
A. Gelbukh and C.A. Reyes-Garcia (Eds.): MICAI 2006, LNAI 4293, pp. 450 – 460, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A New Algorithm That Obtains an Approximation of
the Critical Path in the Job Shop Scheduling Problem

Marco Antonio Cruz-Chávez1 and Juan Frausto-Solís2

1 CIICAp, Autonomous University of Morelos State
Av. Universidad 1001, Chamilpa, 62209, Cuernavaca Morelos, México

mcruz@uaem.mx
2 Department of Computer Science, ITESM, Campus Cuernavaca

Paseo de la Reforma 182-A, Lomas de Cuernavaca, 62589, Temixco, Morelos, México
juan.frausto@itesm.mx

Abstract. This paper presents a new algorithm that obtains an approximation of
the Critical Path in schedules generated using the disjunctive graph model that
represents the Job Shop Scheduling Problem (JSSP). This algorithm selects a
set of operations in the JSSP, where on the average ninety nine percent of the
total operations that belong to the set are part of the critical path. A comparison
is made of cost and performance between the proposed algorithm, CPA (Criti-
cal Path Approximation), and the classic algorithm, CPM (Critical Path
Method). With the obtained results, it is demonstrated that the proposed algo-
rithm is very efficient and effective at generating neighborhoods in the simu-
lated annealing algorithm for the JSSP.

Keywords: Critical path, metaheuristic, schedule, slack time, neighborhood.

1 Introduction

The job shop scheduling problem (JSSP) is considered to be one of the most difficult
to solve in combinatorial optimization. It is also one of the most difficult problems in
the NP-hard class [1]. Due to this, the importance of finding new algorithms that help
in the solution of this problem is understandable. The search for more efficient algo-
rithms has been focused in the area of non-deterministic algorithms, given the charac-
teristics of JSSP.

Given the good results obtained in JSSP for some non-deterministic algorithms of
local search, such as simulated annealing (SA) [2, 3, 4, 5, 6, 7, 8], great interest has
been taken in improving the operation of these metaheuristics. Most work has been
done in searching for better neighborhood structures [2, 5, 6, 7, 9] that permit more
efficient selection of neighbors.

At the moment, a very effective neighborhood structure exists, N1 [4], that allows
for the selection of neighbors in a schedule such that the search space of the JSSP de-
creases considerably. This allows more rapid advancement in the search for the global
optimum. In order to use the structure of neighborhood N1, it is necessary find the
critical path (CP) of the schedule, which is formed by a set of operations of the JSSP.
These operations are called critical operations. In this way, the only neighbors with

 A New Algorithm That Obtains an Approximation of the Critical Path 451

the possibility of being chosen are those that are generated by a permutation of a pair
of critical operations.

A metaheuristic has the characteristic of generating repeated local searches. There-
fore, when N1 is used, it is necessary to calculate the CP every time that a neighbor in
the neighborhood [4] of the schedule is chosen. Because of this, the execution of the
metaheuristic tends to be slower in large problems of job shop because of the repeated
calculation of the CP. This is true even though [10] the algorithms that are used in or-
der to calculate the CP are polynomial [11].

In JSSP, it has been proven [4] that only neighbors that are obtained through the
permutation of pair of operations that belong to the CP of a schedule could have a
makespan1 less than that of the original schedule. Due to this, when working with
metaheuristics in JSSP where the objective function is obtaining the minimum
makespan, the structure of neighborhood N1 or one of its derivatives [2, 3, 4, 5, 6,
7, 8] is used.

Several options exist that could improve the efficiency of the metaheuristics that
use the neighborhood structure N1. One option is to generate algorithms that calculate
the critical path in a more efficient form. Another option is to generate algorithms that
do not calculate the critical path. In place of this calculation, these algorithms would
have a high probability of generating neighbors by a permutation of a pair of critical
operations. The second option is presented in this paper. This option involves generat-
ing an algorithm that, based on certain heuristics approaches, selects a set Ω of op-
erations from all the existent operations in the job shop. This set is selected such that
it contains all of the operations that form the CP and a few others operations as well.
Within the set Ω , the largest percentages of operations are critical operations, that is,
Ω possesses a minimum number of non critical operations. In order to explore this
second option, an algorithm was generated called CPA (Critical Path Approximation),
which selects an operations set from a schedule. This operations set has the character-
istic of containing all the operations belonging to the CP. These critical operations
constitute 99 percent of all the operations in the set Ω .

