
Simulated Annealing Algorithm for the Weighted Unrelated Parallel
Machines Problem

Marco Antonio Cruz-Chávez, Fredy Juárez-Pérez, Erika Yesenia Ávila-Melgar, Alina Martínez-Oropeza

CIICAp, Universidad Autónoma del Estado de Morelos

Avenida Universidad 1001. Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos, México.
 {mcruz, juarezfredy,erika,alinam}@uaem.mx

Abstract

In this paper, a solution is presented to the unrelated
parallel machines problem that minimizes the total
weighted completion time (∑). Simulated

annealing is applied to the problem, which is modeled
as a Weighted Bipartite Matching Problem.
Experimental results with benchmarks are presented,
evaluating the efficiency and efficacy of the algorithm.
It is then compared with an exact algorithm that
solves the pondered model of Integer Linear
Programming. The results demonstrate that Simulated
Annealing Algorithm has high performance because
for all the evaluated instances, it finds the optimum
global solution.

ikC

1. Introducción

The general problem of a sequence of jobs n on
unrelated parallel machines m without interruptions is
classified as an NP-complete problem [2].
Researchers have focused on this type of problem
because of the hardness it presents when searching for
an optimum solution. It is also of interest due to its
wide application in the manufacturing industry.
Many investigations have been carried out in order to
find algorithms that solve this problem. In [7], the
model UPMP, acronym of unrelated parallel machines
problem, has been used to solve transport problems,
and has been solved with approximation algorithms
demonstrating better performance than that obtained
with the formulations of integer linear programming.
In [8], a search is conducted to optimize the total
weighted tardiness. A hybrid ant colony algorithm is
proposed which incorporates a genetic transfer
operator in a local search, yielding excellent
performance by the algorithm. In [9], an efficient
method in order to optimize the total weighted
tardiness is presented. An optimization approach with
ant colony is applied, using paths of artificial

pheromone and information from the heuristic. In [10],
the setup times are involved to minimize the total
weighted number of tardy jobs. This applies an
iterative local search algorithm. In [11], the problem is
simplified to an assignment problem with the objective
of reducing the setup times required in order to
exchange production of one type of product for
another. A Branch and Bound algorithm is used. In
[12], a shifting bottleneck algorithm is presented. With
this algorithm, a bottleneck is identified and a
scheduling of bottlenecks is built. It is used to
elaborate stoppage scheduling that is used in the
assignment of jobs between the intervals identified as
bottlenecks. In [13], an application is described which
focuses on the analysis of an automated on line support
process for a computation center. The on line
consulting activity of the center is modeled as a group
of unrelated Parallel machines. The users have a
process of on line help applications, which is an
incoming rain of jobs. The automatic index is a type of
Natural Language Processing, which is applied to each
job in order to estimate the processing time depending
on the respective machine. In [14], a rounding
algorithm is developed to find a scheduling in
unrelated parallel machines; this algorithm works well
with models of linear programming, quadratic
programming, and convex programming expanded
from a scheduling to optimize the makespan.
The present work gives a solution to a pondered model
of Integer Linear Programming (ILP) of unrelated
parallel machines presented in [3].
The study of problems of unrelated parallel machines
is very important because of its frequency in industry.
The efficient and effective solution to theoretical
models makes a simpler approach to the study of real
models that permit the manufacturing industry to
increase their degree of competitiveness.
This work presents a solution to the weighted unrelated
parallel machines problem using a simulated annealing
algorithm that solves the problem as a weighted
bipartite matching problem.

The paper is divided into the following sections:
Section 1 presents the introduction to the problem and
mentions some investigations carried out by the
scientific community. Section 2 describes the model of
integer linear programming for the SUPM problem.
Section 3 explains the model of the bipartite graph that
is used in the simulated annealing algorithm in order to
find a solution to the problem. Section 4 describes the
simulated annealing algorithm. Section 5 reports the
solution methodology applied in simulated annealing.
Section 6 presents the test scenario. Section 7 shows
the experimental results. Finally, in section 8 are the
conclusions.

