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In this paper an analogy of the Job Shop Scheduling 

Problem to the Hydraulic Networks Problem is 
presented by mapping this model of scheduling, using 
as a base the disjunctive graph model. The mapping 
carried out allows visualization of the Hydraulic 
Networks problem as an NP-complete model with 
constraints defined in the Job Shop Scheduling 
Problem. The mapping presented indicates that the 
Hydraulic Networks Problem is a difficult problem to 
solve by using an approach with the constraints of an 
NP-complete problem. 

 
1. Introduction 

 
The water distribution networks design belongs to a 

wide group of problems. Finding the optimum solution 
to these problems is extremely complex, even 
sometimes impossible [1]. These problems have been 
thoroughly studied in the last few decades, by diverse 
authors. In [2] the authors propose several methods 
and techniques in order to deal with this type of 
problem using theoretical models. But when attempts 
are made to solve these problems for real instances, it 
becomes increasingly complex to find the optimum 
solution. 

The water distribution problem is classified as a 
complex optimization NP-hard problem [3]. Basically, 
it consists of finding the most efficient way to give 
water to users, within given constraints. 

 
Several approaches for the water distribution 

problem in hydraulic networks have been proposed.  
Global optimization [4, 5] and linear [6, 7, 8, 14] and 
non-linear programming [9] have been applied. In 
addition, many heuristics have been used in order to 
solve this problem [1, 2, 3, 10, 11].  To date, no 
information was found that proposed a transformation 
of the Job Shop Scheduling Problem into the Hydraulic 
Networks Problem, to take advantage of the immense 

information available on applied techniques related to 
the Job Shop Scheduling problem 

Among the most important restrictions of the 
hydraulic networks problem is the quality of service at 
a low distribution cost. The quality of service refers to 
fulfilling the minimum pressure requirements of the 
hydraulic network users. The low distribution cost 
seeks the most economic solution possible. Service 
time for the users is also considered, so that each and 
every one of the users can be assisted at any moment. 

The hydraulic network consists of various elements 
including: the supply sources, which are the deposits 
which offer service to users; nodes that represent the 
users of the deposits, such as people, companies, 
cultivation areas and others; and tubing, which 
establishes a connection between deposits and users by 
allowing water to be delivered to the network users. 
The type of topography present is important, whether 
there are ramified or mesh type networks [11].  

For ramified networks, it is possible find the best 
solution using mathematical methods and exact 
algorithms, as seen in [12] where maximum flow and 
maximum flow at minimum cost are proposed. 
Another option is to use heuristics such as the 
minimum expansion tree in order to represent flows 
[12]. However, at the present time, these networks are 
applied less frequently than mesh networks.  In real 
life, the principal problem that ramified networks 
present is ruptures in tubing, causing loss of service in 
several points in the network. This happens because 
there is only one route between one point and another. 
In a mesh network, the interruption of service due to 
ruptures in tubing happens less frequently. The design 
of these networks allows water to arrive to its 
destination via several trajectories. For this reason a 
break in tubing does not usually gravely affect other 
points in the network. In spite of fact that the 
implementation cost of mesh networks is higher than 
that of ramified networks, their use is justified by their 
increased reliability [14]. In order to find a solution for 
a mesh network, heuristic methods are used. For small 



instances, exact methods do not exist that solve the 
problem in polynomial time. This is because the 
number of possible solutions to analyze grows 
exponentially with the growth of the mesh. For this 
reason, heuristic methods promise to be a good 
alternative to finding solutions close to the optimum in 
polynomial time. In this work, a mapping is made of 
the Water Distribution Problem to the Job Shop 
Scheduling Problem, resulting in a problem of 
hydraulic networks with a mesh network. 

