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Abstract: - An algorithm of simulated annealing for the job shop scheduling problem is presented. The pro-
posed algorithm restarts with a new value every time the previous algorithm finishes. To begin the process of 
annealing, the starting point is a randomly generated schedule with the condition that the initial value of the 
makespan of the schedule does not surpass a previously established upper bound. The experimental results 
show the importance of using upper bounds in simulated annealing in order to more quickly approach to good 
solutions. It is demonstrated that the proposed algorithm is quite competitive when is compared with results of 
other algorithms of simulated annealing reported in literature. 
 
Key-Words: - Job shop, upper bound, scheduling, makespan, simulated annealing. 

 
1   Introduction 

The job shop scheduling problem (JSSP) is con-
sidered to be one of the most difficult to solve in 
combinatorial optimization. It is also one of the most 
difficult problems in the NP-hard class [7]. For this 
reason, Muth and Thompson [9] took over 20 years 
to solve the problem of ten machines and ten jobs 
[5]. 

The job shop scheduling problem consists of a set 
of machines that each carry out the execution of a 
set of jobs. Each job consists of a certain number of 
operations, which must be carried out in a specific 
order. Each operation is carried out by a specific 
machine and has a specific time of execution. Each 
machine can execute a maximum of one operation at 
any given point in time. A single machine is unable 
to carry out more than one operation of the same 
job. The objective of the problem is to find the 
makespan. The makespan is defined as the time it 
takes to complete the last operation in the system. In 
a solution to the JSSP, the sequence of operations 
for each machine as well as start times for each op-
eration are obtained. 

An immense number of models exist that repre-
sent the JSSP, but the two most important and influ-
ential models are those of disjunctive formulation 
[6] and disjunctive graph [6]. From these two mod-
els many others have emerged. 

The disjunctive formulation model considers sev-
eral sets: a set J of n jobs, where J { }nJJJ ,..., 21= ; 
a set M  of m machines where M 

{ }mMMM ,...,, 21= ; and a set O of operations 
where O { },...3,2,1= . These operations form k sub-
sets of operations for each one of the jobs ( ⊆kJ O) 
and machines ( ⊆kM O). 

Each operation j has a processing time of pj. In a 
job Jk, each pair of operations i, j possess a relation-
ship of precedence represented )( ji p . Only one 
operation performed by a machine Mk, can be exe-
cuted at any given point in time.  Given the previ-
ously mentioned problem restrictions, the function 
of the starting time, s of each operation can be repre-
sented in the following manner: 

∀ ∈j O         0≥js  (1)

∀ ∈ji, O, 
kJji ∈)( p  jii sps ≤+  (2)

∀ ∈ji, O, 
( )kMji ∈,  ijjjii spssps ≤+∨≤+  (3)

The constraint in (1) indicates that the starting 
time of the operation j must be greater than or equal 
to zero; meaning only positive values are accepted. 
The constraint in (2) is a precedence constraint. It 



indicates that within one job which contains opera-
tions i and j, in order for j to begin, i must be com-
pleted. The constraints in (3) are disjunctive. These 
constraints ensure that two operations, i and j, which 
are performed by the same machine are not carried 
out simultaneously. The objective is to minimize the 
makespan, which is defined based on starting times, 
and can be expressed as (4): 

         Min ( )⎥
⎦

⎤
⎢
⎣

⎡
∈ + jjj psO

max  (4)

The disjunctive graph model is shown in Figure 1 
for a JSSP of 3x3. From Figure 1, it can be seen that 
the nodes of the graph represent the operations per-
formed in the problem. In each operation (node) of 
the graph, the first number represents which job the 
operation pertains to, and the second number repre-
sents the machine that performs that operation. It 
can be observed that the group of operations that 
form a job are united with a conjunctive arc, which 
represents the precedence constraints for each pair 
of operations (e.g., operations 1,1 and 1,2). In the 
group of operations that a machine executes, each 
pair of operations is united with a disjunctive arc 
(e.g., operations 1,1 and 2,1). These arcs represent 
the resource capacity constraints and correspond to 
the constraints of the equations in (3) of the disjunc-
tive formulation model. In addition, there are two 
operations, I and *, which represent the beginning 
and end of the problem respectively. These opera-
tions are actually fictitious and have a processing 
time of zero. The processing time of each other op-
eration is written beside the node and corresponds to 
the times pi of the disjunctive formulation model 
(equations 2 and 3). For example, the operation 1,1 
has a processing time of P1,1. 

