
Simulated Annealing with Restart to Job Shop
Scheduling Problem Using Upper Bounds

Marco Antonio Cruz-Chavez1 and Juan Frausto-Solis2

1 Faculty of Chemical Sciences and Engineering, Autonomous University of Morelos
State Av. Universidad 1001, Col. Chamilpa, 62270, Cuernavaca, Morelos, MÉXICO

mcruz@buzon.uaem.mx
2 Department of Computer Science, ITESM, Campus Cuernavaca Paseo de la

Reforma 182-A, 62589, Temixco, Morelos, MÉXICO
juan.frausto@itesm.mx

Abstract. An algorithm of simulated annealing for the job shop schedul-
ing problem is presented. The proposed algorithm restarts with a new
value every time the previous algorithm finishes. To begin the process of
annealing, the starting point is a randomly generated schedule with the
condition that the initial value of the makespan of the schedule does not
surpass a previously established upper bound. The experimental results
show the importance of using upper bounds in simulated annealing in
order to more quickly approach good solutions.

1 Introduccion

The job shop scheduling problem (JSSP) is considered to be one of the most
difficult to solve in combinatorial optimization. It is also one of the most difficult
problems in the NP-hard class [1].
The JSSP consists of a set of machines that each carry out the execution of

a set of jobs. Each job consists of a certain number of operations, which must be
carried out in a specific order. Each operation is carried out by a specific machine
and has a specific time of execution. Each machine can execute a maximum of
one operation at any given point in time. A single machine is unable to carry out
more than one operation of the same job. The objective of the problem is to find
the makespan. The makespan is defined as the time it takes to complete the last
operation in the system. An immense number of models exist that represent the
JSSP, but the two most important and influential models are those of disjunctive
formulation [2] and disjunctive graph [2] and [3].
The simulated annealing algorithm (SA) [4] is an analogy between the an-

nealing process of solids and the problem of solving combinatorial optimization
problems. This algorithm has been used with high rates of success for JSSP by
several researchers [5], [6], [7], [8], [9], and [10]. For the JSSP, S is a schedule
obtained by using a randomly generated initial point. S is in the neighborhood
of S, which is obtained by a small perturbation of S. T0 and Tf are the intial and
final temperatures of the process. β is the coefficient of temperature that controls
the cooling of the system. f (S) is the energy of the configuration S, which is



generally the makespan. One of the ways of perturbing the neighborhood of S is
proposed by Balas [3], and involves exchanging a pair of adjacent operations that
are within critical blocks of operations. This form of altering the neighborhood
is known as N1. The critical blocks of operations are the operations that form
the longest path of the schedule. Each critical block of operations that form this
path are performed by a common machine. N1, have been used previously in SA
with good results by [5], [6], [7], [8], and [10]. N1 is what is used in this work
due to ease of implementation.
Other researchers have developed variations of N1. The algorithm of Matsuo

et al. [7] is a derivation of N1, called N1a. This type of change to the neigh-
borhood involves changing the placement of three pairs of adjacent operations
simultaneously, where each operation pair is performed by a different machine.
The algorithm of Aart et al. [5], also a derivation of N1, called N1b, involves
reversing three adjacent pairs of operations that are all performed by the same
machine, and with the condition that one of the pairs does not form the longest
path.
Another type of derivation of N1 is the neighborhood of critical block (CB),

which is called N2. In this type of neighborhood, one operation in the block is
changed for either the initial or final operation of the block. It is not required
that the operations that change places be adjacent. The algorithms that use
N2 are the CBSA of Yamada et al. [10] and the CSBA+CB of Yamada and
Nakano [9]. This last algorithm uses a deterministic local search called shifting
bottleneck (SB) [11]. It uses SB when the schedule S , which is a perturbation
of S, is rejected in the SA. When the rejection occurs, the shifting bottleneck is
applied to S in order to improve it. Once S is improved, although f (S ) come
to be greater than f (S), the solution is accepted. In this type of neighborhood,
the shifting bottleneck must be used whenever S is rejected in the algorithm.
The implementation of the SB is not easy because it requires that the release
time and due dates are calculated. Here, an algorithm is proposed which is easy
to implement and produces high quality solutions; it is a simulated annealing
algorithm with restart [12].

2 Simulated Annealing with Restart Using Upper
Bounds

The proposed algorithm of simulated annealing with restart (SAR) consists of
executing a set of SA. The SAR algorithm using upper bound can be seen in
Figure 1. Each simulated annealing that is executed involves the iteration of
the SAR algorithm. Each repetition begins using a different schedule. The idea
of beginning with different schedules for each repetition of SAR came about
because of experimental tests that were carried out. In the experimental tests,
it was detected that even though SA allows the search for a global optimum, at
some point low temperatures eliminate this possibility and the search finds a local
optimum. By beginning with different schedules, more variability of solutions is
obtained than by beginning with only a single schedule. It is seen that the restart



