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Abstract: - The Graph k-Colorability Problem (GCP) is a well known NP-hard problem consisting on finding the
& minimum number of colors to paint the vertexes of a graph in such a way that two any vertexes joined by an
edge has always different colors. In this paper GCP is transformed into the Satisfiability Problem and then it is
solved using a hybrid algorithm that uses the Threshold Accepting algorithm (a variant of Simulated Annealing)
and the classical one literal rule of Davis & Putnam. Many years ago, Simulated Annealing (SA) was used for
graph coloring obtaining good results. However Threshold Accepting (TA) and SA are not complete algorithms
then they not always get the optimal solution. The new algorithm is a complete one and so gets better quality that
TA and SA algorithms and is faster than a Davis & Putman algorithm.
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1 Introduction

A graph G can be defined as G=(V,E) where V is a
set of vertexes and E is a set of edges. A k-coloring of
G is a partition of V into k sets {V), .... Vi}, such that
no two vertexes in the same set are adjacent, i.e., if v,
wbelongto ¥V, 1 i< k, then (v, w) not belong to E.
The sets {V), ..., Vi} are referred to as colors. The
chromatic number, x(G), is defined as the minimum k
for which G is k-colorable. The Graph k-Colorability
Problem (GCP) can be stated as follows. Given a
graph G, find x(G) and the corresponding coloring.
GCP is a NP-hard problem [1].

GCP is very important because it has many
applications; some of them are planning and
scheduling problems [2](3], timetabling [4], map
coloring [5] and many others. Because GCP is a NP-
hard problem, until now there are not known
deterministic methods that can solved it in a
polynomial time [1]. So no-deterministic algorithms
have been built to solve it; one of them is Simulated
Algorithm (SA) [6] that has been used on GCP with
good results [7][8]. However, SA is not a complete
algorithm and so not always gets the optimal solution.
The alternative used in this paper is to transform GCP

Davis & Putnam, Threshold Accepting, Chromatic

into a Satisfiability Problem (or SAT problem) [13]
and then use the hybrid algorithm proposed here. We
propose to use iteratively the Threshold Accepting
(TA) algorithm (a variant of Simulated Annealing)
[9] and then a Davis and Putnam algorithm [10].

2 Simulated Annealing and Threshold
Accepting

Simulated annealing (SA) [6] is a stochastic
computational technique derived from statistical
mechanics to find near global-minimum-cost
solutions to large optimization problems. In many
instances, finding the global minimum value of an
objective function with many degrees of freedom
subject to conflicting constraints is an NP-complete
problem, since the objective function will tend to
have many local minima. A procedure for solving
optimization problems of this type should sample the
search space in such a way that it has a high
probability of finding the optimal or a near-optimal
solution in a reasonable time. Over the past decade,
SA has shown to be a powerful technique which
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meets these criteria for a wide range of problems. SA
exploits an analogy between the way a metal cool and
freezes into a minimum energy crystalline structure
(the annealing process) and the search for a minimum
in a more general system. SA makes a random search
which not only accepts changes that increase its cost
function f, but also some that decrease it. For this
reason, SA uses a control parameter ‘¢, which by
analogy with the original application is known as the
“System Temperature”, c¢ starts out high and
gradually decreases.

A deteriorating random move from solution S, to
S, is accepted with a probability exp™/*/ < If this

move is not deteriorating (the new solution §; is better
than the old one ;) then it is accepted and a new
random move is proposed again. When the
temperature is high, a bad move can be accepted. As
¢ tends to zero, SA becomes more demanding
through accept just better moves. The algorithm for
minimization is shown below:

Procedure SIMULATED ANNEALING
Begin
INITIALIZE(S=initial_solution,
c=initial _temperature)
k=0
Repeat
Repeat
S, = PERTURBATION(S))
If COST(S)) <= COST(S,) Then

5=5
Else If exp(-INC_COST/¢) > random[0,1) Then
S =85
Until stochastic equilibrium
k=k+1

¢ = COOLING(c)
Until thermal equilibrium
End

The INITIALIZE function set the initial solution
S, and the initial temperature c¢. The
PERTURBATION function makes a random
perturbation from S, to generate a neighborhood
solution S;. The COST function gets the cost from a
solution. The INC_COST function gets the difference
in cost between S, and S, Finally the COOLING
function decreases the actual temperature parameter