 
Fig. 1. Disjunctive graph for a JSSP of 3x3 

 
In order to find a solution using the disjunctive 

graph model, it is necessary to arrange the arrows of 
the disjunctive arcs in such a way that the obtained 
sequence does not contain any cycles [1]. Once the 
sequence is established, it is common to obtain the 
scheduling of the operations, which is expressed as 
starting times for each operation. The model of the 
disjunctive graph was used to develop the SAR al-
gorithm presented here.  

The simulated annealing algorithm introduced by 
Kirkpatrick et al. [8] is an analogy between the an-
nealing process of solids and the problem of solving 
combinatorial optimization problems. This algo-
rithm has been used with high rates of success for 
JSSP by several researchers [1],[2],[10],[12],[13], 
and [14]. This simulated annealing algorithm is 
shown in Figure 2. 

 
1. Given an initial configuration  S = S0 and an 

initial temperature T = T0 
2. While the final temperature Tf is not reached, 
3. While equilibrium is not reached, 

• generate a state S´ by means of a perturba-
tion in S 

• if f(S’)-F(S)<=0, the state is accepted as the 
current state, S =S’ 

• if  f(S’)-F(S)>0, the state is accepted with 
the probability: 

     
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= T

SfSf

accept eP
)()'(

            (5) 

• with a randomly generated number α evenly 
distributed between (0,1) 

• if α < Paccept  the state is accepted like the 
current, S = S’ 

   If the equilibrium does not exist,  return to 3 
   T=T*β 

       If T >= Tf, return to 2 
4. The best obtained configuration is the solution  

Fig. 2. Simulated annealing algorithm 
 
In Figure 2 for the JSSP, S is a schedule obtained 

by using a randomly generated initial point. S´ is in 
the neighborhood of S, which is obtained by a small 
perturbation of S.  To and Tf are the initial and final 
temperatures of the process. β is the coefficient of 
temperature that controls the cooling of the system. 
f(S) is the energy of the configuration S, which is 
generally the makespan. The equation (5) is the 
Boltzmann distribution function [11]. 

The simulated annealing algorithm, represented in 
the Figure 2, allows for a search for the global opti-
mum when the temperature is high because it ac-
cepts good and bad configurations in a similar per-
centage. As the temperature begins to diminish, the 
algorithm accepts more good configurations than 
bad. Due to this behavior, if in each cycle equilib-
rium is reached, there is a high probability that the 
optimal, or very close to the optimal, solution will 
be reached. 

One of the ways of perturbing the neighborhood 
of S is proposed by Balas [3], and involves exchang-
ing a pair of adjacent operations that are within criti-
cal blocks of operations. This form of altering the 
neighborhood is known as N1. The critical blocks of 
operations are the operations that form the longest 
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path of the schedule. Each critical block of opera-
tions that form this path are performed by a common 
machine. According to Balas, the first operation of 
the path becomes the last, and the last becomes the 
fictitious first operation. Changes in the neighbor-
hood of this type, N1, have been used previously in 
simulated annealing with good results by [1], [2], 
[10], [12], and [14]. This type of change is what is 
used in this work due to ease of implementation. 

