
A Reduced Codification for the Logical Representation
of Job Shop Scheduling Problems

Juan Frausto-Solis1 and Marco Antonio Cruz-Chavez2

1 Department of Computer Science, ITESM, Campus Cuernavaca
Paseo de la Reforma 182-A, 62589, Temixco, Morelos, MÉXICO

juan.frausto@itesm.mx
2 Faculty of Chemical Sciences and Engineering, Autonomous University of Morelos State

Av. Universidad 1001, Col. Chamilpa, 62270, Cuernavaca, Morelos, MÉXICO
mcruz@buzon.uaem.mx

Abstract. This paper presents the Job Shop Scheduling Problem (JSSP) repre-
sented as the well known Satisfiabilty Problem (SAT). Even though the repre-
sentation of JSSP in SAT is not a new issue, presented here is a new codifica-
tion that needs fewer clauses in the SAT formula for JSSP instances than those
used in previous works. The codification proposed, which has been named the
Reduced Sat Formula (RSF), uses the value of the latest starting time of each
operation in a JSSP instance to evaluate RSF. The latest starting time is ob-
tained using a procedure that finds the critical path in a graph. This work pre-
sents experimental results and analytical arguments showing that the new repre-
sentation improves efficiency in finding a starting solution for JSSP instances.

Keywords: Job shop scheduling, the propositional satisfiability problem (SAT), Latest starting
time, SAT formula.

1 Introduction

The Job Shop Scheduling Problem (JSSP) is one of the most relevant problems in
manufacturing processes because the efficient resource management is a critical re-
quirement. The JSSP is considered a very difficult problem, and, in computer sci-
ences, is cataloged as an NP-hard optimization problem [1]. This indicates that there
is not a deterministic algorithm to solve the problem, however, at the present time al-
gorithms have been designed to solve certain instances of JSSP. Various approaches
have been proposed for solving the JSSP using several models. Two of the most
commonly used models are disjunctive graphs [2] and constraints satisfaction [3].
These models can be classified as search methods and optimization methods. The
search methods can very quickly find a feasible solution to a JSSP instance, but unfor-
tunately there are no guarantees that the solution found is the optimal one. However,
search methods can provide a starting point. The methods based on satisfiability [4],

mailto:juan.frausto@itesm.mx
mailto:mcruz@buzon.uaem.mx

[5], and priority rules [6] are some examples of search methods. Shifting Bottleneck
([7], [8]) is a special type of search method that has a better performance that most
others, but only in small instances. On the other hand, optimization methods attempt
to find the best solution to a JSSP instance or at least one that is closer to a global op-
timum. Branch and Bound [9], Simulated Annealing [10], and Genetic Algorithms
[11] are among the principal optimization methods. Even though JSSP optimization
methods are outside the scope of this paper, it is important to mention that most of
these methods require a starting feasible solution at the beginning of their process
[12]. It is advantageous for all of these methods to find this starting solution as fast as
possible. A very attractive possibility to the challenge of quickly finding a feasible so-
lution is mapping a JSSP instance as a SAT problem [13] in such a way that the solu-
tion of the SAT problem is a feasible solution of the JSSP instance. Even though the
codification of the problem of scheduling SAT is not a new issue [4], it is important to
find alternative ways to codify JSSP as SAT for many reasons. First of all, because
JSSP is NP hard, new SAT codification of JSSP is important in and of itself. Another
reason is that for certain kinds of problems, a particular SAT codification can provide
a feasible solution very quickly [5].

In this paper a SAT codification for JSSP is presented which is based on a previous
one proposed by Crawford and Baker [5]. This codification is a reduced SAT formula
in which the solution obtained is a feasible starting solution (a feasible schedule) of a
JSSP instance, which can then be used in many JSSP optimization methods [12].

In order to get the satisfiability of the reduced logic formula one could use the
well-known SAT solvers, such as GSAT [14], WalkSat [15], TABLEAU [16] and
others. One could also think about using a solver in a testing plan in order to probe the
efficiency of the two codifications. In this case, rather than proceed with a testing ap-
proach of the new codification, analytical arguments are presented, showing that the
new Reduced Sat Formula has a smaller number of clauses, resulting in a more effi-
cient performance than the methods which have been proposed previously.

