

Improving on Excellence. An Evolutionary Approach 435

João Caldeira, Fernando Melicio, Agostinho Rosa

Two-phase multiobjective optimization 444

Alberto Cancela, Julián Dorado, Juan R. Rabuñal, Alejandro Pazos

A Neural Network Control Strategy for Improved Energy Capture on a Variable-Speed Wind Turbine 450

Antonio F. Silva, Fernando A. Castro, Jose N. Fidalgo

Solving Non-linear Equations via Genetic Algorithm 455

Nikos E. Mastorakis

On the Solution of Ill-Conditioned Systems of Linear and Non-Linear Equations via Genetic Algorithms

(GAs) and Nelder-Mead Simplex Search

460

Nikos Mastorakis

Numerical Solution of Non-Linear Ordinary Differential Equations via Collocation Method (Finite Elements)

and Genetic Algorithms

467

Nikos E. Mastorakis

Investigation of Matchmaking and a Genetic Algorithm for Multilateral and Integrative E-Negotiations 474

Simone A. Ludwig, L. Raisanen, S.M.S. Reyhani

Individual Job Assignment using the Qualification Matrix 480

Shrab Khanmohammadi, Ali Hajiha, Javad Jassbi

The magic square as a benchmark: comparing manual solution with MIP solution and AI algorithm and

improved evolutionary algorithm

486

J. Barahona da Fonseca

Evolutionary Programming Optimization Technique for Solving Reactive Power Planning in Power System 495

Ismail Musirin, Titik Khawa, Abdul Rahman

OptLets: A Generic Framework for Solving Arbitrary Optimization Problems 501

Christoph Breitschopf, Günther Blaschek, Thomas Scheidl

Application of evolutionary computing for hybrid model based optimization of biochemical processes 507

Vytautas Galvanauskas, Rimvydas Simutis, Donatas Levisauskas

Using ACO and Rough Set Theory to Feature Selection 512

Rafael Bello Perez, Ann Nowe, Peter Vrancx, Yudel Gómez D, Yailé Caballero

WSEAS TRANSACTIONS
on INFORMATION SCIENCE &

APPLICATIONS

Issue 5, Volume 2, May 2005
 ISSN 1790-0832 http://www.wseas.org

Tandem Application of Exploration Factors and Variant Spin Mechanism on Steady State Genetic

Algorithms for Loss Minimisation in Power System

518

M.F. Mohd Kamal, T. K. A. Rahman, I. Musirin

Challenges in Real World Sightseeing Tour Optimization Using Meta-Heuristics 524

Jean-Marc Godart

Data Mining Technique for Collaborative Server Activity Analysis 530

Jelena Mamcenko, Regina Kulvietiene

Particle swarm and simulated annealing for multi-global optimization 534

A. Ismael F. Vaz, Ana I.P.N. Pereira, Edite M.G.P. Fernandes

Compressed Linear Genetic Programming: empirical parameter study on the Even-n-parity problem 540

Johan Parent, Ann Nowe, Anne Defaweux, Kris Steenhaut

Constraint Programming and Genetic Algorithms to Solve Layout Design Problem 546

Jose Tavares

Optimal Short-Term Contract Allocation Using Particle Swarm Optimization 552

Filipe Azevedo, Zita A. Vale

Cooperative evolutive concept learning: an empirical study 559

Filippo Neri

Text Dependency in Voice Quality Conversion Using Interactive Evolution 564

Yuji Sato

Generalized Multiobjective Multitree model solution using MOEA 570

Benjamin Baran, Ramon Fabregat, Yezid Donoso, Fernando Solano, Jose Marzo

Wavelet Based CAP Detector with GA Tuning 576

Rogério Largo, Crisitian Munteanu, Agostinho Rosa

Experimental Analysis in Simulated Annealing to Scheduling Problems when Upper Bounds are used 581

Marco Antonio Cruz-Chávez, Juan Frausto-Solís, David Juárez-Romero

Optimization Algorithms Inspired by Electromagnetism and Stigmergy in Electro-technical Engineering 587