This research contributes to the effort to find more efficient ways to use metaheu-
ristics for JSSP with the neighborhood structure N1 by proposing an efficient algo-
rithm for calculating the CP.

Following this brief introduction, section two explains the disjunctive graph model
of the job shop scheduling problem that is used to generate schedules where the CP
and Ω are obtained. Section three presents the neighborhood structure N1, section
four introduces the algorithm proposed that generates the configuration generation
mechanism for neighborhoods, called Critical Path Approximation (CPA). Section
five presents the experimental results. The final section draws conclusions about the
information presented in the previous sections.

2 The Disjunctive Graph Model of the JSSP

Figure 1 shows the disjunctive graph model G = (A, E, O) for a JSSP of 3x3 (three ma-
chines and three jobs). This disjunctive graph is formed by three sets. The operations

1 Maximum completion time of the jobs.

452 M.A. Cruz-Chávez and J. Frausto-Solís

set, O, is made up of the nodes G, numbered one to nine. The processing time appears
next to each operation. The beginning and ending operations (I and * respectively) are
fictitious, with processing times equal to zero. The set A is composed of conjunctive
arcs, each one of these arcs unites a pair of operations that belong to the same job. The
operations 1, 2, and 3 are connected by one of these arcs and therefore form job one.
Jobs two and three are made up of the operations 4, 5, 6 and 7, 8, 9 respectively. Each
arc of A represents a precedence constraint. For example, in job one, operation two must
finish before operation three begins. Set E is composed of disjunctive arcs. Each arc that
belongs to E unites a pair of operations that belong to the same machine. It can be seen
that operations 1, 5 and 7 are executed by machine one and united by these arcs. Like-
wise, machines two and three execute the operations 3, 4, 9 and 2, 6, 8 respectively.
Each machine forms a clique (a subset of E completely connected). Each arc of E repre-
sents a resources capacity constraint between a pair of operations that belong to the
same machine. This type of constraint indicates that the machine cannot execute more
than one operation in the same interval of time.

Fig. 1. Representation of a JSSP with three jobs and three machines using a disjunctive graph

3 The N1 Neighborhood Function

The selection of the neighborhood structure strongly influences the performance of
the metaheuristics [12] because the neighborhood has to be evaluated constantly.
Consequently, this evaluation is the most critical one in the metaheuristics. In JSSP,
the neighborhood N1, introduced by Van Laarhoven et al. [4], has been used with great
success to minimize the makespan. The evaluation of this neighborhood is made
based on the set of solutions that are generated by the disjunctive graph G. Each solu-
tion (schedule) represents a digraph that does not contain cycles. In order to evaluate
the neighborhood of the schedule, S, using N1, it is necessary to find the CP of S.
The neighbors in an N1 neighborhood are generated by a permutation in a pair of ad-
jacent operations that belong to the set of operations that form the CP of S. Figure 2
presents a schedule, S, for the JSSP shown in Figure 1, where the CP of S is demon-
strated by a thicker line. The only pairs of adjacent operations that could swap in the
CP are the compound pairs of operations that are executed by the same machine. For
S in Figure 2, the pair of operations 1 and 7, which are executed by machine one, can
be swapped. Likewise, the pair of operations 8 and 2 executed by machine two can be
swapped. As one can see, in order to obtain a neighbor of S (permutation of a pair of

 A New Algorithm That Obtains an Approximation of the Critical Path 453

operations of S), it is necessary to calculate the CP of S. If N1 is used in a local search,
every time that a new S is formed, it is necessary to recalculate the CP to continue
evaluating N1.

Great advantages are gained by using N1 in local searches [4]. For example, any
permutation carried out in order to find a new schedule, S', obtains a feasible sched-
ule, as long as S' = f (S, N1). It is also possible to obtain an S' with a makespan which
is less than S, although this does not happen if the swap is made with a pair of opera-
tions that do not belong to the CP.

Fig. 2. A schedule of 3x3 where the operations that form the critical path are shown

An easily noted disadvantage of using N1 is the necessity of calculating the CP
constantly when N1 is used in local searches.

The following section presents an alternate proposal to the use of N1, which avoids
repeatedly calculating the critical path of the job shop scheduling problem, conse-
quently allowing for a reduction in the calculation time.