Other researchers have developed variations of 
N1. The algorithm of Matsuo et al. 1[10] is a deriva-
tion of N1, called N1a. This type of change to the 
neighborhood involves changing the placement of 
three pairs of adjacent operations simultaneously, 
where each operation is performed by a different 
machine. The algorithm of Aart et al. [1], also a 
derivation of N1, called N1b, involves reversing three 
adjacent pairs of operations that are all performed by 
the same machine, and with the condition that one of 
the pairs does not form the longest path.  

Another type of derivation of N1 is the neighbor-
hood of critical block (CB), which is called N2. In 
this type of neighborhood, one operation in the 
block is changed for either the initial or final opera-
tion of the block. It is not required that the opera-
tions that change places be adjacent. The algorithms 
that use N2 are the CBSA of Yamada et al. [14] and 
the CSBA+CB of Yamada and Nakano [13]. This 
last algorithm uses a deterministic local search 
called shifting bottleneck [15]. It uses shifting bot-
tleneck when the schedule S´, which is a perturba-
tion of S, is rejected in the simulated annealing. 
When the rejection occurs, the shifting bottleneck is 
applied to S´ in order to improve it. Once S´ is im-
proved, if f(S´) greater than f(S), the solution is ac-
cepted. In this type of neighborhood, the shifting 
bottleneck must be used whenever S´ is rejected in 
the algorithm. The implementation of the shifting 
bottleneck is not easy because it requires that the re-
lease time and due dates are calculated. Here, an al-
gorithm is proposed which is easy to implement and 
produces high quality solutions; it is a simulated an-
nealing algorithm with restart [16]. 

 
 

2   Simulated Annealing using Upper 
Bounds 
The proposed algorithm of simulated annealing with 
restart (SAR) consists of executing a set of simu-
lated annealing algorithms, as can be seen in Figure 
2. Each simulated annealing that is executed in-
volves the iteration of the SAR algorithm. Each 
repetition begins using a different schedule. The 
idea of beginning with different schedules for each 

repetition of SAR came about because of experi-
mental tests that were carried out. In the experimen-
tal tests, it was detected that even though simulated 
annealing allows the search for a global optimum, at 
some point low temperatures eliminate this possibil-
ity and the search finds a local optimum. By begin-
ning with different schedules, more variability of so-
lutions is obtained than by beginning with only a 
single schedule. It is seen that the restart of the 
simulated annealing algorithm leaves a different 
point in the solution space each time it is repeated.  

The restarting of the algorithm allows for the 
search of global optimums by using a new schedule 
in each repetition of SAR. This allows for a different 
part of the solution space to be explored when SAR 
is at a local optimum. This not only increases the 
probability of finding a global optimum, but also in-
creases the time of the search. 

In the SAR algorithm, at the beginning of each 
simulated annealing, a UB (upper bound) is estab-
lished in order to randomly obtain the schedule with 
which to start the process. The value of the 
makespan of this schedule may not be greater than 
the UB, or the schedule is not accepted as the initial 
configuration of the annealing. A UB is used due to 
the fact that in SAR, a great number of simulated 
annealing are executed. The UB is used to limit the 
solution space of the problem in order to decrease 
the time it takes for the SAR to arrive at a good so-
lution. Based on the tests carried out, it was found 
that by using a UB, the algorithm improved the 
quality of the solution it was able to attain. For the 
SAR algorithm, the UB was established by trial and 
error, so that the algorithm took no longer than 15 
seconds to find an I-SCHED (initial schedule) that 
could be used to begin the repetitions of the SAR al-
gorithm. In order to obtain an I-SCHED that did not 
surpass the UB, a random procedure was used. First, 
a random sequence of operations was formed for 
each machine. Next, a scheduling algorithm [17] 
was used to eliminate global cycles. Finally, this 
schedule is improved by using the Giffler and 
Thompson algorithm [18] that obtains active sched-
ules [19].  With the proposed procedure, obtaining 
good initial solutions that they do not surpass a UB 
in a short period of time could be assured. 