Peter Korošec, Gregor Papa, Jurij Šilc

Analyses of the Resources System Selection Algorithms for Agile/Virtual Enterprises Integration Through

Genetic Algorithms

592

Paulo Ávila, Goran D. Putnik, Ana M. Madureira

Proposal of Multi-Agent based Model for Dynamic Scheduling in Manufacturing 600

Ana Madureira, Joaquim Santos

Ant Colony Optimization Algorithm (ACO); A new heuristic approach for engineering optimization 606

Mohammad reza Jalali, Abbas Afshar, Miguel A. Marino

Optimizing Ajichai Flood Levee's Encroachment; A GA Approach 611

Mahyar Shafiei, Omid Bozorg Haddad, Abbas Afshar

Logic Circuits Synthesis Through Genetic Algorithms 618

Cecília Reis, J. A. Tenreiro Machado and J. Boaventura Cunha

Enhancing Concurrent Node Movements in Mobile Ad-hoc Networks while Preserving Connection Stability 624

Jorge Barreiros, Fernanda Coutinho

Continuous Decision Making in Optimal Reservoir Operation Using DP-ANN 630

Farid Sharifi, Omid Bozorg Haddad, Mahsoo Naderi, Saeed Alimohammadi

GA in Least Cost Design of Stepped Spillways 637

Farid Sharifi, Omid Bozorg Haddad, Abbas Afshar

Experimental Analysis in Simulated Annealing to Scheduling Prob-
lems when Upper Bounds are used

MARCO ANTONIO CRUZ-CHÁVEZ1, JUAN FRAUSTO-SOLÍS2 AND DAVID JUÁREZ-

ROMERO1

1Center of Investigation in Engineering and Applied Science, UAEM
Av. Universidad 1001, Col. Chamilpa, 62270, Cuernavaca, Morelos, MÉXICO

{mcruz,djuarez}@uaem.mx
2 Department of Computer Science, ITESM, Campus Cuernavaca
Paseo de la Reforma 182-A, 62589, Temixco, Morelos, MÉXICO

juan.frausto@itesm.mx

Abstract: - An algorithm of simulated annealing for the job shop scheduling problem is presented. The pro-
posed algorithm restarts with a new value every time the previous algorithm finishes. To begin the process of
annealing, the starting point is a randomly generated schedule with the condition that the initial value of the
makespan of the schedule does not surpass a previously established upper bound. The experimental results
show the importance of using upper bounds in simulated annealing in order to more quickly approach to good
solutions. It is demonstrated that the proposed algorithm is quite competitive when is compared with results of
other algorithms of simulated annealing reported in literature.

Key-Words: - Job shop, upper bound, scheduling, makespan, simulated annealing.

1 Introduction

The job shop scheduling problem (JSSP) is con-
sidered to be one of the most difficult to solve in
combinatorial optimization. It is also one of the most
difficult problems in the NP-hard class [7]. For this
reason, Muth and Thompson [9] took over 20 years
to solve the problem of ten machines and ten jobs
[5].

The job shop scheduling problem consists of a set
of machines that each carry out the execution of a
set of jobs. Each job consists of a certain number of
operations, which must be carried out in a specific
order. Each operation is carried out by a specific
machine and has a specific time of execution. Each
machine can execute a maximum of one operation at
any given point in time. A single machine is unable
to carry out more than one operation of the same
job. The objective of the problem is to find the
makespan. The makespan is defined as the time it
takes to complete the last operation in the system. In
a solution to the JSSP, the sequence of operations
for each machine as well as start times for each op-
eration are obtained.

An immense number of models exist that repre-
sent the JSSP, but the two most important and influ-
ential models are those of disjunctive formulation
[6] and disjunctive graph [6]. From these two mod-
els many others have emerged.

The disjunctive formulation model considers sev-
eral sets: a set J of n jobs, where J { }nJJJ ,..., 21= ;
a set M of m machines where M

{ }mMMM ,...,, 21= ; and a set O of operations
where O { },...3,2,1= . These operations form k sub-
sets of operations for each one of the jobs (⊆kJ O)
and machines (⊆kM O).

