
Proceedings of the Second EELA-2 Conference
R. Mayo et al. (Eds.)
CIEMAT 2009
© 2009 The authors. All rights reserved

227

Parallel Hybrid Evolutionary Algorithm in a Grid Environment
for the Job Shop Scheduling Problem

Marco Antonio Cruz-Chávez1, Abelardo Rodriguez-León2, Erika Yesenia Ávila-Melgar1,
Fredy Juárez-Pérez1, José Crispín Zavala-Díaz3, Rafael Rivera-López2

1CIICAp, 3FCAeI Autonomous University of Morelos State

Av. Universidad 1001. Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, México.
 {mcruz, juarezfredy,erikay}@uaem.mx

2Technological Institute of Veracruz
Miguel Ángel de Quevedo 2779, Formando Hogar, 91860 Veracruz, Veracruz, México

{arleon, rrivera}@itver.edu.mx

Abstract

This paper presents a parallel hybrid evolutionary algorithm executed in a grid
environment. The algorithm executes local searches using simulated annealing within a
Genetic Algorithm to solve the job shop scheduling problem. Experimental results of the
algorithm obtained in the “Tarantula MiniGrid” are shown. Tarantula was implemented by
linking two clusters from different geographic locations in Mexico (Morelos-Veracruz). The
technique used to link the two clusters and configure the Tarantula MiniGrid is described.
The effects of latency in communication between the two clusters are discussed. It is shown
that the evolutionary algorithm presented is more efficient working in Grid environments
because it can carry out major exploration and exploitation of the solution space.

1. Introduction

The Job Shop Scheduling Problem (JSSP) deals with the resource assignment in
manufacturing industries. According to the complexity theory, JSSP is a complex problem,
and is classified as NP-Complete [2]. Throughout time, several methods have been proposed
to solve complex problems. Finding the global optimum solution using an exact method
would take years for an NP-Complete problem. Hence, finding solutions to complex problems
with deterministic algorithms is not applicable. In order to deal with NP-Complete problems,
the meta-heuristics [3], [4] have been successfully applied. The evolutionary algorithms are
meta-heuristics that work efficiently by exploring the solution space to find the best solution.
The drawback to these algorithms is that they generally do not completely exploit the solution
space. One way to compensate for this problem is to codify a hybrid meta-heuristic that has
the capability to completely exploit and explore the solution space, and thereby escape from
local optimum solutions.

Although meta-heuristics are efficient techniques to deal with complex problems, generally
the computational resources of a computer are not sufficient to obtain results in reasonable
computational times with problems in the NP-complete class. It is necessary to make use of

M.A. Cruz-Chávez/Parallel Hybrid Evolutionary Algorithm in Grid Environment

228

computational tools such as clusters or grids, which are a set of interconnected computers that
enable distributed processing. Distributed processing allows the use of more computational
resources, so that the execution of a polynomial time algorithm can be more efficient.

For the execution of the polynomial algorithm proposed in this paper, a proprietary high
performance MiniGrid was created1. The MiniGrid was formed by linking two institutions
located in different geographic places: the Autonomous University of Morelos State, located
in Cuernavaca, Morelos, and the Technological Institute of Veracruz located in Veracruz,
Veracruz. Each institution had its own cluster and they were linked to form the Tarantula
MiniGrid. The experimental platform created allowed for the execution of parallel programs
by means of a passing interface for messages, better known as an MPI library [4].

The principal contribution of this work is the presentation of a Parallel Hybrid
Evolutionary Algorithm in a Grid Environment with low latency as used to solve the Job
Shop Scheduling Problem.

The remainder of this paper is divided into the following sections: Section 2 explains the
formation of the job shop scheduling problem. Section 3 presents the description of the hybrid
evolutionary algorithm and the process of deployment in a parallel platform with MPI.
Section 4 shows the test scenarios used to execute the parallel algorithm. Section 5 describes
the experimental results of efficiency and latency of the parallel hybrid evolutionary
algorithm execution in a grid environment. Finally, Section 6 presents the conclusions of this
work.