In each iteration of the SAR algorithm, simulated 
annealing is fully completed. The best configuration 
after all the repetitions are completed is the final so-
lution. The number of annealing carried out, that is, 
the number of repetitions of the algorithm, is a func-
tion of time of execution and depends on the prob-
lem. The simulated annealing algorithm with restart 
using upper bound can be seen in Figure 3. 
 



   1. Given initial iteration k = 0, initial values of Sf , Tf, β 
   2. Beginning of annealing k=k+1: 
   3.  S=So<=upper bound, T=To, initial Sc. 
   4. While the final temperature Tf is not reached, 

     5. While equilibrium is not reached: 
• generate a state S´ by means of a perturbation 

in S 
• if f(S’)-F(S)<=0 the state is accepted as the 

current state,  S= S’ 
• if  f(S’)-F(S)>0 the state is accepted with the 

probability 

• 
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= T

SfSf

accept eP
)()'(

 

• with a randomly generated number β evenly 
distributed between (0,1) 

• if β < Paccept  the state is accepted like the cur-
rent, S = S’ 

• if S < Sc then Sc = S 
• If the equilibrium does not exist,  return to 5 

  T = T* β. 
 The best configuration is stored,  if  Sc < Sf   then  Sf = Sc 
  If T >= Tf, return to 4 
 If k <  maxiter, return to 2 to begin a new annealing 
 The solution is Sf 

 
Fig. 3. The simulated annealing algorithm with restart to 
JSSP using an upper bound 
 

Other forms of choosing new schedules have been 
proven that also permit escape from the local opti-
mum in simulated annealing. One of them is pro-
posed by Yamada and Nakano [13] and involves 
carrying out a procedure called re-intensification. In 
this procedure, when the annealing checks the whole 
neighborhood and will not accept a new schedule 
because of a low temperature, a function of prob-
ability is used. Yamada and Nakano use the prob-
ability obtained from the function of Boltzmann, 
where each neighbor S´ of the schedule S is evalu-
ated. Based on the probabilities of the neighbors of 
S, one is chosen and the process of annealing is con-
tinued. In this way it is possible to look more 
broadly than the local optimum to find the global 
optimum. 

Another type of selection of new schedules is pro-
posed by Yamada et al. [14]. In this procedure, if the 
simulated annealing has not improved the solution 
after a great number of accepted configurations, it is 
assumed that one is in a local optimum. In this case, 
the best solution found up to the current point in 
time replaces the current solution, and the tem-
perature is calculated in an adaptive form. As long 
as the calculated temperature is greater than the cur-
rent temperature, the algorithm is restarted with the 
new values. In this way, it is possible to continue 
searching for the global optimum. 

Aydin and Fogarty [2] use an initial population of 
individuals (schedules) in their simulated annealing 
logarithm parallel. In each population, the individu-
als are taken one by one randomly in order to im-
prove the population. Each one goes through the 
process of simulated annealing. Each population is 
improved until a maximum number of repetitions 
are reached. With time, the initial populations are 
substituted with the better obtained individuals. 

 
 

3   Computational Results 
The proposed algorithm was proven with two prob-
lems registered in the OR library [4] and for which 
the optimum solution is known. The first benchmark 
is the FT10 of Muth and Thompson, which is the 
10x10 they proposed in 1963. The second is the 
benchmark LA40 of S. Lawrence that is a 15x15, 
proposed in 1984. For the problem FT10, ten trials 
were done with a UB = 1570 (Makespan), generat-
ing the initial schedules with the procedure I-
SCHED, and ten trials were done without a UB, but 
also using the procedure of I-SCHED. The parame-
ters of T0 = 32*(Makespan of the initial solution), Tf 
= 1.0, β = 0.98, and N1 as the type of neighborhood 
were equal in each test performed, whether there 
was a UB or not. Table 1 shows the results obtained 
by using a UB of 1570 in the makespan. In the same 
table, the results are shown when a UB was not 
used. In both cases, a maximum time of four hours 
was used to obtain the results. As demonstrated by 
the data in the table, when the UB is used, the opti-
mum is obtained in 80% of trials, the quickest being 
obtained in 44 minutes, 55 seconds. The standard 
deviation is 2.95 with an average makespan of 
931.4. 