Each operation j has a processing time of pj. In a
job Jk, each pair of operations i, j possess a relation-
ship of precedence represented)(ji p . Only one
operation performed by a machine Mk, can be exe-
cuted at any given point in time. Given the previ-
ously mentioned problem restrictions, the function
of the starting time, s of each operation can be repre-
sented in the following manner:

∀ ∈j O 0≥js (1)

∀ ∈ji, O,
kJji ∈)(p jii sps ≤+ (2)

∀ ∈ji, O,
()kMji ∈, ijjjii spssps ≤+∨≤+ (3)

The constraint in (1) indicates that the starting
time of the operation j must be greater than or equal
to zero; meaning only positive values are accepted.
The constraint in (2) is a precedence constraint. It

indicates that within one job which contains opera-
tions i and j, in order for j to begin, i must be com-
pleted. The constraints in (3) are disjunctive. These
constraints ensure that two operations, i and j, which
are performed by the same machine are not carried
out simultaneously. The objective is to minimize the
makespan, which is defined based on starting times,
and can be expressed as (4):

 Min ()⎥
⎦

⎤
⎢
⎣

⎡
∈ + jjj psO

max (4)

The disjunctive graph model is shown in Figure 1
for a JSSP of 3x3. From Figure 1, it can be seen that
the nodes of the graph represent the operations per-
formed in the problem. In each operation (node) of
the graph, the first number represents which job the
operation pertains to, and the second number repre-
sents the machine that performs that operation. It
can be observed that the group of operations that
form a job are united with a conjunctive arc, which
represents the precedence constraints for each pair
of operations (e.g., operations 1,1 and 1,2). In the
group of operations that a machine executes, each
pair of operations is united with a disjunctive arc
(e.g., operations 1,1 and 2,1). These arcs represent
the resource capacity constraints and correspond to
the constraints of the equations in (3) of the disjunc-
tive formulation model. In addition, there are two
operations, I and *, which represent the beginning
and end of the problem respectively. These opera-
tions are actually fictitious and have a processing
time of zero. The processing time of each other op-
eration is written beside the node and corresponds to
the times pi of the disjunctive formulation model
(equations 2 and 3). For example, the operation 1,1
has a processing time of P1,1.

Fig. 1. Disjunctive graph for a JSSP of 3x3

In order to find a solution using the disjunctive

graph model, it is necessary to arrange the arrows of
the disjunctive arcs in such a way that the obtained
sequence does not contain any cycles [1]. Once the
sequence is established, it is common to obtain the
scheduling of the operations, which is expressed as
starting times for each operation. The model of the
disjunctive graph was used to develop the SAR al-
gorithm presented here.

The simulated annealing algorithm introduced by
Kirkpatrick et al. [8] is an analogy between the an-
nealing process of solids and the problem of solving
combinatorial optimization problems. This algo-
rithm has been used with high rates of success for
JSSP by several researchers [1],[2],[10],[12],[13],
and [14]. This simulated annealing algorithm is
shown in Figure 2.

1. Given an initial configuration S = S0 and an

initial temperature T = T0
2. While the final temperature Tf is not reached,
3. While equilibrium is not reached,

• generate a state S´ by means of a perturba-
tion in S

• if f(S’)-F(S)<=0, the state is accepted as the
current state, S =S’

• if f(S’)-F(S)>0, the state is accepted with
the probability:

⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= T

SfSf

accept eP
)()'(

 (5)

• with a randomly generated number α evenly
distributed between (0,1)

• if α < Paccept the state is accepted like the
current, S = S’

 If the equilibrium does not exist, return to 3
 T=T*β

 If T >= Tf, return to 2
4. The best obtained configuration is the solution

Fig. 2. Simulated annealing algorithm

In Figure 2 for the JSSP, S is a schedule obtained

by using a randomly generated initial point. S´ is in
the neighborhood of S, which is obtained by a small
perturbation of S. To and Tf are the initial and final
temperatures of the process. β is the coefficient of
temperature that controls the cooling of the system.
f(S) is the energy of the configuration S, which is
generally the makespan. The equation (5) is the
Boltzmann distribution function [11].