2. Job Shop Scheduling Problem

The JSSP is an attempt to establish a scheduling of machines in a manufacturing shop to
realize a set of jobs [1]. Each job requires a set of operations to be carried out. The solution to
the problem is an optimum sequence of jobs to be executed by each machine, respecting
precedence constraints while executing the operations in each job.

 Min ()







∈

+ jjj
ps

O
max (1)

∀ ∈j O 0≥js (2)

∀ ∈ji, O, kJji ∈)(p jii sps ≤+ (3)

∀ ∈ji, O, ()kMji ∈, ijjjii spssps ≤+∨≤+ (4)

Equation (1) is the objective function related to the maximum completion time needed to

finish the last operation realized in the manufacturing workshop. Constraint (2) states that the
start time of each operation j should be greater or equal to zero. Constraint (3) represents the
existing precedence between two operations of the same job. Constraint (4) defines the
resource capacity between pairs of operations executed by the same machine.

3. Hybrid Evolutionary Algorithm Deployed in Grid Environment

Hybrid evolutionary algorithms are gaining popularity due to their capabilities in handling
several real world problems involving complexity, noisy environments, imprecision,
uncertainty, and vagueness [5]. Figure 1 shows the solution methodology used to solve the job

M.A. Cruz-Chávez/Parallel Hybrid Evolutionary Algorithm in Grid Environment

229

shop scheduling problem with the proposed hybrid evolutionary algorithm. It presents a
genetic algorithm containing a randomly generated feasible population, a selection operator
“the best” (elitism) [13], a crossover operator Subsequence Exchange (SXX) [12] and the
iterative mutation operator SA [6]. According to their fitness, the operator “the best” selects an
average of the best individual values from a population and recombines them, thus producing
offspring that will compose the next generation.

Figure 1. Solution Methodology for the JSSP

Application of a crossover operator allows for exploration of the solution space. An

iterative operator is used to mutate [6]. It optimizes the fitness function, applying a mutation
in each individual. It helps to find the best individual by using an iterated local search with the
Simulated Annealing process (SA). The previously described procedure is repeated for each
generation of the population.

The hybrid evolutionary algorithm is implemented by using distributed processing and
parallel techniques. The MiniGrid consists of two clusters. Each cluster contains some nodes,
which have one or more processors. The processors are involved in the implementation of
parallel algorithms using the Interface Passing Messages library (MPI). The parallel hybrid
evolutionary algorithm implemented uses the master-slave paradigm, which maintains the
sequence of the original algorithm [7].

Figure 2. Hybrid evolutionary algorithm execution for the JSSP in MiniGrid UAEM-ITVer

M.A. Cruz-Chávez/Parallel Hybrid Evolutionary Algorithm in Grid Environment

230

The main idea of the proposed parallelization of the evolutionary algorithm is to first
allocate tasks to processors with lower communication requirements. The tasks are divided
proportionally according to the available processors. Figure 2 shows the use of nodes in the
MiniGrid for the algorithm. First, an initial feasible population is created in a master node.
The master node carries out selection and crossover operations for genetic algorithms; it then
sends a sub-population to the slaves’ nodes on the MiniGrid. Based on experimental tests, the
mutation operator has been identified as the most time consuming procedure. To decrease the
execution time, the mutation function is divided proportionally according to the available
nodes in the MiniGrid. That means that a process number is generated based on the number of
processors available in the MiniGrid (1:1). Each processor executes a set of iterations using
the Restart SA technique (iterative mutation). A Restart SA is executed for each individual of
a sub-population that is to be mutated. The slave nodes return the newly mutated individuals
to the master. Next, the master node collects all the individuals mutated by the slaves’ nodes
and uses them to create a new population. This process continues until an optimal solution is
found or a given number of generations are created. For example, for a population of 100 with
an 80% mutation rate, and 20 processors, each processor would mutate 4 individuals, as
shown in Figure 2.