2. Weighted Integer Linear Programming
Model

The problem Rm || ΣCj, [1], is a model of the NP-
complete type. It can be formulated as a problem of
Integer Lineal Programming (ILP), with a special
structure, which makes the problem solvable in
polynomial time using a deterministic algorithm. This
ILP model presents the problem as a set of machines
that should execute a set of jobs. Each job requires one
operation in order to be finished. Each machine can
carry out any job. The processing time of each job
depends on the machine that executes it.

∑∑∑
= = =

m

i

n

j

n

k
ikjij xkp

1 1 1
min

(1)

Sujeto a:

∑∑
= =

m

i

n

k
ikjx

1 1

nj ,,1K= (2)

∑
=

≤
n

j
ikjx

1
1

,,,1 mi K= nk ,,1K= (3)

{ }1,0∈ikjx ,,,1 mi K= nk ,,1K= (4)

The ILP problem presented in [3] is formulated as
follows: The contribution to the objective function in
(1) of each job j to be carried out, depends on the
machine i where the job j is carried out, as well as on
the position k where the job is executed in the machine
i within an orderly set of the jobs the machine i
executes. The job j contributes kpij to the value of the
objective function. The objective function is the
optimization of the total weighted completion time
(ΣkCj). In this model, the constraints in (4) indicate
that the variables x take only values 0 or 1. If xikj = 1,
then the job j is assigned to the machine i in the k-th
position. If xikj= 0, it is the opposite. Constraints in (2)
assure that each job is assigned to only one position k.
Constraints in (3) assure that each position k for each

machine i takes at most one job j. This model can be
mapped to the transport problems [4] if the constraints
set in (4) are replaced by a set of constraints of non
negative values, that is, xikj >= 0. This is important
because with this relaxed model one could obtain
bounds with exact algorithms for NP-complete
problems, like the model Rm|| Cj. In the case of the
model with the presented structure, the relaxed
formulation gives results of 0 or 1 for the x variables.
Due to this, it is possible to use an exact algorithm like
SIMPLEX in order to give a solution to the model,
without needing to relax the restrictions in (4).

3. Bipartite Graph Model

A special case of the transport problem is the WBMP
(acronym of Weighted Bipartite Matching Problem).
The model Rm | | ΣkCj for the structure defined in the
ILP model of section 2, can also be represented as a
WBMP [3]. Figure 1 presents an instance of 3 jobs and
2 machines for the problem Rm | | ΣkCj by means of a
bipartite graph. The graph is composed of n jobs and
mn positions where each machine can process at most
n jobs. The job j that is assigned the position ik,
presents a cost kpij. The objective is to determine the
assignment ik for each j in the bipartite graph with a
minimum cost of total time.
The interpretation occurs based on Figure 1 as follows.
For the machine i = 1, the job j = 1, first place (p11),
second place (2p11) or in third place (3p11). For the
same machine, the job j = 2 can be processed in first
place (p12), second place (2p12) or in third place (3p12).
The job j = 3 could be processed in first place (p13),
second place (2p13) or in third place (3p13).

Figure 1. Bipartite Graph for ΣkCj

For the machine i = 2, the job j = 1 can be processed in
first place (p21), second place (2p21) or in third place
(3p21), and so on.
The WBMP model can be solved with several meta
heuristics. The following is the meta heuristic of
simulated annealing by which a solution is obtained in
this paper.

4. Simulated Annealing Algorithm

The foundations of the Meta heuristic denominated SA
(acronym of Simulated Annealing) were introduced by
Kirkpatrick [5]. He proposes a probabilistic method of
local search in order to escape to the optimum local.
The name of this method comes from the similarity
with the metallurgist process of slow annealing, with
which a solid of minimum entropy is obtained. This
follows a similar outline in order to work with
optimization problems.
Figure 2 presents the SA used in this work. The
process of SA requires of the knowledge of the
following parameters:

so : Initial solution of the problem.
T : Parameter of control of SA.
r : Coefficient of control. 0 < r < 1.
MCS > 0: Markov Chain Size.
C: Function of cost.
N: Neighborhood structure.
FROZEN: Stop criterion. Minimum value of T.

function SimulatedAnnealing ()
Begin
 s:= sm:= so, T = T0
 Repeat
 cycle := 1 to MCS
 generate new solution, s’ = N(s)
 if C(s’) < C(s) then s := s’
 else
 d := C(s, s’) - C(s, s’)
 Random ρ (0 ,1)

 if T
d

e
−

≤ρ then s := s’
 end else
 if sm > s then sm := s
 end cycle
 T := r T
 Until FROZEN
 return sm
End