The simulated annealing algorithm, represented in
the Figure 2, allows for a search for the global opti-
mum when the temperature is high because it ac-
cepts good and bad configurations in a similar per-
centage. As the temperature begins to diminish, the
algorithm accepts more good configurations than
bad. Due to this behavior, if in each cycle equilib-
rium is reached, there is a high probability that the
optimal, or very close to the optimal, solution will
be reached.

One of the ways of perturbing the neighborhood
of S is proposed by Balas [3], and involves exchang-
ing a pair of adjacent operations that are within criti-
cal blocks of operations. This form of altering the
neighborhood is known as N1. The critical blocks of
operations are the operations that form the longest

 3

path of the schedule. Each critical block of opera-
tions that form this path are performed by a common
machine. According to Balas, the first operation of
the path becomes the last, and the last becomes the
fictitious first operation. Changes in the neighbor-
hood of this type, N1, have been used previously in
simulated annealing with good results by [1], [2],
[10], [12], and [14]. This type of change is what is
used in this work due to ease of implementation.

Other researchers have developed variations of
N1. The algorithm of Matsuo et al. 1[10] is a deriva-
tion of N1, called N1a. This type of change to the
neighborhood involves changing the placement of
three pairs of adjacent operations simultaneously,
where each operation is performed by a different
machine. The algorithm of Aart et al. [1], also a
derivation of N1, called N1b, involves reversing three
adjacent pairs of operations that are all performed by
the same machine, and with the condition that one of
the pairs does not form the longest path.

Another type of derivation of N1 is the neighbor-
hood of critical block (CB), which is called N2. In
this type of neighborhood, one operation in the
block is changed for either the initial or final opera-
tion of the block. It is not required that the opera-
tions that change places be adjacent. The algorithms
that use N2 are the CBSA of Yamada et al. [14] and
the CSBA+CB of Yamada and Nakano [13]. This
last algorithm uses a deterministic local search
called shifting bottleneck [15]. It uses shifting bot-
tleneck when the schedule S´, which is a perturba-
tion of S, is rejected in the simulated annealing.
When the rejection occurs, the shifting bottleneck is
applied to S´ in order to improve it. Once S´ is im-
proved, if f(S´) greater than f(S), the solution is ac-
cepted. In this type of neighborhood, the shifting
bottleneck must be used whenever S´ is rejected in
the algorithm. The implementation of the shifting
bottleneck is not easy because it requires that the re-
lease time and due dates are calculated. Here, an al-
gorithm is proposed which is easy to implement and
produces high quality solutions; it is a simulated an-
nealing algorithm with restart [16].

2 Simulated Annealing using Upper
Bounds
The proposed algorithm of simulated annealing with
restart (SAR) consists of executing a set of simu-
lated annealing algorithms, as can be seen in Figure
2. Each simulated annealing that is executed in-
volves the iteration of the SAR algorithm. Each
repetition begins using a different schedule. The
idea of beginning with different schedules for each

repetition of SAR came about because of experi-
mental tests that were carried out. In the experimen-
tal tests, it was detected that even though simulated
annealing allows the search for a global optimum, at
some point low temperatures eliminate this possibil-
ity and the search finds a local optimum. By begin-
ning with different schedules, more variability of so-
lutions is obtained than by beginning with only a
single schedule. It is seen that the restart of the
simulated annealing algorithm leaves a different
point in the solution space each time it is repeated.

The restarting of the algorithm allows for the
search of global optimums by using a new schedule
in each repetition of SAR. This allows for a different
part of the solution space to be explored when SAR
is at a local optimum. This not only increases the
probability of finding a global optimum, but also in-
creases the time of the search.