The MPI library was used for sending messages for the parallel hybrid evolutionary
algorithm. The MPI library enables the transfer of complex data types. However, the MPI
library has no mechanism to transfer dynamic data types. It only recognizes the primitive data
types used in C language. For every primitive data type in C language as int, char, long,
double, and so on, there is an equivalent MPI data type: MPI_INT, MPI_CHAR, MPI_LONG,
MPI_DOUBLE. When using dynamic data types, there is not an equivalent MPI data type, so
it is necessary to develop a conversion procedure, because the hybrid algorithm uses dynamic
data types.

The conversion procedure necessary to transfer data is known in some platforms as
serialization and de-serialization. It consists of serializing the dynamic data structure, sending
it, receiving it, and reconstituting it. The conversion process is complex and tedious.
Currently, an automatic tool called Automap [10] is proposed to do the conversion
automatically. Once the data is converted to MPI data types, it is easy to send dynamic data
structures through the grid.

4. Test Scenario

The MiniGrid is formed by joining two high-performance cluster computers (HPC), each
computer belonging to a different domain. The clusters are integrated as a single parallel
machine. They need for integration of the HPC is due to their distant geographic locations.
The integration allows for local management of both clusters despite the fact that they are
independent entities.

The basic components in the construction of a high performance cluster with support for
MPI programming were based on the installation and configuration of the following software
and services on Red Hat Enterprise Linux 4. 1) Configuration of the private network. 2) Set
up of a network file system using Network File System (NFS). 3) Set up of the Network
Information Service (NIS). 4) Set up of public keys to enable the execution of remote jobs. 5)
Set up of the MPI for use of OpenMPI or MPICH, which is the open source implementation
of MPI-1 standard and MPI-2. 6) Configuration of Ganglia [11] for real time monitoring of
the cluster. 7) Configuration of Torque settings to manage the cluster resources. 8) Set up of
MAUI for planning jobs in the cluster.

The integration of the components shown in Table 1 is essential for the creation of high-
performance clusters. The Mini-Grid consists of two or more high-performance clusters,

M.A. Cruz-Chávez/Parallel Hybrid Evolutionary Algorithm in Grid Environment

231

which are geographically remote. An important element of the MiniGrid is a link that joins
the two clusters by a Virtual Private Network (VPN, network-to-network). For the MiniGrid
implemented in this study, an Open VPN was used instead of routers (via hardware). The
joined clusters were in different subnets.

Table 1. Infrastructure of Hardware and Software for the Grid

GRID TARANTULA ---- SOFTWARE ---
Red Hat Enterprise Linux 4, Compiler gcc versión 3.4.3, OpenMPI 1.2.8, MPICH2-1.0.8, Ganglia 3.0.6

NIS ypserv-2.13-5, NFS nfs-utils-1.0.6-46, OpenVPN, Torque + Maui.
CLUSTER CIICAP CLUSTER ITVER

Switch Cisco C2960 24/10/100 Switch 3com 8/10/100
Master node Pentium 4, 2793 MHz, 512 MB RAM, 80
GB HD, 2 network cards 10/100 Mb/s

Master node Pentium 4 Dual Core, 3200 Mhz, 1 GB
RAM, 80 GC HD, 1 network card 10/100 Mb/s

9 slave nodes Intel® Celeron® Dual Core, 2000MHz,
2 GB RAM, 160GB HD, 1 network card 10/100 Mb/s

2 slave nodes Pentium 4 Dual Core, 3201 Mhz, 1 GB
RAM, 80 GB HD,1 network card 10/100 Mb/s

5. Experimental Results

The latency computation is based on the transfer rates between the two clusters:
cluster.ciicap.edu.mx and nopal.itver.edu.mx. The process used to compute latency in the two
clusters is described in detail in [9].

Figure 3 shows the latency obtained for the Tarantula MiniGrid throughout the day, from
12 AM to 6 PM. The results shown are the average values over a period of five days. It can be
observed that the latency decreases as the day progresses. At 12 hours, higher latencies are
reported, measuring between 45 and 40 seconds. At 18 hours, a latency of less than 0.4
seconds is observed. The latency tends to decrease as the day progresses. This indicates that
in the afternoon the data transfer is more efficient.

