorithm is based on three main lines of rea-
soning. The first line of reasoning is that for a defined schedule such as the one in 
Figure 2, the CP that is generated beginning from the fictitious operation I and ending 
with the fictitious operation *, is the same CP that is generated beginning with the fic-
titious operation * and ending with the fictitious operation I. That is, both critical 
paths generated in opposite directions are formed by the same operations due to being 
the same schedule. The second line of reasoning involves Equation 1, which indicates 
that upon generating the scheduling2 starting with the fictitious operation I the start 
time si

I is obtained from the operation i that belongs to the critical path of the sched-
ule. When this start time is added to the completion time ci* (for the same operation), 
which is obtained by the scheduling beginning with the fictitious operation *, the sum 
is equal to the makespan (MS), where the MS is equal to the value of the CP [4] of the 
schedule. For ci

* = si
*+ t, si

* is the start time that is obtained from operation i when 
the scheduling starts with the fictitious operation * and t is the processing time of the 
operation i. The final line of reasoning that is considered for the generation of the 
CPA algorithm is that slack time between a pair of operations (i, j) that is part of  
the CP does not exist [4]. Considering the above-mentioned, it can be seen that the 
                                                                 
2 Start times of the operations of a schedule.  
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operations that fulfill both Equation 1 and the conditions of the last line of reasoning 
will have a high probability of belonging to the critical path of the defined schedule 
because they fulfill the conditions necessary for the pair (i, j) to belong to the CP. 
This means that there is neither slack between the pair (i, j) nor in either operation. 
More details are presented in CPM in [14].  

MS = si
I + ci

* (1) 

The steps of the CPA algorithm are the following: 

1. Take a schedule S as initial data. 
2. Generate the scheduling SI of S, beginning with the fictitious operation I. 
3. Generate the S* scheduling of S, beginning with the fictitious operation *. 
4. Find the operations set Ω ’ that satisfies Equation 1. 
5. In each machine of the JSSP, look for pair of subsequent3 operations of Ω ’ 

that do not have slack time between them. The operations pair that satisfies 
this requirement forms the set Ω .  

In order to obtain the scheduling of a schedule in CPA, the scheduling algorithm is 
used [13]. The time function of CPA is shown in Equation 2, where η is the number 

of operations obtained from mxn, m is the number of machines, and n is the number of 

jobs in the problem. The complexity of the algorithm is ( )2/3ηO . 

( ) 2/12/3 22 ηηη +=f  (2) 

According to the three lines of reasoning, one could affirm that the set Ω  includes 
all the operations that belong to the CP. As can be seen in the study done in [16], it is 
known that a permutation carried out in a pair of subsequent operations that do not 
have slack time between them results in a feasible schedule. Therefore, any permuta-
tion of a pair of subsequent operations that belong to the set Ω , will result in a feasi-
ble schedule. 

The following is an example of how the set Ω  is obtained, using the schedule of 
the 3x3 JSSP presented in Figure 2.  

 
Fig. 3. Scheduling generated from Figure 2, starting with the fictitious operation I 

                                                                 
3  For the same machine, when operation i immediately precedes operation j, then i, j is a pair of 

subsequent operations.  
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Fig. 4. Scheduling generated from Figure 2, starting with the fictitious operation* 

Figure 3 presents the scheduling that is obtained starting with the fictitious op-
eration I. Figure 4 presents the scheduling that is obtained starting with the ficti-
tious operation*. 

Table 1. Results obtained from the scheduling beginning with operation I, with operation*, and 
with the evaluation of the Equation 1 

Scheduling Evaluation  
of Equation 1 

 
Operation 

si
I si

* MS = si
I + ci

* 
1 0 20 25 
2 14 7 25 
3 18 11 32 
4 0 10 12 
5 8 7 18 
6 18 0 25 
7 5 17 25 
8 8 11 25 
9 14 2 17 

  

In Figures 3 and 4, the number of each operation is enclosed in a circle and the other 
number corresponds to the job where this operation is required. In these figures, the 
shaded gray areas correspond to the operations that fulfill Equation 1. The makespan of 
both schedulings is the same and equal to 25. Table 1 presents the start times of each 
operation obtained from Figures 3 and 4. In the table, the shaded regions represent the 
operations that fulfill Equation 1. As one can observe in Table 1, all the operations that 
form the set Ω ’ = {1, 2, 6, 7, 8}, belong to the CP (see Figure 2). One can see that all 
the operations that form the critical path are found in the set Ω ’. These operations ful-
fill Equation 1, due to the fact that the MS obtained upon evaluating Equation 1 is the 
same as when evaluating for the CP (MS= 25). It can be observed in Figure 3 and 4 that 
the pairs of subsequent operations presented in the set Ω ’, do not have slack time; the 
pairs are (1, 7), (8, 2) and (2, 6). These pairs form the set Ω . 