A variant of Simulated Annealing (SA) is the
Threshold Accepting method (TA). It was designed
by Dueck & Scheuer [9] in order to get a more
efficient algorithm than Simulated Annealing. The
principal differemce. between SA and TA, is the

mechanism of accepting the solution randomly
chosen from the set of neighbors of the current
solution. ' While SA uses a probabilistic model (see
equation (1)), TA uses a static model: if the
difference between the cost values of the chosen
solution S, and the current one S; is smaller than a
threshold T (or temperature), TA accepts moving to
the chosen solution. Otherwise it stays at the current
solution. Again, the threshold parameter T is a
positive control parameter which decreases with
increasing number of iterations and converges to
value near to 0. Henceforth, in every iteration some
solution deterioration is allowed; this deterioration
depends on the current threshold T (see equation (2));
in this way only improving solutions with almost
none deterioration solution are accepted at the end of
the process.

(S, S5) = exp(min{f(Sp)-f(S2), 03/c) (1)
COST(S;) < COST(S)) +T = accept S; (2)

For SAT problems, using a good tune method [11]
Threshold Accepting yields better results than
Simulated Annealing, at least with the instances
tested in [12]. This could be because TA does not
compute the probabilistic function (1) and does not
expend a lot of time making random decisions. The
Threshold Accepting algorithm for minimization is
the following:

Procedure THRESHOLD ACCEPTING
Begin
INITIALIZE (S, = initial_solution,
T=initial _threshold or temperature)
k=0
Repeat
Repeat
S, = PERTURBATION(S))
E = COST(S)) - COST(S))
If E<T Then
5,=S,
Until stochastic equilibrium
k=k+1
T =DECREASE_THRESHOLD(T)
Until Thermal Equilibrium
End

Here, the DECREASE THRESHOLD function is
equivalent to the COOLING function in SA and the
threshold 7 is named “temperature” in order to make
more evident that TA belongs to Simulated
Annealing Like Algorithms class (SALA). SALA use
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Simulated annealing approach with two main loops:
internal loop named Metropolis Cycle and external
loop named Temperature Cycle. Number of iterations
in internal and external loop usually are tuned
experimentally [6], [9]. However, recently an
analytical method using a Markov model was
proposed to tune TA solving SAT problems[11].

External loop executed from a initial temperature
T, until a final temperature 7; and the internal loop
builds a Markov chain of length L, which depend on
the temperature value T, (k represents the sequence
index in Temperature cycle). A strong relation exists
between 7, and L, in a way that:

If Th—> oo, Li—>0 andif T, > 0,L,—>o (3)

Like TA is applied through a neighborhood
structure, ¥, (PERTURBATION function makes a
random perturbation from S, to generate a
neighborhood solution S)), the maximum number of
different solutions that can be rejected from S; is the
size of its neigborhood, |Vs|. Then the maximum
length of a Markov chain in a TA algorithm is the
number of samples that must be taken in order to
evaluate an expected fraction of different solutions
from Vs, at the final temperature 77 this is:

Ly=C\Vs| 4)

where C varies from 1 < C < 4.6 (exploration from
63% until 99%). Ly is the length of the Markov chain
at Ty

From (3), L, must be incremented in a similar but
inverse way that 7, is decremented. Then for the
geometric reduction cooling function used by
Kirkpartick [6] and Dueck and Scheuer [9],

Tk,_i = aTk (5)
the incremental Markov chain function must be:

L+ = BLe (6)
where

p=exp((InL;—InL)/n) (7

here, L, is the length of the Markov chain at 7,
usually L, = 1. and #n is the number of temperature
steps from T, to T, through (5).

Now, the maximum and minimum cost increments
produced through the neighborhood structure are:

AZymae = Max{COST(S)) - COST(S)}  (8)
AZymmn = Min{COST(S)) - COST(S)}  (9)

for all S, € Vg, and for all S, € S
Then T, and T; must be calculated as:

T: = Azl/max (] 0)
T < AZypin (11)

This way of determining the initial temperature
enable TA to accept any possible transition at the
beginning of the process, since 7, is set as the
maximum deterioration in cost that may be produced
through the neighborhood structure. Similarly, 7;
enable TA to have control of the climbing probability
until to do a greedy local search.