4 Critical Path Approximation Algorithm

The Critical Path Approximation (CPA) algorithm is based on three main lines of rea-
soning. The first line of reasoning is that for a defined schedule such as the one in
Figure 2, the CP that is generated beginning from the fictitious operation I and ending
with the fictitious operation *, is the same CP that is generated beginning with the fic-
titious operation * and ending with the fictitious operation I. That is, both critical
paths generated in opposite directions are formed by the same operations due to being
the same schedule. The second line of reasoning involves Equation 1, which indicates
that upon generating the scheduling2 starting with the fictitious operation I the start
time si

I is obtained from the operation i that belongs to the critical path of the sched-
ule. When this start time is added to the completion time ci* (for the same operation),
which is obtained by the scheduling beginning with the fictitious operation *, the sum
is equal to the makespan (MS), where the MS is equal to the value of the CP [4] of the
schedule. For ci

* = si
*+ t, si

* is the start time that is obtained from operation i when
the scheduling starts with the fictitious operation * and t is the processing time of the
operation i. The final line of reasoning that is considered for the generation of the
CPA algorithm is that slack time between a pair of operations (i, j) that is part of
the CP does not exist [4]. Considering the above-mentioned, it can be seen that the

2 Start times of the operations of a schedule.

454 M.A. Cruz-Chávez and J. Frausto-Solís

operations that fulfill both Equation 1 and the conditions of the last line of reasoning
will have a high probability of belonging to the critical path of the defined schedule
because they fulfill the conditions necessary for the pair (i, j) to belong to the CP.
This means that there is neither slack between the pair (i, j) nor in either operation.
More details are presented in CPM in [14].

MS = si
I + ci

* (1)

The steps of the CPA algorithm are the following:

1. Take a schedule S as initial data.
2. Generate the scheduling SI of S, beginning with the fictitious operation I.
3. Generate the S* scheduling of S, beginning with the fictitious operation *.
4. Find the operations set Ω ’ that satisfies Equation 1.
5. In each machine of the JSSP, look for pair of subsequent3 operations of Ω ’

that do not have slack time between them. The operations pair that satisfies
this requirement forms the set Ω .

In order to obtain the scheduling of a schedule in CPA, the scheduling algorithm is
used [13]. The time function of CPA is shown in Equation 2, where η is the number

of operations obtained from mxn, m is the number of machines, and n is the number of

jobs in the problem. The complexity of the algorithm is ()2/3ηO .

() 2/12/3 22 ηηη +=f (2)

According to the three lines of reasoning, one could affirm that the set Ω includes
all the operations that belong to the CP. As can be seen in the study done in [16], it is
known that a permutation carried out in a pair of subsequent operations that do not
have slack time between them results in a feasible schedule. Therefore, any permuta-
tion of a pair of subsequent operations that belong to the set Ω , will result in a feasi-
ble schedule.

The following is an example of how the set Ω is obtained, using the schedule of
the 3x3 JSSP presented in Figure 2.

Fig. 3. Scheduling generated from Figure 2, starting with the fictitious operation I

3 For the same machine, when operation i immediately precedes operation j, then i, j is a pair of

subsequent operations.

 A New Algorithm That Obtains an Approximation of the Critical Path 455

Fig. 4. Scheduling generated from Figure 2, starting with the fictitious operation*

Figure 3 presents the scheduling that is obtained starting with the fictitious op-
eration I. Figure 4 presents the scheduling that is obtained starting with the ficti-
tious operation*.

Table 1. Results obtained from the scheduling beginning with operation I, with operation*, and
with the evaluation of the Equation 1

Scheduling Evaluation
of Equation 1

Operation

si
I si

* MS = si
I + ci

*
1 0 20 25
2 14 7 25
3 18 11 32
4 0 10 12
5 8 7 18
6 18 0 25
7 5 17 25
8 8 11 25
9 14 2 17

In Figures 3 and 4, the number of each operation is enclosed in a circle and the other
number corresponds to the job where this operation is required. In these figures, the
shaded gray areas correspond to the operations that fulfill Equation 1. The makespan of
both schedulings is the same and equal to 25. Table 1 presents the start times of each
operation obtained from Figures 3 and 4. In the table, the shaded regions represent the
operations that fulfill Equation 1. As one can observe in Table 1, all the operations that
form the set Ω ’ = {1, 2, 6, 7, 8}, belong to the CP (see Figure 2). One can see that all
the operations that form the critical path are found in the set Ω ’. These operations ful-
fill Equation 1, due to the fact that the MS obtained upon evaluating Equation 1 is the
same as when evaluating for the CP (MS= 25). It can be observed in Figure 3 and 4 that
the pairs of subsequent operations presented in the set Ω ’, do not have slack time; the
pairs are (1, 7), (8, 2) and (2, 6). These pairs form the set Ω .