The contribution of this work is the empirical 
verification that the Water Distribution problem is an 
NP-complete problem, given the hypothesis that the 
problem is bound by the group of constraints of the 
Job Shop Scheduling Problem. This problem is well 
known in literature by its acronym JSSP. JSSP is a 
problem that has been studied rigorously by the 
scientific community [16]. Mapping to a well-known 
problem allows reference to a wide information base in 
the literature of solution techniques. With a few 
changes to the Hydraulic Networks Problem, better 
results may be obtained in the study of this problem 
and in the search for improved efficacy and efficiency 
of algorithms used for real Hydraulic Networks 
Distribution problems.  

The present document is organized in the following 
way: 

Section 1 is the introduction. Section 2 describes 
the Hydraulic Networks Problem, complete with an 
explanation of the problem and the concepts used to 
exemplify a Hydraulic Network Distribution. Section 3 
defines the Job Shop Scheduling Problem and the 
Hydraulic Network Problem in a Water Distribution 
System. It explains the analogies presented and the 
relationships that exist between both problems. An 
instance of the problem is shown in a disjunctive 
graph. Section 4 presents the empirical mapping of 
JSSP to Water Distribution Network Problem and the 
resulting mathematical model of Water Distribution 
Network. Section 5 describes future work that will 
provide continuity to this investigation. Section 6 
asserts the conclusions of this work.  

 
2. Hydraulic Networks Problem 

 
The Hydraulic Networks Problem in a Water 

Distribution System is explained in this section. 
A set of supply sources delivers water to cities. In 

order to achieve the distribution, a series of steps is 
followed. Each step involves using one source for a 
period of time in order to give service to a set of cities. 
The cities are made up of colonies and each colony 

contains the final users of the network, those to which 
the supply service is destined.  

Considering a set of supply sources and a set of 
cities, one program is the assignment that fixes an 
interval of time in order to offer service to each user. 
The problem consists of finding a program that carries 
out an efficient distribution to all the users of the 
network. The service distribution should be carried out 
in the least possible time, while satisfying the 
requirements of the users. In order to minimize the 
service time it is necessary to ensure that the resources 
are actually arriving to the users. In this way, a good 
distribution is reflected and optimum coverage and 
saving service time are achieved.  
 
3. Water Networks Model and JSSP 

 
In the mathematical model, the objective function 

consists of minimizing the distribution cost of water. 
The model constraints are: the resource capacity, the 
physical design of the network, and the readiness of 
the resources. In order to propose a mapping, an 
analogy is made between the problems of hydraulic 
networks and JSSP.   

In the Water Distribution Network Problem there is 
a set of supply sources F = { F1, F2,..., Fm} and a set of 
cities C ={C1, C2, C3,..., Cn}. Each city is made up of a 
set of colonies. In the colonies, the final users are those 
to which the supply service of water is destined. In 
order to complete the service in a city, each supply 
source should provide service to the colonies 
respecting the physical precedence. The precedences 
are determined by the location of the colonies and by 
the design of the mesh network. In this problem, a 
supply source could give service to several colonies 
and the colonies could be assisted by several supply 
sources at several different times. The objective of 
water network problems is to minimize the distribution 
cost, while guaranteeing efficient distribution in which 
all the cities can be assisted. Figure 1 presents an 
example of a mesh hydraulic network. There are three 
supply sources F1, F2, and F3. Each source gives 
service to one city from the set {C1, C2, C3}, but has 
the possibility to give service to another city. Each city 
is formed by a set of colonies. 

 
 



 
Figure 1. Mesh Hydraulic Network 

 
The JSSP problem can be represented by means of a 
disjunctive graph G = (V, A, E) [15], such as the one 
shown in Figure 2. This graph is made up of a set of 
arcs A, a set of edges E and a set of vertexes V. The 
vertexes 0 and f represent the initial and final 
operations of all jobs. The set V defines the set of 
operations O. Each operation is represented by a vertex 
i ∈ V. The set A is made up of subsets that each 
represent one job, Jj, which requires the execution of a 
subset of operations of V. For each pair of subsequent 
operations in the same job (i, i’) ∈A, there is an arch 
that shows direction, which implies a precedence 
constraint of an operations pair (i, i'), . The set E 
is made up of subsets, each of which represent a subset 
of operations of V where each subset is executed by 
one machine mk. Resource capacity constraints exist in 
each machine. For each operations pair {i, i’} ∈ E, 
executed in the same machine mk, an edge without 
direction exists that indicates that the pair {i, i'} does 
not have a sequence of execution. Each node i has an 
associated weight pi that indicates the time of 
execution of the operation i [3]. 
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Figure 2. Disjunctive Graph of  JSSP 