Figure 2. Simulated Annealing Algorithm

In Figure 2, at the beginning the SA with a high value
of T accepts almost all the transitions between the
solutions. Later T and r gradually diminish so that the
acceptance of movement is more and more selective.
Finally the only movements accepted are those that
improve the current solution. A movement is a
neighboring s' of s that is obtained from a
neighborhood structure. The cost function C is the

objective function of the problem to be solved and it
allows the evaluation of the solution quality. The
acceptance of a movement (new solution) is controlled
by the approach of Metropolis that involves the
Boltzmman function. In each cycle of T, Metropolis
repeats MCS cycles. For the different values of T,
which pass through the cooling sequence, an
exploration process is carried out for the best solutions.
The stop criterion is considered FROZEN, which is the
minimum value to which T arrives and is controlled by
r.

5. Methodology of solution

In order to solve Rm | | ΣkCj, the following
methodology is proposed based on the bipartite graph
(Figure 1). It consists of the following steps:

1. Symbolic representation of bipartite graph.
2. Determine a neighborhood structure that obtained
feasible solutions.
3. Tuning of parameters of SA. T, r, MCL, FROZEN.
4. Apply the Meta heuristic of SA.
5. Mechanism generator of solutions.

5.1. Symbolic Representation

For the symbolic representation of the bipartite graph,
a one-dimensional structure of data is used in order to
represent the mn position that has the machines
(i=0,..., m-1) and the k-th position that a j job (j=0,...,
n-1) could take inside of the i machine. This structure
has n jobs with a schedule on the arrangement of mn
size and mn - 1 free positions toward which jobs could
be randomly exchanged. One solution to the instance
presented in Figure 2 is presented in Figure 3 using the
symbolic representation.

Figure 3. Symbolic Representation of the problem

In Figure 3, the structure represents 2 machines in a
series and 3 jobs. The job j = 1 is processed at the
beginning with k = 0, in the first machine i = 0, and
with a real position of index = 0. The job j = 0 is
processed with k in second place, k = 1, in the first
machine i = 0, and with a real position of index = 1
and so on, successively. The positions inside the
arrangement that contain j = -1 are available positions.

5.2. Mechanism to Generate Solutions in SA

The neighborhood structure is based on the symbolic
representation of the positions that the bipartite graph
of Figure 1 represents. In this work, a method of local
search in a neighborhood is developed, which includes
the following steps:

1. Generate initial schedule randomly.
2. Apply direct mapping and indirect mapping.
3. Generate a quick mapping.
4. Change position of a job randomly toward a free
position.
5. Randomly exchange of two jobs.

In order to generate an initial solution, a job j and a
machine i are selected. The job j is located on the
selected machine. Figure 4 presents the algorithm that
generates the initial solution. A set of jobs J and a set
of machines M are used to make a schedule. A job j
and a machine i are randomly selected from the sets J
and M respectively. A position ki is assigned in the
machine where there is still no job assignment. The job
j is stored in Array (Figure 3) in the ki position. The
position ki is updated, and j is eliminated from the set
J. The procedure is repeated as long as J is not an
empty set.

function initial_solution()
Begin
 k = {k1=0,...,km-1=0}
 M = {m1 = 0,...,mm=m-1}
 J= {0,...,n-1}
 Repeat
 j = random(j0)
 i = random(0,m-1)
 Array[n* mi + ki] = j
 ki=ki + 1
 J = J - {j}
 Until j0 ≠ φ
End

Figure 4. Generation of an initial solution

The indirect mapping finds the elements ikj starting
from a real position inside the neighborhood structure.
The real position is obtained from the index of access
to the Array. The functions are:

j = Array(index) (5)
i = integer_truncate(index / n) (6)
k = operator_ module (index, n) (7)

For example, in Figure 3, using (5), for index = 3 job 2
in Array results. With the same index, using (6),
machine 1 is obtained. Using (7), the k = 0 position is
found.
Direct mapping finds the real position inside the
neighborhood structure denoted by index using the
elements ikj. The function is:

index = i * n + k (8)

Figure 5 presents the quick mapping which generates a
schedule in a structure of jobs of the size 2n. The
Array corresponds to a schedule (jobs, machines and
positions) smaller in size than the neighborhood
structure size mn. This structure allows a job to be
randomly selected and located inside the neighborhood
structure based on the mapping functions previously
described.
The efficiency in the search for a new solution also
increases. It can be seen in Figure 5 that the order of
the neighborhood structure is according to the number
of machines and the structure of quick mapping for the
number of jobs.