In the SAR algorithm, at the beginning of each
simulated annealing, a UB (upper bound) is estab-
lished in order to randomly obtain the schedule with
which to start the process. The value of the
makespan of this schedule may not be greater than
the UB, or the schedule is not accepted as the initial
configuration of the annealing. A UB is used due to
the fact that in SAR, a great number of simulated
annealing are executed. The UB is used to limit the
solution space of the problem in order to decrease
the time it takes for the SAR to arrive at a good so-
lution. Based on the tests carried out, it was found
that by using a UB, the algorithm improved the
quality of the solution it was able to attain. For the
SAR algorithm, the UB was established by trial and
error, so that the algorithm took no longer than 15
seconds to find an I-SCHED (initial schedule) that
could be used to begin the repetitions of the SAR al-
gorithm. In order to obtain an I-SCHED that did not
surpass the UB, a random procedure was used. First,
a random sequence of operations was formed for
each machine. Next, a scheduling algorithm [17]
was used to eliminate global cycles. Finally, this
schedule is improved by using the Giffler and
Thompson algorithm [18] that obtains active sched-
ules [19]. With the proposed procedure, obtaining
good initial solutions that they do not surpass a UB
in a short period of time could be assured.

In each iteration of the SAR algorithm, simulated
annealing is fully completed. The best configuration
after all the repetitions are completed is the final so-
lution. The number of annealing carried out, that is,
the number of repetitions of the algorithm, is a func-
tion of time of execution and depends on the prob-
lem. The simulated annealing algorithm with restart
using upper bound can be seen in Figure 3.

 1. Given initial iteration k = 0, initial values of Sf , Tf, β
 2. Beginning of annealing k=k+1:
 3. S=So<=upper bound, T=To, initial Sc.
 4. While the final temperature Tf is not reached,

 5. While equilibrium is not reached:
• generate a state S´ by means of a perturbation

in S
• if f(S’)-F(S)<=0 the state is accepted as the

current state, S= S’
• if f(S’)-F(S)>0 the state is accepted with the

probability

•
⎟
⎠
⎞

⎜
⎝
⎛ −

−
−= T

SfSf

accept eP
)()'(

• with a randomly generated number β evenly
distributed between (0,1)

• if β < Paccept the state is accepted like the cur-
rent, S = S’

• if S < Sc then Sc = S
• If the equilibrium does not exist, return to 5

 T = T* β.
 The best configuration is stored, if Sc < Sf then Sf = Sc
 If T >= Tf, return to 4
 If k < maxiter, return to 2 to begin a new annealing
 The solution is Sf

Fig. 3. The simulated annealing algorithm with restart to
JSSP using an upper bound

Other forms of choosing new schedules have been
proven that also permit escape from the local opti-
mum in simulated annealing. One of them is pro-
posed by Yamada and Nakano [13] and involves
carrying out a procedure called re-intensification. In
this procedure, when the annealing checks the whole
neighborhood and will not accept a new schedule
because of a low temperature, a function of prob-
ability is used. Yamada and Nakano use the prob-
ability obtained from the function of Boltzmann,
where each neighbor S´ of the schedule S is evalu-
ated. Based on the probabilities of the neighbors of
S, one is chosen and the process of annealing is con-
tinued. In this way it is possible to look more
broadly than the local optimum to find the global
optimum.

Another type of selection of new schedules is pro-
posed by Yamada et al. [14]. In this procedure, if the
simulated annealing has not improved the solution
after a great number of accepted configurations, it is
assumed that one is in a local optimum. In this case,
the best solution found up to the current point in
time replaces the current solution, and the tem-
perature is calculated in an adaptive form. As long
as the calculated temperature is greater than the cur-
rent temperature, the algorithm is restarted with the
new values. In this way, it is possible to continue
searching for the global optimum.

Aydin and Fogarty [2] use an initial population of
individuals (schedules) in their simulated annealing
logarithm parallel. In each population, the individu-
als are taken one by one randomly in order to im-
prove the population. Each one goes through the
process of simulated annealing. Each population is
improved until a maximum number of repetitions
are reached. With time, the initial populations are
substituted with the better obtained individuals.