We compared the results obtained in Table 1 with 
the algorithms of re-intensification ASSA (Adjacent 
Swapping) and CBSA, of Yamada et al. [14] be-
cause they have obtained some of the best results for 
the problem FT10. They also carried out ten trials. 
ASSA found solutions using the neighborhood N1 
and CBSA using the neighborhood N2. It can be 
seen that ASSA presents a greater standard deviation 
of 5.10 and a higher average makespan of 939.5. 
The worst result obtained by the SAR algorithm for 
the makespan was 937 and by ASSA 951. Through 
this comparison, it is obvious that the SAR algo-
rithm is more effective than ASSA in obtaining the 
optimum for the problem FT10. For the CBSA algo-
rithm, in ten trials, an average makespan of 930.8 
was obtained and a standard deviation of 2.4. Only 
in one trial was CBSA unable to obtain the optimum 
result, this trial gave a makespan of 938. These re-
sults indicate that CBSA, by a small margin, is bet-
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ter able to find accurate solutions than SAR. It is be-
lieved that the CBSA obtains better results due to 
the neighborhood it uses, because the only differ-
ence between ASSA and CBSA is the type of 
neighborhood used. 

 
Table 1. Results of the simulated annealing algorithm 
with restart, with and without upper bound for the prob-
lem FT10 

FT10 , 10 x 10, optimum = 930 
UB = 1570 without UB 

Makespan t = sec Makespan t = sec
930 4584.18 943 14400
937 14250.25 944 14400
930 3185.29 944 14400
930 14137.15 938 14400
930 6472.21 937 14400
937 14000.00 949 14400
930 5070.34 949 14400
930 6876.12 943 14400
930 9310.64 935 14400
930 2695.30 937 14400

 
The average time it took for the SAR algorithm to 

arrive at the solution was 2 hours, 15 minutes, and 
13 seconds, for ASSA it was 35 minutes, 43 sec-
onds, and for CBSA it was 44 minutes, 36 seconds. 
The great difference in times can be explained by 
the fact that the SAR algorithm restarts with a new 
annealing in each repetition which causes it to need 
a great deal of time to be executed. It is important to 
emphasize that a great number of tests were gener-
ated, with sequences of slower cooling in both cases, 
with and without upper bounds. Tests were also 
generated with the basic algorithm, as seen in Figure 
2. The results of all the performed tests slower cool-
ing (with β of 0.981 to 0.999) were farther from the 
global optimum. In addition, there was a consider-
able increase in the time of execution of the algo-
rithm in order to find these solutions. In the results 
reported in the table 1, the values of β was fixed at β 
= 0.98, because it is the value at which the best re-
sults were obtained. Other parameters were also 
fixed with the values mentioned previously, because 
they were the values found to improve the quality of 
results in the performed tests. 

From Table 1, for the problem of FT10, it can be 
observed that if an upper bound is not used, the ob-
tained results are of poor quality, with a standard 
deviation of 4.97 and an average makespan of 941.9. 
This is because when an upper bound is used, SAR 
uses better schedules, which allow it to reach better 
solutions through the changes in the neighborhood. 
This indicates higher probability that the solution 
space is nearer the global optimum, and a greater 
number of good schedules exist, while only a small 
number of bad schedules are present. 

Table 2 shows the results of several algorithms of 
simulated annealing for the problem FT10. In the ta-
ble, the type of neighborhood each author used is 
specified. The makespan presented by Aart et al. [1], 
using N1 and N1b, is an average of five trials. The 
makespan presented by Van Laarhoven [12], N1, is 
the best of five trials. The makespan presented by 
Matsuo et al. [10], N1a, was obtained in one trial. 
From Table 2 it can be observed that it was not pos-
sible for any algorithm to find the global optimum. 
None of these algorithms involve restarting the an-
nealing so their time of execution is small. It can 
also be observed that most of the results are poorer 
than those obtained by the SAR when an upper 
bound is not applied (Table 1). This shows that a 
simulated annealing with restart and without upper 
bounds could improve the solution obtained for 
FT10. 