Figure 5. Quick mapping

The movement of a job toward an empty position of
Array generates a neighbor. The neighborhood
structure selects a job randomly using a quick mapping
that contains all the schedule jobs, as shown in Figure
6a. Then it carries out the transformation operations
described in steps 1 through 5 of the local search, in
order to locate the index that targets that job in the
neighborhood structure, Figure 6b.
Next a position inside Array is selected and an index
chosen. This position represents the place toward
which the previously selected job moves. Figure 6c
shows a free position (-1). In Figure 6d, the movement
of the job j = 0 is shown from position 1 to position 4.
Lastly, based on the mapping operations described, the
positions of the job j = 0 are updates, as can be seen in
Figure 6e.
The exchange of a pair of jobs in a solution also
generates a new neighbor. In Figure 7d the exchange

of jobs between positions 1 and 3 is shown. The
selection of the pair of jobs is random.
Lastly, in Figure 7e, it can be seen that it is necessary
to update the content of the jobs 0 and 2 to have a
correct reference.

Figure 6. Operation that moves a job from position

Figure 7. Operation swap

6. Scenario of Tests

Five test problems were used, these benchmarks were
proposed in [15]. Each benchmark contains 60 jobs
and 4 parallel unrelated machines. Information on
setup times is not taken into account, given that the
model used in this work does not use these.
In order to prove the efficiency and efficacy of the SA
algorithm, an exact algorithm (SIMPLEX) was
developed which solves instances with a maximum of
60 jobs with 4 machines. With this algorithm the
global optimum solution was obtained. After obtaining
the solution, the proposed SA algorithm was used to
search for the optimum based on 30 tests for each one
of the five benchmarks. The PC used in order to carry
out the tests was a PC Intel Celeron E1400 of 2.0 GHz,
2 Gb Memory with S.O. Scientific Linux 4.7 and GCC
compiler 3.4.3.
SA, because it is a recurrent local search algorithm,
requires a very efficient local search so that it can be
efficient. The temporary function of the local search
presented in section 5 is t(n) = 6mn+8m+11, and the
asymptotic complexity is O(mn), where m is the
number of machines and n the number of jobs.

7. Experimental results

For all the tests carried out, the values for the
parameters entered in the RS algorithm were tuning. T
= 25, r = 0.985, FROZEN = 0,985 and MCS is six
times the neighborhood size. According to [6], the
tuning of r was in the range of (0.8 <= r <= 0.99).

Benchmark Opt. Best Worst σ RE
Average

60on4Rp50Rs50_1 62646 62646 62659 3.8201 0.0073
60on4Rp50Rs50_2 62185 62185 62246 13.5190 0.0190
60on4Rp50Rs50_3 62637 62637 62698 14.0426 0.0170
60on4Rp50Rs50_4 62973 62973 63036 11.9474 0.0188
60on4Rp50Rs50_5 63032 63032 63075 12.2476 0.0160

Table 1. Efficacy of the SA Algorithm

In Table 1 it is observed that for all five benchmarks
the SA always finds the optimum, showing acceptable
standard deviations and Relative Errors under 0.02%
for the average of 30 tests for each problem. The best
result obtained by the SA algorithm was for the
benchmark 60on4Rp50Rs50_1, and the worst result
obtained of the 30 tests was 62659 with a standard
deviation of 3.8201 and an average relative error of
0.0073%.
Table 2 shows the efficiency results. For the first
benchmark, the SA algorithm shows that its best result

of thirty tests reduces the execution time by 96.02%
vs. SIMPLEX. For the best results with regard to
benchmarks 2, 3, 4 and 5, it is observed that SA
reduces the execution time by arriving at the optimum
solution 96% more quickly than SIMPLEX.