2 Background

In order to develop the reduced codification, the following concepts were used: the
JSSP, representation of the JSSP as a disjunctive graph, and SAT codification of
JSSP. These concepts are explained here to give the reader background in order to be
able to understand the reduced codification.

2.1 The Job Shop Scheduling Formulation

A JSSP consists of a set of jobs J={j1, j2, …, jn}, a set of machines M={m1, m2, …,
mm} and a set of operations O={1, 2, 3, …}. Each operation i is defined by six ele-
ments: (1) a machine mj in which it will be processed, (2) a job jk to which it belongs,
(3) a time of processing pi, (4) a ready time ri, (5) a starting time si and (6) a deadline
di. The ready time indicates the earliest time at which the operation can start and the
deadline is the time by which the operation must be completed.

The operations of a JSSP have the following relations: For each pair (i, j) of opera-
tions that belong to the same job, a precedence relation exists. In addition, any single
machine cannot execute simultaneously more than one operation.
These elements and relations allow the formulation of the JSSP as a constraint satis-
faction problem (CSP) [3] that is known as Job Shop Deadline Scheduling. This for-
mulation is shown in Table 1, where the subscripts i and j are associated with two dis-
tinct operations of the problem.

Table 1. The constraints of a JSSP as a constraint satisfaction problem

Constraint Interpretation
si ≥ 0 Starting time constraint: The starting time of the opera-

tion i must be non-negative.
si + pi ≤ sj Precedence constraint: The operation i must be complete

before j can begin.
si + pi ≤ sj ∨ sj + pj ≤ si Resource capacity constraint: The operations i and j are

in conflict. They require the same resource and they can-
not be scheduled concurrently.

ri ≤ si Ready time constraint: The operation i cannot begin be-
fore its ready time.

si + pi ≤ di Deadline constraint: The operation i cannot finish after
its deadline.

2.2 Disjunctive Graph of the JSSP

The JSSP can be represented using a disjunctive graph [2], [17]. This graph is a 3-
tuple G = (N, A, E) where N is a set of nodes representing the operations of the prob-
lem. A and E are sets of arcs that symbolize precedence constraints and resource ca-
pacity constraints respectively. Precedence constraints are represented by conjunctive
arcs, whereas resource constraints are represented by disjunctive arcs.

Fig. 1. Representation of a two job and two machine JSSP using a disjunctive graph

The operations connected by conjunctive arcs are those that belong to the same job,
and the operations connected by disjunctive arcs are those which are executed by the
same machine. Figure 1 represents a disjunctive graph where the operations 1 and 2
belong to job 1 and the operations 3 and 4 belong to job 2. In this figure, the prece-

dence constraints are represented by P1 and P2, and the resource capacity constraints
are represented by R1 and R2.

2.3 SAT Codification of JSSP

The objective of the SAT problem is to confirm or deny the existence of an assign-
ment of truth-values for the literals of a logic formula which make the formula true.

A SAT formula is usually written in its conjunctive normal form (CNF) that has
the following three features: (1) a conjunction F of clauses Fi, i.e. F = F1 F2,…,

Fn, (2) each clause F
∧

∧ i is a disjunction of literals Xiv….vXk, (3) each literal Xj is a
Boolean variable (negated or not). Crawford and Baker [5] propose a SAT codifica-
tion for the JSSP based on the formulation of the JSSP as one CSP. This SAT codifi-
cation is shown in Tables 2 and 3. In these tables, the subscripts i and j are associated
with two distinct operations. The subscripts ri, di and t are times, ri representing the
ready time and di representing the deadline. In this SAT codification, a JSSP instance
is the set of clauses F, each CNF in Table 2 and 3 being a clause of F. In this way a
JSSP instance is codified, or represented, by a SAT problem F, in which the solution
is feasible for the JSSP instance.