The following section presents a comparison of cost/performance of the CPA algo-
rithm with a classical algorithm of polynomial time called CPM [11] (Critical Path

456 M.A. Cruz-Chávez and J. Frausto-Solís

Method) which is used frequently [14] in the area of operations research for the plan-
ning and control of projects due to the high performance and low cost with which
CPM works.

5 Computational Results

The proposed algorithm was proven with seven job shop scheduling problems
benchmarks registered in the OR library [13]. Two problems of small size were used
from this library, the FT06 with 6 machines, 6 jobs and 36 operations, and the FT10
with 10 machines, 10 jobs and 100 operations, both were proposed by Muth and
Thompson. The problem of medium size LA40 with 15 machines, 15 jobs and 225
operations, proposed by Lawrence was used as well. Finally, four problems of larger
size, proposed by Nakano and Yamada, were used which include YN1, YN2, YN3,
and YN4, each one with 20 machines, 20 jobs and 400 operations.

In order to carry out the tests, a personal computer with a processor of 2.4 GHz and
640 MB in RAM was used.

The comparison of cost/performance of the CPA algorithm in the calculation of the
operations pair that forms the set Ω (a set for each schedule generated randomly)
was carried out with the CPM algorithm (Critical Path Method) [14].

0

500

1000

1500

2000

2500

3000

3500

0 200 400 600

NOP

t,
S

ec CPM

CPA

Fig. 5. Cost generated by the CPM and CPA algorithms upon calculating 800,000 critical paths

(sets Ω , respectively) as the JSSP increases in size

Figure 5 presents the results obtained in the calculation of Ω and the critical path
using the CPA and CPM algorithms respectively, for the problems FT06, FT10, LA40
and YN1. This figure shows the time of execution that is obtained for each algorithm
when the number of operations in JSSP is increased. The time t is equal to the time that
it takes the algorithm to calculate 800,000 critical paths (with CPM) or 800,000 sets
Ω (with CPA). As can be observed, the cost of CPA is less than that of CPM. This
figure also shows that when the number of operations (NOP) increases, the difference

 A New Algorithm That Obtains an Approximation of the Critical Path 457

in times (CPM vs. CPA) needed to obtain the 800,000 critical paths (or sets Ω) is
more significant. This indicates that CPA works more efficiently than CPM as the
problems of job shop increase in size.

Figure 6 presents the results obtained in the calculation of critical paths using the
CPM algorithms and the results obtained in the calculation of the sets Ω using the
CPA algorithms for the problem YN1. This figure shows the time of execution that is
obtained when the Number of Critical Paths, NCP, (Number of sets Ω , NS Ω , re-
spectively) increases for each algorithm. The t time is equal to the time that it takes
the CPM algorithm to calculate a determined number of critical paths (for CPA, num-
ber of sets Ω). As shown, the cost of CPA is less than that of CPM. Also in this fig-
ure it can be observed that when NCP or NS Ω increases, the difference in times
(CPM vs. CPA) in order to obtain these critical paths (sets Ω , respectively), is made
more noticeable. This indicates that CPA will work better than CPM when NCP in-
creases. For larger problems of JSSP, the metaheuristics that use the N1 structure need
a large NCP in order to be able to execute an acceptable search within the large solu-
tion space that these problems have4.

0

1000

2000

3000

4000

5000

6000

7000

0.0E+00 5.0E+05 1.0E+06 1.5E+06 2.0E+06

NCP

t,
S

ec

CPM

CPA

Fig. 6. Cost generated by the CPM and CPA algorithms in the problem YN1, with increasing

NCP (NS Ω , respectively)

Table 2 presents a measure of the performance of the CPM and CPA algorithms. In
order to evaluate this performance, the problems YN1, YN2, YN3, and YN4 were
used. This table shows the average result for the calculation of 15,000 critical paths
(15,000 sets Ω respectively). As can be seen upon studying the table, on the average,
the NPCP (number of pairs of operations that belong to the critical path) obtained by
CPM (obtained also by CPA in Ω), is between 34 and 38, depending on the problem.
The MNP5 (maximum number of pairs) that a symmetrical problem of JSSP is able to

4 In a JSSP, the solution space is bound by (m!)n.
5 Maximum number of permutations, better known as the neighborhood size.