3 Computational Results
The proposed algorithm was proven with two prob-
lems registered in the OR library [4] and for which
the optimum solution is known. The first benchmark
is the FT10 of Muth and Thompson, which is the
10x10 they proposed in 1963. The second is the
benchmark LA40 of S. Lawrence that is a 15x15,
proposed in 1984. For the problem FT10, ten trials
were done with a UB = 1570 (Makespan), generat-
ing the initial schedules with the procedure I-
SCHED, and ten trials were done without a UB, but
also using the procedure of I-SCHED. The parame-
ters of T0 = 32*(Makespan of the initial solution), Tf
= 1.0, β = 0.98, and N1 as the type of neighborhood
were equal in each test performed, whether there
was a UB or not. Table 1 shows the results obtained
by using a UB of 1570 in the makespan. In the same
table, the results are shown when a UB was not
used. In both cases, a maximum time of four hours
was used to obtain the results. As demonstrated by
the data in the table, when the UB is used, the opti-
mum is obtained in 80% of trials, the quickest being
obtained in 44 minutes, 55 seconds. The standard
deviation is 2.95 with an average makespan of
931.4.

We compared the results obtained in Table 1 with
the algorithms of re-intensification ASSA (Adjacent
Swapping) and CBSA, of Yamada et al. [14] be-
cause they have obtained some of the best results for
the problem FT10. They also carried out ten trials.
ASSA found solutions using the neighborhood N1
and CBSA using the neighborhood N2. It can be
seen that ASSA presents a greater standard deviation
of 5.10 and a higher average makespan of 939.5.
The worst result obtained by the SAR algorithm for
the makespan was 937 and by ASSA 951. Through
this comparison, it is obvious that the SAR algo-
rithm is more effective than ASSA in obtaining the
optimum for the problem FT10. For the CBSA algo-
rithm, in ten trials, an average makespan of 930.8
was obtained and a standard deviation of 2.4. Only
in one trial was CBSA unable to obtain the optimum
result, this trial gave a makespan of 938. These re-
sults indicate that CBSA, by a small margin, is bet-

 5

ter able to find accurate solutions than SAR. It is be-
lieved that the CBSA obtains better results due to
the neighborhood it uses, because the only differ-
ence between ASSA and CBSA is the type of
neighborhood used.

Table 1. Results of the simulated annealing algorithm
with restart, with and without upper bound for the prob-
lem FT10

FT10 , 10 x 10, optimum = 930
UB = 1570 without UB

Makespan t = sec Makespan t = sec
930 4584.18 943 14400
937 14250.25 944 14400
930 3185.29 944 14400
930 14137.15 938 14400
930 6472.21 937 14400
937 14000.00 949 14400
930 5070.34 949 14400
930 6876.12 943 14400
930 9310.64 935 14400
930 2695.30 937 14400

The average time it took for the SAR algorithm to

arrive at the solution was 2 hours, 15 minutes, and
13 seconds, for ASSA it was 35 minutes, 43 sec-
onds, and for CBSA it was 44 minutes, 36 seconds.
The great difference in times can be explained by
the fact that the SAR algorithm restarts with a new
annealing in each repetition which causes it to need
a great deal of time to be executed. It is important to
emphasize that a great number of tests were gener-
ated, with sequences of slower cooling in both cases,
with and without upper bounds. Tests were also
generated with the basic algorithm, as seen in Figure
2. The results of all the performed tests slower cool-
ing (with β of 0.981 to 0.999) were farther from the
global optimum. In addition, there was a consider-
able increase in the time of execution of the algo-
rithm in order to find these solutions. In the results
reported in the table 1, the values of β was fixed at β
= 0.98, because it is the value at which the best re-
sults were obtained. Other parameters were also
fixed with the values mentioned previously, because
they were the values found to improve the quality of
results in the performed tests.

From Table 1, for the problem of FT10, it can be
observed that if an upper bound is not used, the ob-
tained results are of poor quality, with a standard
deviation of 4.97 and an average makespan of 941.9.
This is because when an upper bound is used, SAR
uses better schedules, which allow it to reach better
solutions through the changes in the neighborhood.
This indicates higher probability that the solution
space is nearer the global optimum, and a greater
number of good schedules exist, while only a small
number of bad schedules are present.