Table 2. Logical clauses for the JSSP represented as a CSP

Constraint CNF
si + pi ≤ sj pri,j

si + pi ≤ sj ∨ sj + pj ≤ si pri,j ∨ prj,i

si ≥ ri sai,ri

si + pi ≤ di ebi,di

Table 3. The coherence conditions for the SAT codification of a JSSP

Coherence condition CNF Interpretation
sai,t → sai,t-1 ~sai,t ∨ sai,t-1 Coherence of sa: If i starts at or after time t,

then it starts at or after the time t-1.
ebi,t → ebi,t+1 ~ebi,t ∨ ebi,t+1 Coherence of eb: If i ends by time t, then it

ends by time t+1.
sai,t → ~ebi,t+pi-1 ~sai,t ∨ ~ebi,t+pi-1 Coherence of pi: If i starts at or after time t,

then it cannot end before time t+pi.
sai,t ∧ pri,j → saj,t+pi ~sai,t ∨ ~pri,j ∨ saj,t+pi Coherence of pri,j: If i starts at or after time t,

and j follows i, then j cannot start until i is fin-
ished.

3 Reduced SAT Codification

The codification presented in the last section is complete because it represents all the
constraints of the Job Shop Deadline Scheduling Problem with logical formulas; how-
ever for this codification, one should build and then evaluate many clauses. It would
be advantageous to have a reduced codification of any JSSP instance, where the num-

ber of clauses is smaller, so in principle, the efficiency to build and evaluate the re-
spective SAT formula is increased. The reduced codification of the JSSP is based on
two concepts, the reduction of clauses and the determination of the latest starting time
(LST). These two fundamental concepts are explained in the following sections.

3.1 Reduction of Clauses

It is possible to significantly reduce the number of clauses that compose the complete
SAT codification, according to the following analysis.

First, all of the clauses in Table 2 can be eliminated for any JSSP instance because
the respective clauses will automatically be true. They are true because any schedule
proposed has a known sequence in which every pair of operations has a known order.
In a schedule, the LST (latest starting time) of an operation is the latest time in which
the operation can start. When the LST is calculated, the ready time is assigned to this
time (ri = LST) and the deadline can be determined (di = ri + pi). Table 4 describes the
form in which the constraints can be eliminated. Given this treatment, all the clauses
in Table 2 are true which means they can be eliminated.

Table 4. Conditions for eliminating the scheduling constraints in a reduced codification

Constraints which
can be eliminated

Rationale

Precedence
constraints

(pri,j)

For any JSSP, the precedence constraints are considered to define
the problem and the equivalent clause pri,j is always true. These
clauses can be eliminated from the codification because their truth-
values are always true.

Resource capacity

constraints
(pri,j ∨ prj,i)

Because the resource capacity constraints specify the use of the same
machine by two operations, and because the schedule for the problem
is defined, the resource capacity constraints can be exchanged for the
precedence constraints in the logical representation. When this is
done, it is possible to see that these clauses can be eliminated from
the codification because their truth-values are always true.

Ready time
constraints (sai,ri)

and
deadline constraints

(ebi,di)

If the LST of each operation in the defined schedule is found, the
ready times and the deadlines of each operation can be determined. If
these times are known, the clauses in the codification that contain
sai,ri or ebi,di will be always true, so they can be eliminated from the
codification.

For the clauses that represent the coherence conditions (Table 3), if t is the LST of

the operation (t=ri), then the literals sai,t-1, ~ebi,t and ~ebi,t+pi-1 are all true. The clauses
with these literals can be eliminated from the codification and the clauses that remain
are the clauses that are used to evaluate the coherence of pri,j. Table 5 presents the
justification for realizing this elimination process.

The key of this reduction is the determination of the LST for each operation in the
defined schedule.

It should be noted that RSF is formed only by the coherences prij presented in Ta-
ble 3. A SAT solver like GSAT [14], WalkSat [15], TABLEAU [16] and many others
can be used in order to find a solution to the SAT problem of RSF which represents a

feasible schedule. These solvers assign truth-values to the variables prij in the RSF.
Next, the LST (latest starting time) for each operation (i, j) is calculated. With the
LST and truth-values of the variables involved in RSF obtained, the solver begins to
prove the satisfiability of RSF.