458 M.A. Cruz-Chávez and J. Frausto-Solís

have is MNP= n (n-1), where n is the number of jobs that the problem has; for prob-
lems YN1 to YN4, MNP= 380 pair of operations. As can be seen by studying the ta-
ble, only a small part of the total pairs of operations belong to the CP (see NPCP in
Table 2). In the same table, it is observed that there are a greater number of operations
in the set Ω than those that exist in the critical path. These operations that are not
part of the critical path make up an average of only 1% of the pairs of operations that
are in Ω . The percentage of COP (Critical Operations Pairs) in the set is very high
and almost constant, making up around 99% of the total number of operations pairs in
Ω . It is important to clarify that in Ω , all the operations pairs that form the critical
path are always present, plus a few pairs that are not part of the critical path. This
means that the CPA algorithm has a very high performance in the approximation of
the CP. This means that if CPA is used in metaheuristics that apply structures N1, a
probability of 99% exists that any given pair of operations chosen from Ω will per-
tain to the critical path. CPA allows full advantage to be taken of this neighborhood
structure, but with a lower cost in generation time of the approximation of CP in order
to evaluate N1.. Table 2 also shows MinCP (Minimum number of pairs of critical op-
erations found with CPM) generated in 15,000 tests and the MaxCP (maximum num-
ber of critical pairs found with CPM) generated in 15,000 tests for each problem of
JSSP. This indicates that the number of pairs of operations that form the critical path
will always be much lower that the MNP of a JSSP.

Table 2. Results obtained in 15,000 schedules generated randomly

Average CPM
Problem NPCP

(CPM)
NPCP
(CPA)

%COP
Ω

MinCP MaxCP

YN1 34 34 99 18 54
YN2 35 35 99.1 17 56
YN3 37 37 99 16 59
YN4 38 38 99 20 62

As a final test, in order to check the efficiency of the proposed configuration gen-
eration mechanism, the mechanism was implemented in the simulated annealing (SA)
algorithm with restart presented in [8]. The cooling sequence of the simulated anneal-
ing is shown in Table 3. To is the initial temperature, tf is the final temperature, C are
the Metropolis cycles, and f is the cooling factor.

Table 3. Cooling sequence of the simulated annealing algorithm

Problem T0 Tf C F
FT10 64000 1 1000 0.98
LA40 200 1 750 0.99
YN1 64000 1 40000 0.98
YN2 64000 1 40000 0.98

 A New Algorithm That Obtains an Approximation of the Critical Path 459

Four problems were used to test the proposed mechanism. The results are pre-
sented in Table 4. The average and standard deviation, σ , reported in the table are
the average of five executions of the SA algorithm. The SA algorithm is executed un-
til a RE (Relative Error) of less than 2% is obtained. The longest execution time using
the proposed mechanism is for the problem YN2, which was approximately 5 hours
and 9 minutes. In this case, there is a RE of 1.98% when comparing the result with the
best upper-bound found to this date, which is reported by Der and Steinhöfel [17].
The SA parallel algorithm of Der and Steinhöfel, which requires the calculation of the
critical path by using the neighborhood N1, took 16 hours and 30 minutes to obtain the
upper-bound using a PC-cluster of 12 processors, each one of 550 MHz. In Table 4,
for YN1, a RE of 1.7% was obtained in approximately 2 hours. Der and Steinhöfel
[17] report a RE of 0.68% obtained in 16 hours for the same problem. In Table 4, for
the FT10 problem, the optimum is obtained in less than 27 minutes. This result is ob-
tained very quickly with respect to the time of 44 minutes, 55 seconds, reported in [8]
when using the same algorithm that requires the calculation of the critical path. With
the results shown in Table 4, it is proven that the configuration generation mechanism
for neighborhoods proposed in this work, has a low cost, due to the short generation
times needed to obtain good results for the evaluated problems with SA. It shows very
good performance because it obtains results with low RE.

SA works with the neighborhood N1 because pairs of operations that belong to the
CP are permuted (99% of the time, see Table 2) using the CPA algorithm.

Table 4. Results obtained when the proposed configuration generation mechanism for neigh-
borhoods is implemented in the SA algorithm with restart

Problem t*
sec

CS Better
MS*

Bad
MS

Average
MS

%RE* σ

FT10 1585 930 930 937 931.4 0 2.8
LA40 1024 1222 1229 1234 1230.0 0.57 2.0
YN1 7659 885 900 909 904.2 1.70 2.9
YN2 18542 909 927 933 929.0 1.98 2.1

6 Conclusion

With the experimental results presented here, one can draw the conclusion that the
CPA algorithm works more efficiently than the CPM algorithm with respect to cost
because it obtains results more quickly. With respect to performance, CPA is com-
petitive with CPM, because on the average, 99% of the total of pairs obtained in the
set Ω belongs to the critical path. It is important to clarifying that Ω will always
contain all the operation pairs that form the CP.