Table 2 shows the results of several algorithms of
simulated annealing for the problem FT10. In the ta-
ble, the type of neighborhood each author used is
specified. The makespan presented by Aart et al. [1],
using N1 and N1b, is an average of five trials. The
makespan presented by Van Laarhoven [12], N1, is
the best of five trials. The makespan presented by
Matsuo et al. [10], N1a, was obtained in one trial.
From Table 2 it can be observed that it was not pos-
sible for any algorithm to find the global optimum.
None of these algorithms involve restarting the an-
nealing so their time of execution is small. It can
also be observed that most of the results are poorer
than those obtained by the SAR when an upper
bound is not applied (Table 1). This shows that a
simulated annealing with restart and without upper
bounds could improve the solution obtained for
FT10.

Table 2. Results of several simulated annealing algo-
rithms for the problem FT10

FT10 , 10 x 10, optimum = 930
Authors t = sec. Makespan

Aart et al. (N1) 99 969
Aart et al. (N1b) 99 977

Van Laarhoven (N1) 3895 951
Matsuo et al. (N1a) 987 946

Table 3 shows the best performance of several

algorithms of simulated annealing, including the
SAR algorithm, for the benchmark LA40 of JSSP.
The parameters in SAR were fixed to: UB = 2300,
T0 = 25, Tf = 5.0 and β = 0.99. The table presents the
type of neighborhood that each author used in their
algorithm. The neighborhoods are the following:
algorithm of Van Laarhoven et al. [12], N1, which
represents the best of five trials; algorithm of Aart et
al [1], N1, which represents the average of five trials;
algorithm of Aart et al [1], N1b, which represents the
average of five trials; algorithm of Matsuo et al.
[10], N1a, which represents a single trial; CBSA al-
gorithm, N2, of Yamada et al. [14] which represents
the best of five trials, CBSA+SB algorithm, N2, of
Yamada and Nakano, which represents the best re-
sult of ten trials; and SAR, N1, which represents the
best of five trials.

In Table 3 it can be observed that the result ob-
tained by SAR with a 0.90% relative error is better
than all of the other algorithms that use N1 and de-
rivatives of N1. SAR also surpasses the CBSA,
which uses the N2 type of neighborhood. SAR is
surpassed only by CBSA+SB. The CBSA+SB algo-
rithm uses the neighborhood N2 and implements the
procedure of deterministic local search, called shift-
ing bottleneck, for the re-optimization of schedules
obtained in each repetition of the algorithm.

Table 3. Results of several simulated annealing algorithm
for the problem LA40

LA40, 15 X 15, optimum = 1222
Algorithm Makespan %ER

CBSA+SB (N2) 1228 0.49
SAR (N1) 1233 0.90

Van Laarhoven (N1) 1234 0.98
Matsuo et al. (N1a) 1235 1.06

CBSA (N2) 1235 1.06
Aart et al. (N1b) 1254 2.62
Aart et al. (N1) 1256 2.78

4 Conclusion
The use of upper bounds in the algorithm allows the
solution of the problem FT10 to be found in almost
all trials. This indicates that for this problem, in the
simulated annealing algorithm with restart, starting
with the good schedules that do not surpass an upper
bound, improves the solution considerably. Also, it
is recommended that the simulated annealing be re-
started in several points with good schedules. By do-
ing this, better solutions are obtained which are
nearer to the global optimum. This could help avoid
the situation where a local optimum is found which
is far from the global optimum.

The quality of the solution of the SAR algorithm
presented here for the problem LA40 is comparable
to the CBSA+SB algorithm with N2. One advantage
that the SAR algorithm has over the CBSA+SB is
that for the CBSA+SB, it is necessary to find the
machines with the shifting bottleneck in each repeti-
tion. To find all of this information, it is necessary to
calculate the release times and due dates of each op-
eration that is involved in the problem. Thus, be-
cause of the similar quality and simpler implementa-
tion, SAR appears to be of more interest from a
scientific point of view. It is thought that SAR
would have better performance with large problems
than CBSA+SB due to the fact that SAR does not
use deterministic local search procedures. Better
performance would be possible if SAR were im-
proved so it would not take so long. This work is
currently being done.