1. Given initial iteration k = 0, initial values of Sf, Tf, β
2. Beginning of annealing k = k + 1:
3. S = S0 ≤ Upper Bound, T = T0, initial Sc
4. While the final temperature Tf is not reached,
5. While equilibrium is not reached:
•Generate a state S� by means of a perturbation in S
•if f (S�)− f (S) ≤ 0 then S = S�
•if f (S�)− f (S) > 0 the state is accepted with

the probability: Paccept = e
− f(S3)−f(S)

T

•With a randomly generated number α
evenly distributed between (0, 1)

•if α < Paccept then S = S�
•if S < Sc then Sc = S
•If the equilibrium does not exist, return to 5

T = T ∗ α
The best configuration is stored, if Sc < Sf then Sf = Sc
If T ≥ Tf, return to 4

If k < maxiter, return to 2 to begin a new annealing
The solution is Sf

Fig. 1. The simulated annealing algorithm with restart to JSSP using an upper bound

of the simulated annealing algorithm leaves a different point in the solution space
each time it is repeated.

The restarting of the algorithm allows for the search of global optimums by
using a new schedule in each repetition of SAR. This allows for a different part
of the solution space to be explored when SAR is at a local optimum. This not
only increases the probability of finding a global optimum, but also increases the
time of the search. In the SAR algorithm, at the beginning of each simulated
annealing, an UB (Upper Bound) is established in order to randomly obtain
the schedule with which to start the process. The value of the makespan of this
schedule may not be greater than the UB, or the schedule is not accepted as the
initial configuration of the annealing. The UB was established by trial and error,
so that the algorithm took no longer than 15 seconds to find an I-SCHED (initial
schedule) that could be used to begin the repetitions of the SAR algorithm. In
order to obtain an I-SCHED that did not surpass the UB, a random procedure
was used. First, a random sequence of operations was formed for each machine.
Next, a scheduling algorithm [13] was used to eliminate global cycles. Finally,
this schedule is improved by using the Giffler and Thompson algorithm [14]
that obtains active schedules [6]. With the proposed procedure, obtaining good
initial solutions that they don’t surpass an UB in a short period of time could
be assured.

In each iteration of the SAR algorithm, SA is fully completed. The best con-
figuration after all the repetitions are completed is the final solution. The number



of annealings carried out, that is, the number of repetitions of the algorithm, is
a function of time of execution and depends on the problem.
Other form of restart with SA is proposed by Yamada and Nakano [9], Ya-

mada et al. [10] and Aydin and Fogarty [15].

3 Computational Results

The proposed algorithm was proven with two benchmark registered in the OR
library [16], FT10 of 10x10 and LA40 of 15x15. For the FT10, ten trials were
done with an UB = 1570, generating the initial schedules with the procedure
I-SCHED, and ten trials were done without an UB, but also using the procedure
of I-SCHED. The parameters of T0 = 32∗(Makespan of I-SCHED), Tf = 1.0,
β = 0.98, and N1 as the type of neighborhood were equal in each test performed,
whether there was an UB or not. In both cases, a maximum time of four hours
was used to obtain the results. When the UB is used, the optimum (930) is
obtained in 80% of trials, the quickest being obtained in 44 minutes, 55 seconds.
The standard deviation is 2.95 with an average makespan of 931.4. If an UB is
not used, the obtained results are of poor quality (the optimum could not be
obtained), with a standard deviation of 4.97 and an average makespan of 941.9.
We also compared the results obtained with the algorithms ASSA using N1 and
CBSA N2, of Yamada et al. [10] because they have obtained some of the best
results for the problem FT10. They also carried out ten trials. It can be seen
that ASSA presents a greater standard deviation of 5.10 and a higher average
makespan of 939.5. The worst result obtained by the SAR algorithm for the
makespan was 937 and by ASSA 951. It is obvious that the SAR algorithm is
more effective than ASSA in obtaining the optimum for the problem FT10. For
the CBSA algorithm, in ten trials, and average makespan of 930.8 was obtained
and a standard deviation of 2.4. Only in one trial was CBSA unable to obtain the
optimum result, this trial gave a makespan of 938. These results indicate that
CBSA, by a small margin, is better able to find accurate solutions than SAR.
It is believed that the CBSA obtains better results due to the neighborhood
it uses, because the only difference between ASSA and CBSA is the type of
neighborhood used.
It is important to emphasize that a great number of tests were generated,

with sequences of slower cooling in both cases, with and without UB. The results
of all the performed tests slower cooling were farther from the global optimum.
In addition, there was a considerable increase in the time of execution of the
algorithm in order to find these solutions.
Table 1 shows the results of several algorithms of SA for the problem FT10.

In the table, the type of neighborhood each author used is specified. None of
these algorithms involve restarting the annealing so their time of execution is
small. It can also be observed that most of the results are poorer than those
obtained by the SAR when an upper bound is not applied. Table 2 shows the
best performance of several algorithms of SA, including the SAR algorithm, for
the benchmark LA40 of JSSP.