The following section presents a comparison of cost/performance of the CPA algo-
rithm with a classical algorithm of polynomial time called CPM [11] (Critical Path 
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Method) which is used frequently [14] in the area of operations research for the plan-
ning and control of projects due to the high performance and low cost with which 
CPM works. 

5   Computational Results 

The proposed algorithm was proven with seven job shop scheduling problems 
benchmarks registered in the OR library [13]. Two problems of small size were used 
from this library, the FT06 with 6 machines, 6 jobs and 36 operations, and the FT10 
with 10 machines, 10 jobs and 100 operations, both were proposed by Muth and 
Thompson. The problem of medium size LA40 with 15 machines, 15 jobs and 225 
operations, proposed by Lawrence was used as well. Finally, four problems of larger 
size, proposed by Nakano and Yamada, were used which include YN1, YN2, YN3, 
and YN4, each one with 20 machines, 20 jobs and 400 operations. 

In order to carry out the tests, a personal computer with a processor of 2.4 GHz and 
640 MB in RAM was used. 

The comparison of cost/performance of the CPA algorithm in the calculation of the 
operations pair that forms the set Ω  (a set for each schedule generated randomly) 
was carried out with the CPM algorithm (Critical Path Method) [14].  
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Fig. 5. Cost generated by the CPM and CPA algorithms upon calculating 800,000 critical paths 

(sets Ω , respectively) as the JSSP increases in size 

Figure 5 presents the results obtained in the calculation of Ω  and the critical path 
using the CPA and CPM algorithms respectively, for the problems FT06, FT10, LA40 
and YN1. This figure shows the time of execution that is obtained for each algorithm 
when the number of operations in JSSP is increased. The time t is equal to the time that 
it takes the algorithm to calculate 800,000 critical paths (with CPM) or 800,000 sets 
Ω  (with CPA). As can be observed, the cost of CPA is less than that of CPM. This 
figure also shows that when the number of operations (NOP) increases, the difference 
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in times (CPM vs. CPA) needed to obtain the 800,000 critical paths (or sets Ω ) is 
more significant. This indicates that CPA works more efficiently than CPM as the 
problems of job shop increase in size. 

Figure 6 presents the results obtained in the calculation of critical paths using the 
CPM algorithms and the results obtained in the calculation of the sets Ω  using the 
CPA algorithms for the problem YN1. This figure shows the time of execution that is 
obtained when the Number of Critical Paths, NCP, (Number of sets Ω , NS Ω , re-
spectively) increases for each algorithm. The t time is equal to the time that it takes 
the CPM algorithm to calculate a determined number of critical paths (for CPA, num-
ber of sets Ω ). As shown, the cost of CPA is less than that of CPM. Also in this fig-
ure it can be observed that when NCP or NS Ω  increases, the difference in times 
(CPM vs. CPA) in order to obtain these critical paths (sets Ω , respectively), is made 
more noticeable. This indicates that CPA will work better than CPM when NCP in-
creases. For larger problems of JSSP, the metaheuristics that use the N1 structure need 
a large NCP in order to be able to execute an acceptable search within the large solu-
tion space that these problems have4. 
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Fig. 6. Cost generated by the CPM and CPA algorithms in the problem YN1, with increasing 

NCP (NS Ω , respectively) 

Table 2 presents a measure of the performance of the CPM and CPA algorithms. In 
order to evaluate this performance, the problems YN1, YN2, YN3, and YN4 were 
used. This table shows the average result for the calculation of 15,000 critical paths 
(15,000 sets Ω  respectively). As can be seen upon studying the table, on the average, 
the NPCP (number of pairs of operations that belong to the critical path) obtained by 
CPM (obtained also by CPA in Ω ), is between 34 and 38, depending on the problem. 
The MNP5 (maximum number of pairs) that a symmetrical problem of JSSP is able to 
                                                                 