 
Table 2. Results of several simulated annealing algo-
rithms for the problem FT10 

FT10 , 10 x 10, optimum = 930
Authors t = sec. Makespan

Aart et al. (N1) 99 969
Aart et al. (N1b) 99 977

Van Laarhoven (N1) 3895 951
Matsuo et al. (N1a) 987 946

 
Table 3 shows the best performance of several 

algorithms of simulated annealing, including the 
SAR algorithm, for the benchmark LA40 of JSSP.  
The parameters in SAR were fixed to: UB = 2300, 
T0 = 25, Tf = 5.0 and β = 0.99. The table presents the 
type of neighborhood that each author used in their 
algorithm. The neighborhoods are the following: 
algorithm of Van Laarhoven et al. [12], N1, which 
represents the best of five trials; algorithm of Aart et 
al [1], N1, which represents the average of five trials; 
algorithm of Aart et al [1], N1b, which represents the 
average of five trials; algorithm of Matsuo et al. 
[10], N1a, which represents a single trial; CBSA al-
gorithm, N2, of Yamada et al. [14] which represents 
the best of five trials, CBSA+SB algorithm, N2, of 
Yamada and Nakano, which represents the best re-
sult of ten trials; and SAR, N1, which represents the 
best of five trials.  

In Table 3 it can be observed that the result ob-
tained by SAR with a 0.90% relative error is better 
than all of the other algorithms that use N1 and de-
rivatives of N1. SAR also surpasses the CBSA, 
which uses the N2 type of neighborhood. SAR is 
surpassed only by CBSA+SB. The CBSA+SB algo-
rithm uses the neighborhood N2 and implements the 
procedure of deterministic local search, called shift-
ing bottleneck, for the re-optimization of schedules 
obtained in each repetition of the algorithm. 



Table 3. Results of several simulated annealing algorithm 
for the problem LA40 

LA40, 15 X 15, optimum = 1222 
Algorithm Makespan %ER

CBSA+SB (N2) 1228 0.49 
SAR (N1) 1233 0.90 

Van Laarhoven (N1) 1234 0.98 
Matsuo et al. (N1a) 1235 1.06 

CBSA (N2) 1235 1.06 
Aart et al. (N1b) 1254 2.62 
Aart et al. (N1) 1256 2.78 

 
 
4   Conclusion 
The use of upper bounds in the algorithm allows the 
solution of the problem FT10 to be found in almost 
all trials. This indicates that for this problem, in the 
simulated annealing algorithm with restart, starting 
with the good schedules that do not surpass an upper 
bound, improves the solution considerably. Also, it 
is recommended that the simulated annealing be re-
started in several points with good schedules. By do-
ing this, better solutions are obtained which are 
nearer to the global optimum. This could help avoid 
the situation where a local optimum is found which 
is far from the global optimum.  

The quality of the solution of the SAR algorithm 
presented here for the problem LA40 is comparable 
to the CBSA+SB algorithm with N2. One advantage 
that the SAR algorithm has over the CBSA+SB is 
that for the CBSA+SB, it is necessary to find the 
machines with the shifting bottleneck in each repeti-
tion. To find all of this information, it is necessary to 
calculate the release times and due dates of each op-
eration that is involved in the problem. Thus, be-
cause of the similar quality and simpler implementa-
tion, SAR appears to be of more interest from a 
scientific point of view. It is thought that SAR 
would have better performance with large problems 
than CBSA+SB due to the fact that SAR does not 
use deterministic local search procedures. Better 
performance would be possible if SAR were im-
proved so it would not take so long. This work is 
currently being done. 
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