Table 1. Results of several simulated annealing algorithms for the problem FT10

FT10 , 10 x 10, optimum = 930

Authors t = seg Makespan
Aart et al. (N1) 99 969
Aart et al. (N1b) 99 977

Van Laarhoven (N1) 3895 951
Matsuo et al. (N1a) 987 946

Table 2. Results of several simulated annealing algorithm for the problem LA40

LA40, 15 X 15, optimum = 1222
Algorithm Makespa %ER

CBSA+SB(N2) 1228 0.49

SAR(N1) 1233 0.90
VanLaarhoven(N1) 1234 0.98
Matsuo et al.(N1a) 1235 1.06

CBSA(N2) 1235 1.06
Aart et al.(N1b) 1254 2.62
Aart et al.(N1) 1256 2.78

The parameters in SAR for LA40 were fixed to: UB = 2300, T0 = 25, Tf = 5.0
and β = 0.99. In the same table 2 it can be observed that the result obtained
by SAR with a 0.90% relative error is better than all of the other algorithms
that use N1 and derivatives of N1. SAR also surpasses the CBSA N2. SAR is
surpassed only by CBSA+SB. The CBSA+SB algorithm use the neighborhood
N2 and implements the procedure of deterministic local search, called shifting
bottleneck, for the re-optimization of schedules obtained in each repetition of
the algorithm.

4 Conclusion

The use of upper bounds in the algorithm allows the solution of the problem
FT10 to be found in almost all trials. This indicates that for this problem, in
the SAR algorithm, starting with the good schedules that do not surpass an UB,
improves the solution considerably. Also, it is recommended that the simulated
annealing be restarted in several points with good schedules. By doing this,
better solutions are obtained which are nearer to the global optimum.
The quality of the solution of SAR (N1) for the problem LA40 is comparable

to the CBSA+SB (N2). One advantage that SAR has over the CBSA+SB is
that for the CBSA+SB, it is necessary to find the machines with the shifting
bottleneck in each repetition. To find all of this information, it is necessary to
calculate the release times and due dates of each operation that is involved in



the problem. Thus, because of the similar quality and simpler implementation,
SAR appears to be of more interest from a scientific point of view. It is thought
that SAR would have better performance with large problems than CBSA+SB
due to the fact that SAR does not use deterministic local search procedures.
Better performance would be possible in SAR using N2.

References

1. Garey, M.R., Johnson, D.S. and Sethi, R., The complexity of Flow shop and Job
shop Scheduling. Mathematics of Operations Research, Vol. I, No 2, USA, 117-129,
May, 1976.

2. Conway, R. W., Maxwell, W.L. and Miller, L. W., Theory of Scheduling, Addison-
Wesley, Reading, Massachusetts, 1967.

3. Balas, E., Machine sequencing via disjunctive graphs: an implicit enumeration
algorithm, Oper. Res., 17:941-957, 1969.

4. Kirkpatrick, S., Gelatt Jr., S. D. and Vecchi, M. P., Optimization by simulated
anneal-ing. Science, 220(4598), 13 May, 671-680, 1983.

5. Aarts, E.H.L., Van Laarhoven, P.J.M., Lenstra, J.K. and Ulder, N.L.J., A compu-
tational study of local search algorithms for job shop scheduling, ORSA Journal
on Computing 6, 118-125, 1994.

6. Pinedo, M., Scheduling Theory, Algorithms, and Systems, Prentice Hall, U.S.A.,
1995.

7. Matsuo, H., Suii, C.J. and Sullivan, R.S., A controlled search simulated annealing
method for the general job shop scheduling problem, Working paper 03-04-88,
Graduate School of Business, University of Texas, Austin, 1988.

8. Van Laarhoven, P.J.M. , Aarts, E.H.L. and Lenstra, J.K., Job shop scheduling by
simulated annealing. Oper. Res., 40(1):113-125, 1992.

9. Yamada, T., and Nakano, R., Job-shop scheduling by simulated annealing com-
bined with deterministic local search, Meta-heuristics: theory and applications,
Kluwer academic publishers MA, USA, pp. 237-248, 1996.

10. Yamada, T., Rosen, B. E. and Nakano, R., A simulated annealing approach to job
shop scheduling using critical block transition operators, IEEE, 0-7803-1901-X/94,
1994.

11. Adams, J., Balas, E. and Zawack, D., The shifting bottleneck procedure for job
shop scheduling, Mgmt. Sci., 34, 1988.

12. Ingber, L., Simulated annealing: Practice versus theory, Mathematical Computer
Modelling, 18(11), 29-57, 1993.

13. Nakano, R. and Yamada, T., Conventional Genetic Algorithm for Job-Shop. Prob-
lems, in Kenneth, M. K. and Booker, L. B. (eds) Proceedings of the 4th Interna-
tional Conference on Genetic Algorithms and their Applications, San Diego, USA,
pp. 474-479, 1991.

14. Zalzala, P. J. and Flemming, Zalsala, A.M.S. (Ali M.S.), ed., Genetic algorithms in
engineering systems /Edited by A.M.S. Institution of Electrical Engineers, London,
1997.

15. Aydin, M. E. and Fogarty, T. C., Modular Simulated annealing algorithm for job
shop scheduling running on distributed resource machin (DRM), South Bank Uni-
versity, SCISM, 103 Borough Road, London, SE1 0AA, UK, 2002.

16. Beasley, J.E., OR Library, Imperial College, Management School,
http://mscmga.ms.ic.ac.uk/info.html, 1990.