Because all the eliminated clauses are always true, it is not useful to maintain them
in the complete formula when a SAT solver is used. While the RSF presented here
has fewer evaluations than the complete SAT codification, it requires that the LST be
found. One can observe that the complete SAT codification requires the calculation of
the t times using a procedure not described by Crawford and Baker [5].

Table 5. Justification for eliminating the coherence conditions in a reduced codification

Constraints
which can be elimi-

nated

Rationale

Coherence of sa

Because t is the LST, then t=ri. For clauses with the form ~sai,t ∨ sai,t-

1, the literal ~sai,t is false, and sai,ri is true. The literal sai,t-1 is true be-
cause the operation i starts at ri, which is equal to t and si is after ri-1.
Therefore, the clauses are always true and they can be eliminated.

Coherence of eb

Because t is the LST, then t=ri. For clauses with the form ~ebi,t ∨
ebi,t+1, the literal ~ebi,t is true and ebi,ri is false. Because the operation i
cannot finish at its ready time or before, the literal ebi,t+1 is false and
ebi,ri+1 is also false. Therefore the clauses are always true and they can
be eliminated.

Coherence of pi Because t is the LST, t=ri. For clauses in the form ~sai,t ∨
~ebi,t+pi-1, the literal ~sai,t is false and sai,ri is true. The literal ~ebi,t+pi-1
is true and ebi,ri+pi-1 is false because the operation i cannot finish before
of ri+pi. Therefore the clauses are always true and they can be elimi-
nated.

3.2 Latest Starting Time

The LST of a given operation is equal to the critical (longest) path generated in a di-
graph between the given operation and the initial operation (I in Figure 1). The value
of the critical path of an operation i is the sum of the processing times of all the opera-
tions in the sequence between I and i. The LST is used as the start time si of the opera-
tion i.

Figure 2 shows one example of two operations (i and j) processed by the same ma-
chine. In this figure, the ready time of the operation j (rj) and the deadline of the op-
eration i (di) are shown when the resource capacity constraint is transformed into one
precedence constraint. These times are valid if the resource capacity constraint be-
tween i and j is not violated.

In this example, the LST of the operations i and j can be calculated (ti and tj, re-
spectively), so the finish time of the operation i is ti + pi. If tj is greater than or equal
to ti + pi, the clause ~sai,t ∨ ~pri,j ∨ saj,t+pi is true and the ready times will always be
valid for each operation. If tj and ti + pi are equal to each other, rj represents the finish
time of the operation i (rj = ti + pi) and is valid because the operation j will start at the
time tj (the operation j starts when the operation i finishes). The deadlines for these

operations are valid, as is shown for operation i in Figure 2. In this example, the op-
eration could slow its finish (di) until the beginning of the operation j (tj). In this case,
(e.g., di < rj), there would be idle time, a few moments when the machine would not
be working, between the end of one operation and the beginning of another.

Fig. 2. Graphic representation of the resource capacity constraint between two operations

(with their LST’s) that have a defined sequence

3.3 Obtaining the Latest Starting Time

The general problem in obtaining the longest path in a graph is classified as NP-
complete [18]. A certain relaxation is required to find the path in an efficient form. In
this work, a method based on the approach proposed by Adams, et al. in [7] is used. In
this method, Hamilton routes from each of the machines are taken for a possible
schedule from the graph that represents the JSSP. This simplification of the directed
graph generates a binary search tree for the schedule. The problem becomes finding
the longest path between two nodes of the graph which can be solved in polynomial
time [7], [18], with a complexity of O(N), where N is the number of nodes generated
in the binary search tree. In the search tree, the root of the tree is the operation that is
needed to obtain the LST, and contains each possible route to arrive at the initial node
(operation I). Each node of the resulting tree has a maximum of one successor and
one predecessor.
This search tree is used to determine the LST of all the operations of the possible
schedule. The LST of each operation is the critical path from this operation to the ini-
tial node. In this way, the determination of the LST is reduced to the determination of
the critical path of each operation.

3.4 A Method of Generating the Reduced SAT Formula for Any JSSP

Figure 3 shows the algorithm that produces a reduced codification for the SAT repre-
sentation of any JSSP. It is possible to check the satisfiability of the reduced codifica-
tion obtained using SAT solvers.