4 In a JSSP, the solution space is bound by (m!)n.  
5 Maximum number of permutations, better known as the neighborhood size. 
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have is MNP= n (n-1), where n is the number of jobs that the problem has; for prob-
lems YN1 to YN4, MNP= 380 pair of operations. As can be seen by studying the ta-
ble, only a small part of the total pairs of operations belong to the CP (see NPCP in 
Table 2). In the same table, it is observed that there are a greater number of operations 
in the set Ω  than those that exist in the critical path. These operations that are not 
part of the critical path make up an average of only 1% of the pairs of operations that 
are in Ω . The percentage of COP (Critical Operations Pairs) in the set is very high 
and almost constant, making up around 99% of the total number of operations pairs in 
Ω .  It is important to clarify that in Ω , all the operations pairs that form the critical 
path are always present, plus a few pairs that are not part of the critical path. This 
means that the CPA algorithm has a very high performance in the approximation of 
the CP. This means that if CPA is used in metaheuristics that apply structures N1, a 
probability of 99% exists that any given pair of operations chosen from Ω  will per-
tain to the critical path. CPA allows full advantage to be taken of this neighborhood 
structure, but with a lower cost in generation time of the approximation of CP in order 
to evaluate N1.. Table 2 also shows MinCP (Minimum number of pairs of critical op-
erations found with CPM) generated in 15,000 tests and the MaxCP (maximum num-
ber of critical pairs found with CPM) generated in 15,000 tests for each problem of 
JSSP. This indicates that the number of pairs of operations that form the critical path 
will always be much lower that the MNP of a JSSP.  

Table 2. Results obtained in 15,000 schedules generated randomly 

Average CPM  
Problem NPCP 

(CPM) 
NPCP 
(CPA) 

%COP 
Ω  

MinCP MaxCP 

YN1 34 34 99 18 54 
YN2 35 35 99.1 17 56 
YN3 37 37 99 16 59 
YN4 38 38 99 20 62 

 

As a final test, in order to check the efficiency of the proposed configuration gen-
eration mechanism, the mechanism was implemented in the simulated annealing (SA) 
algorithm with restart presented in [8]. The cooling sequence of the simulated anneal-
ing is shown in Table 3. To is the initial temperature, tf is the final temperature, C are 
the Metropolis cycles, and f is the cooling factor. 

Table 3. Cooling sequence of the simulated annealing algorithm 

Problem T0 Tf C F 
FT10 64000 1 1000 0.98 
LA40 200 1 750 0.99 
YN1 64000 1 40000 0.98 
YN2 64000 1 40000 0.98 
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Four problems were used to test the proposed mechanism. The results are pre-
sented in Table 4.  The average and standard deviation, σ , reported in the table are 
the average of five executions of the SA algorithm. The SA algorithm is executed un-
til a RE (Relative Error) of less than 2% is obtained. The longest execution time using 
the proposed mechanism is for the problem YN2, which was approximately 5 hours 
and 9 minutes. In this case, there is a RE of 1.98% when comparing the result with the 
best upper-bound found to this date, which is reported by Der and Steinhöfel [17]. 
The SA parallel algorithm of Der and Steinhöfel, which requires the calculation of the 
critical path by using the neighborhood N1, took 16 hours and 30 minutes to obtain the 
upper-bound using a PC-cluster of 12 processors, each one of 550 MHz.  In Table 4, 
for YN1, a RE of 1.7% was obtained in approximately 2 hours. Der and Steinhöfel 
[17] report a RE of 0.68% obtained in 16 hours for the same problem.  In Table 4, for 
the FT10 problem, the optimum is obtained in less than 27 minutes.  This result is ob-
tained very quickly with respect to the time of 44 minutes, 55 seconds, reported in [8] 
when using the same algorithm that requires the calculation of the critical path. With 
the results shown in Table 4, it is proven that the configuration generation mechanism 
for neighborhoods proposed in this work, has a low cost, due to the short generation 
times needed to obtain good results for the evaluated problems with SA. It shows very 
good performance because it obtains results with low RE. 

SA works with the neighborhood N1 because pairs of operations that belong to the 
CP are permuted (99% of the time, see Table 2) using the CPA algorithm. 

Table 4. Results obtained when the proposed configuration generation mechanism for neigh-
borhoods is implemented in the SA algorithm with restart 

Problem t* 
sec 

CS Better 
MS* 

Bad 
MS 

Average 
MS 

%RE* σ  

FT10 1585 930 930 937 931.4 0 2.8 
LA40 1024 1222 1229 1234 1230.0 0.57 2.0 
YN1 7659 885 900 909 904.2 1.70 2.9 
YN2 18542 909 927 933 929.0 1.98 2.1 

6   Conclusion 

With the experimental results presented here, one can draw the conclusion that the 
CPA algorithm works more efficiently than the CPM algorithm with respect to cost 
because it obtains results more quickly. With respect to performance, CPA is com-
petitive with CPM, because on the average, 99% of the total of pairs obtained in the 
set Ω  belongs to the critical path. It is important to clarifying that Ω  will always 
contain all the operation pairs that form the CP.  

The use of the proposed Configuration Generation Mechanism for Neighbor-
hoods in SA, when searching for a solution to instances of varying sizes of JSSP, 
enables results to be obtained efficiently with respect to cost/performance. This 
suggests that the proposed mechanism could work efficiently for any of the existing 
benchmarks of JSSP. 
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