3 Davis & Putnam method
Satisfiablity Problem [13] (or SAT) is very important
in complexity theory.

Let be a propositional formula like formula (12):

F=F;&F2&‘..&Fn (12)

where every F, is a disjunction.

Every F, is a disjunction of propositional formulas
like X; v X5 v..v X,. Every F, is a clause and every Ay
is a literal. Every literal can take a truth value (0 or
false, 1 or truth). In Satisfiability problem a set of
values for the literals should be found, in such a way
that the evaluation of (12) be true; otherwise if (12) is
not true, we say that F it is unsatisfiable. Besides we
say that (12) is in Conjunctive Normal Form or CNF.

The Davis & Putnam method is widely regarded
as one of the best deterministic methods for deciding
the satisfiability [13] of a set of propositional clauses
[10]. It is also a complete resolution method. This
procedure calls itself after rewriting the input formula
according to a number of rules for generating a
smaller formula with the same truth value. The rules
used for the Davis & Putnam method are:

Rule 1: if the input formula has no clauses, then
it is satisfiable

Rule 2: if it has a clause with no literals, it is
unsatisfiable

Rule 3: if it has a clause with exactly one literal,
then make the literal true and rewrite the
formula accordingly

Rule 4: if some variable appear only positively or
negatively, then pick one such variable and
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assign a value to it to make the literal true,
and rewrite the formula accordingly

If none rule could be applied, one picks up an
arbitrary variable as a branching point and two new
formulas are derived by assigning 0 and 1 to this
variable. If one of the calls returns with the positive
answer, then the input is satisfiable; otherwise, it is
unsatisfiable.

The Davis & Putnam algorithm is shown below:

Function DAVIS-PUTNAM(In formula : clauses list)
Begin
REDUCE(formula, vreduce)
If formula is empty Then
Return vreduce
Else If formula has a clause with no literals Then
Return fail
Else
Choose a literal ¥ from formula
valuation=DAVIS-PUTNAM(
SUBSTITUTION(true,V, formula))
If valuation '= fail Then
Return ADD(V=true, vreduce, valuation)
valuation=DAVIS-PUTNAM(
SUBSTITUTION(false,V, formula))
If valuation '= fail Then
Return ADD(V=false, vreduce, valuation)
Return fail
Endit
End DAVIS-PUTNAM

Function SUBSTITUTION (7F, V., Sformula)
Begin
For Each one clause C In formula Do
If [C contain V" and TF=true]or
[C contain ~V and TF=false] Then
delete C from formula
Else If [C contain V' and TF=false]or
[C contain ~V and TF=true] Then
delete ¥ from C
Endif
Endfor
Return formula
End_SUBSTITUTION
Function REDUCE(In Out: formula, vreduce)
Begin
vreduce = emply
While exists clause C In formula with exactly one
literal L
If L is positive variable ¥ Then
formula= SUBSTITUTION(true, V. formula)
vreduce = CONS{ F=true, vreduce)
Else If L & megstive vaniable ¥ Then

formula = SUBSTITUTION (false, V', formula)
vreduce = CONS(V=false, vreduce)
Endif
Endwhile
Return(formula)
End REDUCE

The DAVIS-PUTNAM function is the main
function and it selects randomly a literal to set a true
set of values in order to create unitary clauses. If that
true set values is not the correct solution then the
complement set of true values is tried. If the new
assignment is neither a satisfiable solution, then the
formula is unsatisfiable.

The function SUBTITUTION makes the
propagation of one literal over all the clauses in
formula, deleting clauses where occurs the positive
literal L and its value is 1 (true). Therefore the clauses
where ~L occurs can delete that literal.

The REDUCE function carries out the search of
unitary clauses, so that it can be possible propagate
through the function SUBSTITUTION.