In this algorithm, for each disjunctive arc (the resource capacity constraint), two
clauses exist. One clause exists when operation i precedes j, and the other clause ex-
ists when the operation j precedes i. The generation of the RSF, is a function of the

number of disjunctive arcs on the JSSP graph (see Fig 1). The number of disjunctive
arcs are defined as arc = m(n-1), where m is the number of machines and n is the
number of jobs. For the purpose of comparing the complexity of the construction of
RSF with the construction of the Crawford and Baker formula, the same number of
jobs and machines are used so m=n. With this simplification, the RSF generates:

Fig. 3. The algorithm for constructing a reduced codification for the SAT representa-
tion of a JSSP

procedure reduced_codification (N,E,P)
{ N is a set of operations }
{ E is a set of disjunctive arcs without a sequence of use assigned}
{ P is a set of processing times of each operation }
{ The data represents one schedule as defined (feasible or not) }
{ C is the set of clauses in CNF, at the beginning C is empty }
begin
 for k=1 to number of arcs in E do
 begin
 { pri,j are arcs in E }
 C = C ∧ (~sai,ri ∨ ~pri,j ∨ saj,di);
 end
 C is the reduced codification;
 return C;
end.

Clauses= 2n2-2n (1)

In addition, as each clause of the reduced SAT formula contains 3 literals, the evalu-
ated literals are:

Literals=6n2-6n (2)

After taking into account the information in (1) and (2), the complexity in order to
generate the RSF is O(n2).

In the case of the complete codification, when m = n, in addition to generating the
RSF clauses, it is necessary to evaluate each pri,j clause. For each pair of operations
belonging to the same job, n(n-1) clauses is needed. For each operation, it is also re-
quired to evaluate the following 5 types of clauses: sai,ri (with one literal) that is
equivalent to n2 clauses for all operations, ebi,di (with one literal) that is equivalent to
n2 clauses for all operations, and three types of clauses ~sai,t ∨ sai,t-1, ~ebi,t ∨ ebi,t+1,
~sai,t ∨ ~ebi,t+pi-1 (each one with two literals) that are equivalent to 3n2 clauses for all
operations. If all the clauses that need to be evaluated are added together, the Craw-
ford and Baker formula generates a minimum of:

Clauses = 8n2-3n (3)

The literals that they will evaluate are:

Literals=15n2-7n (4)

It can be seen from (3) and (4) that the complexity in order to generate the Craw-
ford and Baker formula is O(n2). Although the complexity of generating the SAT
formula in the two methods is the same, it is clear that evaluating RSF is simpler. The
simplification is demonstrated in 2 and 4 where it can be seen that when using RSF it
is necessary to evaluate the truth-value of a smaller number of literals.

4 Experimental Results

Several tests were performed in order to verify the reduction approach presented in
this paper. In Table 6, the comparison of the number of clauses produced is shown.
Two methods are examined, that of Crawford and Baker, and that of the reduced codi-
fication. The problems were taken from Beasley [19]: the problem, FT6, has 6 jobs
and 6 machines, the problem, FT10, has 10 jobs and 10 machines, etc. The compari-
son of these results is shown in Table 6. The reduced codification (RSF) reduced an
average of 75.9% of clauses for the nine problems.

Table 6. Number of clauses in a JSSP

Number of clauses
Problem

complete SAT
codification

RSF

%
reduction

FT6 270 60 77.78
FT10 770 180 76.62
LA21 3,465 840 75.76
LA24 4,536 1,106 75.66
LA25 4,925 1,200 75.63
LA27 5,751 1,404 75.59
LA29 6,641 1,624 75.55
LA38 11,438 2,812 75.42
LA40 12.680 3,120 75.39

5 Conclusions

RSF produces a significant reduction in the number of clauses (75.9%). The key to
this reduction approach is the determination of the t times as the latest starting times
(with a complexity of O(N)) of each operation for a proposed schedule. The complete
SAT codification of Crawford and Baker, requires an additional manipulation of the t
times using the unit propagation as a polynomial time procedure. The complexity for
this procedure could not be less than a complexity of a linear order. Although the
complexity for the generation of the SAT formula in the two methods it is the same, it
is clear that the evaluation of RSF is simpler because RSF requires the evaluation of
the truth-values of a smaller number of literals. Due to the fact that RSF simplifies
the number of clauses by such a significant percentage and the efficiency of linear
complexity for obtaining the times t, it can be observed that it is more advantageous
to use RSF than the complete SAT codification.