Figure 3. Tarantula MiniGrid Latency

In order to measure the efficiency of the hybrid Evolutionary Algorithm, it was executed

for two benchmarks taken from the OR Library [8]. The algorithm was executed from the
master node of the CIICAp cluster. The first executed benchmark was LA40 and it consisted
of 15 jobs and 15 machines. The stop criteria were the number of generations created. The
input data is presented in Table 2.

The obtained results of the algorithm execution in the MiniGrid are presented in Table 3.
The average time of execution in the nodes (cores) of each cluster and the best makespan was
presented after it finished 35 generations. Logical reasoning indicates that if the number of

M.A. Cruz-Chávez/Parallel Hybrid Evolutionary Algorithm in Grid Environment

232

processors is increased then the population size could be increased, while requiring a similar
amount of time. Increasing the number of processors would let the algorithm explore a larger
portion of the solution space and find better solutions in less time. This shows the importance
of having a large GRID that includes computational resources for high performance
applications, such as the algorithm presented here.

Table 2. Input Data for the Hybrid Genetic Algorithm for the LA40 and YN1 Instance

Variable LA40 YN1
Initial Temperature for Simulated Annealing 25 20
Final Temperature for Simulated Annealing 1.0 1.0
Coefficient Temperature for Simulated Annealing 0.99 0.955
Markov Chain Length 210 5000
Given Upper Bound for the JSSP 1222 885
Restarting number for each individual in Simulated Annealing 20 20
Good Population Selection (%) 40 40
Bad Population Selection (%) 5 5
Population to mutate (%) 80 80
Number of Generations for Genetic Algorithm 35 6

Table 3. Results of the Parallel Hybrid Evolutionary Algorithm for Solving LA40 Instance

Cluster nodo0x.ciicap.edu.mx Nodo0x.itver.edu.mx
Node 0,1,2,3,4,5,6,7,8,9 0,1,2

Time (sec) 12618 15413
Makespan 1234 1243

Table 2 indicates that the number of restarts for SA for each individual was 20. According

to the restart number, in the worst case, the average execution time of the mutation in each
processor for each generation was 345 seconds vs. 25 seconds for the worst latency registered
in the MiniGrid. Based on this observation, it can be determined that latency is not
significantly important because the time the processors were in use was greater than the
communication time between clusters (93.2% vs. 6.8%).

The second executed benchmark was an instance of YN1 [8]. It had 20 jobs, 20 machines
and 400 operations. Table 2 presents the input data and Table 5 shows the obtained results.
The average latency detected was approximately 25 seconds. It indicates that, in the worst
case, the total latency in execution time of the algorithm was 150 seconds according to the
number of generations. Table 4 presents the results obtained for the algorithm execution for
each processor in the MiniGrid. The average time of execution in the nodes (cores) of each
cluster and the best makespan is presented after finishing 6 generations. If it were possible to
increase the number of processors, then the population size could be increased, without a
dramatic increase in time. Increasing the number of processors would allow the algorithm to
explore a larger portion of the solution space and find a better solution in less time. This
shows the importance of having a larger GRID that includes computational resources for high
performance applications, such as the algorithm presented here. Table 2 indicates that the
number of restarts for SA for each individual was 20. According to the restart number, in the
worst case, the average execution time of SA in each processor for each generation was 4,567
seconds vs. 25 seconds for the worst latency registered in the MiniGrid. Based on this
observation, it can be determined that latency is not significantly important because the time
processors were in use was greater than communication time between clusters (95.5% vs.
0.5%).