4 Graph Coloring through Threshold

Accepting and Davis-Putnam

Informally coloring a graph with k colors or Graph k-

Colorability Problem (GCP) is the following: Is it

possible to assign one of k colors to each node of a

graph G=(V,E), such that no two adjacent nodes be

assigned the same color? If answer is positive we say
that the graph is k-colorable and k is the chromatic

number x(G). It is possible to transform Graph k-

Colorability Problem (GCP) into Satisfiability

problem (SAT); that means that for a given graph

G=(V,E) and a number k, it is possible to derive a

CNF formula F such that F is satisfiable only in the

case that G is k-colorable. The formulation of GCP

as SAT is made assigning X Boolean variables as
follow:

1) Take every node and assign a boolean variable X,
for every node i and color j: the disjunction of all
these variables. In this way every node will have
at least one color. Therefore, in the case of figure
1. we have the clauses:

Node 1: XVH vXpv .)(13 v X'”
Node 2: ,-Y_:; AY ng Vv ng Vv X_u
Node 3: X5, v X2V AV Xy
Node 4: X,y v X2 v X v Xy

2) To avoid that a node has more that one color, add
the formula X;; 2~Xu

3) In order to be sure that two nodes (V.V)
connecting with an arc have different colors, add
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a clause such that if ¥, has color &, ¥, should not
be color with this color. This clause is writing as
)‘,ik >~ ke

4) In order to know which nodes are connected with
an edge, an adjacent matrix 4 of the graph is
needed; its elements are:

1 if i is connected with j

0 otherwise

Fig. 1: Graph coloring example

The reduction of a graph to the Conjunctive
Normal Form (CNF) generates so many clauses even
for small graphs. For example, for a full graph with 7
nodes (42 edges), 308 clauses with 98 literals can be
generated. If we use Davis & Putnam algorithm to
color a graph, we could start coloring with R colors
(the graph’s degree or from a number given). If it is
not possible to color it, then we can increase R and
try again.

Because to find a large chromatic number x(G) is
a very hard task for a complete method as Davis &
Putnam (it demands many resources), we need an
incomplete method to help in this task. For this
reason we have chosen the Threshold Accepting
method. TA will search the chromatic number, but as
it is known TA not always get the optimal solution.
By this reason, the number found by TA is send to a
Davis & Putnam procedure, and this one will get the
optimal solution. The complete process is shown in
the figure 2.
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o L g ——
Adjacent .8
Matvix [ g e
¥
Tries with: Gesax, Gaax-1,
Gmax-2, eic.

k = Gmax-{ of Gmax—+]

k

Davis & Putnam
Try to improve k&
Through binary partitions

Graph
Caloring

Fig. 2: Description of the coloring process.

Any graph can be colored with Gmax+1 colors,
where Gmax represents the graph degree. For this
reason, TA will try coloring with Gmax colors. If TA
gets a success, then TA will try to color with Gmax-1,
and so on. When TA finishes, it sends to the output
the minimum & of colors founded. In other case, when
TA can not color with Gmax colors, then it will send
k=Gmax+1 to Davis & Putnam procedure.

E’hreshcld Accepting

k=9

Lparmions with Davis & Putnamj

1st. Partition = (1+9)2 = 5
2nd. Partition = (5+9)/2=7
3th. Partition = [7+9)2 =38

iy

00 B e E 6 E 5

Fig. 3: Binary partitions.

Davis & Putnam will attempt to decrease the value
of k through binary partitions. The first attempt,
Davis & Putnam will choose the number of colors
given by (1+k)/2. If the coloring is right, will try
color with (1+(1+k)/2)/2 colors, i.e., the left half
Otherwise, will try color with ((1+k)/2+k)/2 colors,
the right half. This process continues until Davis &
Putnam can not decrease k. So, the chromatic number
was found. This situation is shown in figure 2.

The figure 3 shows an example where TA found
the number nine as its better solution and it is send to
Davis & Putnam procedure. When Davis & Putnam
takes the last TA solution, using binary partitions and
other rules the optimal solution is waited. For
example in the case of the figure 3. if Davis &
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Putnam can not color with five colors, it moves to
other alternative, trying with seven colors. Finally, in
the last partition, i.e. (7+9)/2, can not color the graph
and so the result is a chromatic number equal to nine.

5 Conclusion

In this paper we present a hybrid algorithm Threshold
Accepting and Davis & Putnam, to solve the Graph .-
Colorability Problem. Because this problem is an NP-
hard problem there is not a known deterministic
efficient (polinomial) method. No deterministic
methods are in general more efficient but an optimal
solution is not guarantee. This hybrid method is a
new alternative that promises to be more efficient that
the previous ones.
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