The use of the proposed Configuration Generation Mechanism for Neighbor-
hoods in SA, when searching for a solution to instances of varying sizes of JSSP,
enables results to be obtained efficiently with respect to cost/performance. This
suggests that the proposed mechanism could work efficiently for any of the existing
benchmarks of JSSP.

460 M.A. Cruz-Chávez and J. Frausto-Solís

References

1. M.R. Garey, D.S. Johnson and R. Sethi, The complexity of Flow shop and Job shop
Scheduling. Mathematics of Operations Research, Vol. I, No 2, USA, 117-129, May,
1976.

2. E.H.L. Aarts, P.J.M. Van Laarhoven, J.K. Lenstra, and N.L.J. Ulder, A computational
study of local search algorithms for job shop scheduling, ORSA Journal on Computing 6,
118-125, 1994.

3. M.E. Aydin, M.E. and T. C. Fogarty, A distributed evolutionary simulated annealing algo-
rithm for combinatorial optimisation problems, accepted for publication in Journal of Heu-
ristics, 10 (3): 269-292, May 2004.

4. P.J.M. Van Laarhoven, E.H.L. Aarts and J.K. Lenstra. Job shop scheduling by simulated
annealing. Oper. Res., 40(1):113-125, 1992.

5. T. Yamada and R. Nakano, Job-shop scheduling by simulated annealing combined with
deterministic local search, Meta-heuristics: theory and applications, Kluwer academic pub-
lishers MA, USA, pp. 237-248, 1996.

6. T. Yamada, B. E. Rosen and R. Nakano, A simulated annealing approach to job shop
scheduling using critical block transition operators, IEEE, 0-7803-1901-X/94, 1994.

7. K. Steinhöfel, , A. Albrecht , C.K. Wong, An Experimental Analysis of Local Minima to Im-
prove Neighborhood Search Computers & Operations Research, 30(14):2157-2173, 2003.

8. M. A. Cruz-Chávez, J. Frausto-Solís, Simulated Annealing with Restart to Job Shop
Scheduling Problem Using Upper Bounds, LNAI, ICAISC 2004, Vol. 3070, pp. 860 –
865, Springer-Verlag Pub., ISSN: 0302-9743, 2004.

9. S. Knust, Optimal conditions and exact neighborhoods for sequencing problems, Univer-
sität Osnabrück Fachbereich Mathematik/Informatik, D-49069 Osnabruck, Germany,
January 1997.

10. M. A. Cruz-Chávez, J. Frausto-Solís and F. Ramos-Quintana, The Problem of Using the
Calculation of the Critical Path to Solver Instances of the Job Shop Scheduling Problem,
International Journal of Computational Intelligence, ENFORMATIKA, ISSN: 1304-2386,
Vol. 1, No. 4, pp. 334-337, 2004.

11. S. Chanas, and P. Zielinski,., The Computational Complexity of the Critical Problems in a
Network with Interval Activity Times, European Journal of Operational Research 136,
541-550, 2002.

12. H. Yildiz, Simulated Annealing & Applications to Scheduling Problems, Department of
Industrial Engineering, Bilkent University, TR-06533, yildiz@ug.bcc.bilkent.edu.tr, 2000.

13. P. J. Zalzala, and Flemming: Zalsala, A.M.S. (Ali M.S.), ed., Genetic algorithms in engi-
neering systems /Edited by A.M.S. Institution of Electrical Engineers, London, 1997.

14. F. S. Hiller, and G. J. Lieberman, Introduction to Operations Research, ISBN: 0-07-
113989-3, International Editions, 1995.

15. J. E. Beasley. OR-Library: Distributing test problems by electronic mail. Journal of the
Operational Research Society, Vol. 41. No. 11, 1069-1072, 1990. Last update 2003.

16. M. A. Cruz-Chávez, J. Frausto-Solís, J. R. Cora-Mora, Experimental Analysis of a
Neighborhood Generation Mechanism Applied to Scheduling Problems, Proceedings of
CERMA2006, IEEE-Computer Society, 26-29 Sep, México, 2006.

17. U. Der, K. Steinhöfel, A Parallel Implementation of Job Shop Scheduling Heuristics In
Sørevik, T., Manne, F., Moe, R., Gebremedhin, A.H. (eds.), Proc. 5th International Work-
shop on Applied Parallel Computing, Springer-Verlag (LNCS 1947), pp. 215 - 222, 2001.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