M.A. Cruz-Chávez/Parallel Hybrid Evolutionary Algorithm in Grid Environment

233

Table 4. Results of the parallel hybrid evolutionary Algorithm for solving YN1 instance

Cluster nodo0x.ciicap.edu.mx Nodo0x.itver.edu.mx
Node 0,1,2,3,4,5,6,7,8,9 0,1,2

Time (sec) 19175 25617
Makespan 933 935

6. Conclusions

It can be concluded that the use of a Grid platform for this type of problem is highly
recommendable for solving complex problems in a short time. The time needed to search and
find solutions diminishes, as the number of available processors in the Grid increases and
there is little communication between processors. The latency varies in the MiniGrid, the time
tends to decline in the evenings, so it is recommendable to work in the afternoons when
implementing algorithms that use long communication times.

In order to reduce communication between processors, it is necessary to define the
structure of the algorithm in a way that allows it to work with a small latency in the MiniGrid.
The latency does not considerably affect the parallelization because the large tasks of the
algorithm mean the processors work for extended periods in order to complete execution of
the program. Thus, there are minimal communications. The algorithm requires
communication only to send and receive the sub-populations, and this prevents the latency
from negatively influencing the execution of the algorithm. To increase efficiency of the
algorithm in the grid environment, communication between Grid nodes should be minimized.
The algorithm can be performed using all resources of the Grid presented in this work.

Acknowledgements

This work was supported by project CUDI-CONACYT 2007.

References

[1]. Roy and Sussman, Les problemes d’ordonnancement avec contraintes disjonctives, Note D.S. no 9
bis, SEMA, Paris, France, December 1964.
[2]. C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity,
Prentice Hall Inc., USA. ISBN 0-13-152462-3, 496 pp., 1982

[3]. Díaz, A., Glover, F., Ghaziri, H.M., et al, Optimización Heurística y Redes Neuronales. Madrid,
Paraninfo, (1996).

[4]. F. Glover. Future paths for integer programming and links to artificial intelligence. Computers and
Operations Research, 13:533-549, 1986.

[5]. Grosan, Crina, Abraham, Hybrid Evolutionary Algorithms, Series: Studies in Computational
Intelligence, Vol. 75, Ajith; Ishibuchi, Hisao (Eds.), 2007, XVI, 404 p. 207 illus., Hardcover ISBN:
978-3-540-73296-9

[6]. M. A. Cruz-Chávez, J. Frausto-Solís, Simulated Annealing with Restart to Job Shop Scheduling
Problem Using Upper Bounds, Lecture Notes in Artificial Intelligence, Springer Verlag Pub., Berlin
Heidelberg, ISSN: 0302-9743, Vol. 3070, pp. 860 - 865, 2004.

[7]. Cantu-Paz, E., A Survey of Parallel Genetic Algorithms, Technical Report IlliGAL 97003,
University of Illinois at Urbana-Champaign, 1997.

M.A. Cruz-Chávez/Parallel Hybrid Evolutionary Algorithm in Grid Environment

234

[8]. J. E. Beasley. OR-Library: Distributing test problems by electronic mail, Journal of the
Operational Research Society, Vol. 41, No. 11, 1069-1072, 1990. Last update 2003.

[9]. J. D. Sloan, Network Troubleshooting Tools, ISBN 10: 0-596-00186-X, ORelly, pp. 364, 2001.

[10]. Michel, M. and Devaney, J. E. 2000. A Generalized Approach for Transferring Data-Types with
Arbitrary Communication Libraries. In Proceedings of the Seventh International Conference on
Parallel and Distributed Systems: Workshops (July 04 - 07, 2000). ICPADS. IEEE Computer Society,
Washington, DC, 83.

[11] Ganglia Monitoring System, Monitoring clusters and Grids since the year 2000
http://ganglia.info/, September 2009.

[12] P. J. Zalzala, and Flemming. Zalsala, A.M.S. (Ali M.S.), ed., Genetic algorithms in
engineering systems /Edited by A.M.S. Institution of Electrical Engineers, London, 1997.

[13] O. Al Jadaan, L. Rajamani, C. R. Rao, Improved Selection Operator for GA , Journal of
Theoretical and Applied Information Technology, ISSN 1992-8645, ARPA Press, 269-277,
2008.