 
One solution to JSSP consists of the selection of the 
order in which the operations should be carried out in 
each machine, which means selecting the direction of 
each edge of {i, i’} ∈ E. This generates precedence 

constraints in the execution of the operations pair in 
the same machine. The resulting digraph is acyclic. 
The total longitude of the longest path between 0 and f 
is the minimum. That is, the objective function 
minimizes the maximum completion time of the last 
job in the system. 

As in JSSP, the water distribution problem in 
hydraulic networks can be represented by a disjunctive 
graph, as shown  in Figure 3. The disjunctive graph G 
= (V, A, E) consists of a set of vertexes V, a set of arcs 
A, and a set of edges E. 

Nodes (vertexes) represent the sources of demand. 
Three cities exist C1, C2, C3. Each city consists in turn 
of three colonies c: C1 = {c1, c2, c3}, C2 = {c4, c5, c6} 
and C3 = {c7, c8, c9}.  

Each colony implicitly contains the final users of 
the network.   
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Figure 3. Disjunctive Graph of Water Network 

 
In the graph, the arcs define precedence constraints in 
the colonies C. There are nine disjunctive arcs that 
represent the resource capacity constraints of the 
supply sources. Three supply sources exist, F1, F2, F3 
that supply the cities. Each source Fk can begin the 
supply in any colony of several cities.  
A very important aspect that should be considered is 
what happens when a supply source F1 cannot continue 
supplying the users. In this case, the service to users 
from the source F1 could come from another supply 
source, for example F2, as long as the resources of the 
source F2 are sufficient to satisfy the minimum 
requirements of the users.  For the mapping in 
question, this would not be possible. In order to make 
the model JSSP, it would have to relax. This relaxation 
would indicate that each source could give service to 
any colony in the system. This would be the equivalent 
to a special model of the JSSP called Total Flexible 
JSSP (TFJSSP) [16]. The literature indicates that the 
TFJSSP continues to be NP-complete, in spite of the 
more relaxed restrictions [17]. 

M2 M1 M3 

 



4. Mapping of the Hydraulic Network 
Problem 

 
The Water Distribution problem in a Mesh Network  
can be viewed as an analogy to problem of JSSP (Job 
Shop Scheduling Problem).   
JSSP is thoroughly studied in the combinatorial 
optimization area. Informally, it can be explained that 
JSSP consists of finding the optimum assignment of 
operations of jobs to available machines. The machines 
process the operations.  
One objective in the solution of JSSP, is to achieve an 
optimum scheduling of jobs in machines in such a way 
that the processing time is minimized. The schedule 
must respect the processing time defined for each 
operation and the priority of execution of the 
operations. It should also consider the availability of 
machines. 
By drawing this analogy, it can be seen that the 
optimum distribution problem in a water network 
could be solved by means of the same procedures used 
to solve scheduling problems in JSSP. Upon applying 
the procedures of JSSP to the Network Hydraulics 
Problem, a configuration and efficient distribution of 
resources for each of the users of the net can be 
obtained.  
The following are some essential elements needed in 
order to understand the water distribution problem and 
the analogy drawn here: 
 

1. The supply sources are equivalent to 
machines in JSSP, mk = Fk. The sources are 
the entities that provide a service to the users. 
There is a group of them, and it is assumed 
that any supply source can only offer only one 
service at a time. That is, one source could 
only supply one part of the mesh network at 
any given time.  

2. The Colonies are equivalent to i operations in 
JSSP. They are the parts of the mesh network 
to which the supply is destined. In a mesh 
network, the colonies are like subsets, where 
each subset forms one city Cj. 