The algorithm that generates the RSF is applied only once in the beginning
of the process of using a solver. RSF can be used in optimization methods that need
initial solutions.

References

1 Garey, M. R., Johnson, D. S. and Sethi, R.: The Complexity of Flow Shop and Job Shop
Scheduling, in Mathematics of Operation Research, Vol. 1, No. 2 (1976) 117-129

2 Conway, R.W., Maxwell, W.L. and Miller, L.W.: Theory of Scheduling. Addison-Wesley,
Reading, Massachusetts (1967)

3 Smith, S.F. and Cheng, C.C.: Slack-Based Heuristics for Constraint Satisfaction Scheduling,
in Proc. of the 11th National Conf. on Artificial Intelligence, Washington, D.C., (1993) 139-
145

4 Ullman, J.D.: NP-complete scheduling problems, in Journal of Computer System Sciences,
Vol. 10 (1975) 384-393

5 Crawford, J.M. and Baker, A.B.: Experimental Results on the Application of Satisfiability
Algorithms to Scheduling Problems, in Proc. of the 12th National Conf. on Artificial Intelli-
gence, Austin, TX, (1994) 1092-1098

6 Panwalker, S.S. and Iskander, W.: A survey of scheduling rules, in Operations Research,
Vol. 25, No. 1, (1977) 45-61

7 Adams, E., Balas, E. and Zawack, D.: The Shifting Bottleneck Procedure for Job Shop
Scheduling, in Management Science, Vol. 34, No. 3 (1988) 391-401

8 Schutten, M.J.: Practical job shop scheduling, in Annals of Operations Research, Vol. 83,
(1988) 161-177

9 Carlier, J. and Pinson, E.: An algorithm for solving the job-shop problem, in Management
Sciences, Vol. 35, No. 2 (1989) 164-176

10 Yamada, T. and Nakano, R.: Job-Shop Scheduling by Simulated Annealing Combined with
Deterministic Local Search, in Metaheuristics Int. Conference, Colorado, USA, (1995) 344-
349

11 Zalzala, P.J. and Flemming: Genetic algorithms in engineering systems, in A.M.S. Inst. of
Electrical Engineers (1997)

12 Albert Jones and Luis C. Rabelo: "Survey of Job Shop Scheduling Techniques," NISTIR,
National Institute of Standards and Technology, Gaithersburg, MD, 1998. In
http://www.mel.nist.gov/msidlibrary/summary/authlist.htm.

13 Papadimitriou, C.H., Computational Complexity, Addison Wesley Pub. Co., USA, ISBN 0-
201-53082-1, (1994).

14 Selman, B., Levesque, H. and Mitchell, D. A new method for solving hard satisfiability
problems, In Proceeding of the Tenth National Conference on Artificial Intelligence, 139-
144, 1992

15 Selman, B, and Kautz, II,: A. Local search strategies for satisfiability testing, In Procceding
DIMACS Workshop on Maximum Clique, Graph Coloring and Satisfiability. 1993.

16 Davis, M., Logeman, G., and Loveland, D.: A machine Program for theorem proving. In
CACM, (1962) 394-397.

17 Balas, E: Machine Sequencing via Disjunctive Graphs: An Implicit Enumeration Algorithm,
in Operations Research, Vol. 17 (1969) 941-957

18 Garey, M.R. and Johnson, D.S.: Computers and Intractability: A Guide of the Theory of NP-
Completeness, W.H. Freeman and Co, New York (1979)

19 Beasley, J.E.: OR Library, Imperial College, Management School,
http://mscmga.ms.ic.ac.uk/info.html (1990)

http://mscmga.ms.ic.ac.uk/info.html (1990

	Interpretation
	CNF
	CNF
	Interpretation