References:
[1] Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra, J.K.,

and Ulder, N.L.J., A computational study of local
search algorithms for job shop scheduling, ORSA
Journal on Computing, 6, 118-125, 1994.

[2] Aydin, M. E., and Fogarty, T. C., Modular Simu-
lated annealing algorithm for job shop scheduling
running on distributed resource machin (DRM),
South Bank University, SCISM, 103 Borough Road,
London, SE1 0AA, UK, 2002.

[3] Balas, E., Machine sequencing via disjunctive
graphs: an implicit enumeration algorithm, Oper.
Res., 17:941-957, 1969.

[4] Beasley, J.E., OR Library, Imperial College, Man-
agement School, http://mscmga.ms.ic.ac.uk/info.html,
1990.

[5] Carlier, J., and Pinson, E., An algorithm for solving
the job-shop problem. Manage. Sci., 35(2): 164-176,
1989.

[6] Conway, R. W., Maxwell, W.L., and Miller, L. W.,
Theory of Scheduling, Addison-Wesley, Reading,
Massachusetts, 1967.

[7] Garey, M.R., Johnson, D.S. and Sethi, R., The
complexity of Flow shop and Job shop Scheduling.
Mathematics of Operations Research, Vol. I, No 2,
USA, 117-129, May, 1976.

[8] Kirkpatrick, S., Gelatt S. D. Jr., and Vecchi, M. P.,
Optimization by simulated annealing. Science,
220(4598), 13 May, 671-680, 1983.

[9] Muth, J. F., and Thompson, G. L., Industrial Sched-
uling, Prentice Hall, Englewood Cliffs, New Jersey,
Ch 15, pp. 225-251, 1963.

[10] Matsuo, H. Suii, C.J. and Sullivan, R.S., A con-
trolled search simulated annealing method for the
general job shop scheduling problem, Working paper
03-04-88, Graduate School of Business, University
of Texas, Austin, 1988.

[11] Metrópolis, N., Rosenbluth, A. W., Rosenbluth, M.
N. Teller, A. H. and Teller, E., Equation of state
calculations by fast computing machines, The Jour-
nal of Chemical Physics, 21(6), 1087-1092, June
1953.

[12] Van Laarhoven, P.J.M., Aarts E.H.L., and Lenstra,
J.K., Job shop scheduling by simulated annealing.
Oper. Res., 40(1):113-125, 1992.

[13] Yamada T., and Nakano, R. Job-shop scheduling by
simulated annealing combined with deterministic lo-
cal search, Meta-heuristics: theory and applications,
Kluwer academic publishers MA, USA, pp. 237-248,
1996.

[14] Yamada, T., Rosen B. E., and Nakano, R., A simu-
lated annealing approach to job shop scheduling us-
ing critical block transition operators, IEEE, 0-7803-
1901-X/94, 1994.

[15] Adams, J., Balas E., and Zawack, D., The shifting
bottleneck procedure for job shop scheduling, Mgmt.
Sci., 34, 1988.

[16] Ingber, L., Simulated annealing: Practice versus the-
ory, Mathematical Computer Modelling, 18(11), 29-
57, 1993.

[17] Nakano R. and Yamada, T., Conventional Genetic
Algorithm for Job-Shop. Problems, in Kenneth, M.
K. and Booker, L. B. (eds) Proceedings of the 4th In-
ternational Conference on Genetic Algorithms and
their Applications, San Diego, USA, pp. 474-479,
1991.

[18] Zalzala, P. J., and Flemming., Zalsala, A.M.S. (Ali
M.S.), ed., Genetic algorithms in engineering sys-
tems /Edited by A.M.S. Institution of Electrical En-
gineers, London, 1997.

[19] Pinedo, M., Scheduling Theory, Algorithms, and
Systems, Prentice Hall, U.S.A., 1995.