3. Precedence constraint in cities (equivalent to 
precedence of operations in JSSP) means that 
before the service arrives to a colony ci of 
users, it can go through another colony of 
users if the physical location requires it. The 
order of attention to the colonies follows the 
supply trajectory to the users. The trajectory 
may vary since the flow can be bidirectional 
in mesh networks. In this case, the flow is 
defined unidirectional. 

4. A set of colonies generally has a well-defined 
mesh network through which service is 
provided to the users. Each source Fk provides 
service to only one colony of each city. If it 
provides service to more than one colony in a 
city, this is equivalent to a Flexible JSSP.  

5. Distribution is equivalent to scheduling in 
JSSP. It is a service assignment that is carried 
out within a given interval of time.  

6. Operative Interval is equivalent to the 
objective function of makespan in JSSP. It is 
the period or lapse of time needed to complete 
the supply to all the cities. It achieves a 
greater coverage, giving service to all the 
users of the network. At the same time it 
minimizes the time required for this covering. 
This concept is also known as program.  

7. Diameters of tubing. The ideal diameter is 
considered in such a way that it does not 
influence the time of distribution of the fluid. 

 
Based on the generated mapping, the following is the 
mathematical model of disjunctive programming for 
the problem of hydraulic networks: 
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In the mathematical model, it is assumed that the 
pumps that pump the fluid from the sources do not 
have enough power to provide simultaneous service to 
all the colonies, so interruptions must be made in the 
service, so service is only provided to one colony at a 



time. The hydraulic networks model presents a set of 
cities C, a set of supply sources F, and a set of colonies 
c, which need to be supplied with water. Each city Ck 
is formed by a subset of colonies of the set c. Each 
supply source Fk should supply a subset of colonies of 
the set c. The objective function in (1) minimizes the 
period of time in order to deliver the complete supply 
to all the cities. The supply time for each colony is the 
time from the beginning of service in the colony ci, 
plus the required service time pci in ci.  This model is 
subject to three sets of constraints. The constraints in 
(2) indicate that the start time of service in each colony 
is positive. The constraints in (3) indicate that within a 
city, a precedence constraint exists for the assignment 
of the start of service for each colony. This means that 
the service in colony ci must be finished before the 
service in colony cj begins. This implies that at any 
given moment, in a city Ck, only one colony will have 
service, while the other colonies wait for their turn 
according to their precedence. This can be justified 
because the source pumps do not have sufficient power 
to simultaneously pump to all the colonies, so 
interruptions in service are necessary. The constraints 
in (4), are resource capacity constraints that indicate 
that an optimum service assignment should be 
designated for the set of colonies ci that receive the 
service from a source Fk. The same problem presents 
itself, that the source pumps are unable to pump 
simultaneously to all the colonies that receive the 
service of Fk. 
 
5.  Future Work 

 
In order to give continuity to this work it is 

necessary to deepen the mapping of the problem to a 
model of Flexible JSSP. In this way, there is 
correspondence between all of the hard restrictions 
from the Water Distribution Problem in Hydraulic 
networks to the hard restrictions from the NP problem. 
The purpose of this is to make the fewest possible 
modifications to the algorithms when applying 
resource assignment techniques from the Job Shop 
Scheduling Problem to the Water Distribution 
Problem. 

 
6. Conclusions 

 
A mapping of the Job Shop Scheduling Problem to 

the Water Distribution Problem is presented. From the 
mapping done here, it is concluded that the Water 
Distribution Problem in Hydraulic Networks is of NP-
complete type with the constraints defined in the 
proposed model. 

The importance of this work rests in the possibility 
of applying techniques that have been thoroughly used 
and accepted in JSSP for their high performance to the 
Water Distribution problem in Hydraulic Networks. 
By using these thoroughly proven JSSP techniques, 
better results could be achieved for the Water 
Distribution problems. 

With the use and adaptation of these techniques, 
one could expect to positively impact the solution of 
Water Distribution problems if the constraints of the 
model are similar to those of the model Total Flexible 
JSSP. 
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