SIMPLEX SA Opt. Opt. Benchmark CPU sec. CPU sec. best % best
60on4Rp50Rs50_1 78.02 3.13 62646 96.02
60on4Rp50Rs50_2 80.09 2.99 62185 96.26
60on4Rp50Rs50_3 81.05 3.12 62637 96.15
60on4Rp50Rs50_4 78.41 3.08 62973 96.07
60on4Rp50Rs50_5 90.0 2.97 63032 96.70
Table 2. Comparative efficiency of SA vs. SIMPLEX

8. Conclusions

The quick mapping on the algorithm of SA causes that
the search of the optimum on the solutions space to be
more efficient than the SIMPLEX method in the five
analyzed benchmark. When comparing the efficiency
in the cases where SA obtains the global optimum, the
SA is observed that this is for up of the 96% with
regard to SIMPLEX. The efficacy of SA is 100% for
the proven benchmark, because it found the optimum
solution for all the benchmarks.

8. Referencias

[1] R.L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G.
Rinnooy Kan. Optimization and approximation in
deterministic sequencing and scheduling: a survey. Ann.
Discrete Math.,pages 287–326, 1979.

[2] A.M. Garey and D.S. Johnson, Computers and
intractability: A Guide to the theory of NP-completeness,
Freeman, San Francisco, 1979.

[3] M. Pinedo, Scheduling Theory, Algorithms and
Systems, Prentice Hall, ISBN:0130281387, USA., Aug. p.
586, 2001.

[4] F.S. Hillier, G.J. Lieberman, Introduction to Operation
Research, 8th ed.,Mc Graw Hill , ISBN: 0073017795, 2008.

[5] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization
by Simulated Annealing. Science Vol. 220(4598): pp. 671-
680, 1983.

[6] R, David, R. Sixto and M. Jacinto. Simulación,
alfaomega grupo editor., p. 388, 2009.

[7] S. Koranne, Formulating SoC Test Scheduling as a
Network Transportation Problem, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems,
vol. 21, no. 12, december 2002.

[8] H. Zhou, Z. Li and X. Wu, Scheduling Unrelated Parallel
Machine to Minimize Total Weighted Tardiness Using Ant
Colony Optimization, Proceedings of the IEEE International
Conference on Automation and Logistics, pp. 132-136,
August 18 - 21, Jinan, China, 2007.

[9] L. Mönch, Heuristics to Minimize Total Weighted
Tardiness of Jobs on Unrelated Parallel Machines, 4th IEEE
Conference on Automation Science and Engineering Key
Bridge Marriott, Washington DC, USA, pp. 572-577, August
23-26, ISBN: 978-1-4244-2022-3, 2008.

[10] C. Chun.-Lung, An Iterated Local Search for Unrelated
Parallel Machines Problem with Unequal Ready Times,
Proceedings of the IEEE International Conference on
Automation and Logistics, pp. 2044-2047, Qingdao, China
September, ISBN: 978-1-4244-2502-0, 2008.

[11] C. Pessan, J.L. Bouquard, E. Néron, An Unrelated
Parallel Machines Model For Production Resetting
Optimization, International Conference on Service Systems
and Service Management IEEE, Vol 2, ISBN: 1-4244-0450-
9, pp. 1178-1182, 2007.

[12] C. Chun.-Lung, C. Chuen-Lung, A Heuristic Method for
a Flexible Flow Line with Unrelated Parallel Machines
Problem, Conference on Robotics, Automation and
Mechatronics, pp. 1-4, IEEE, 2006.

[13] K. Anastasova, M. Dror, Intelligent Scheduler for
Processing Help Requests on Unrelated Parallel Machines in
a Computer Support Administration System, Conference on
Systems, Man, and Cybernetics, IEEE, pp. 372-377, ISBN:
0-7803-4778-1, 1998.

[14] V.S. Anil Kumar, M. V. Marathe, Approximation
Algorithms for Scheduling on Multiple Machines,
Proceedings of the 46th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’05), pp. 254-263,
ISBN: 0-7695-2468-0/05, 2005.

[15] J. P. Arnaut, R. Musa, G. Rabadi, Ant Colony
Optimization Algorithm to Parallel Machine Scheduling
Problem with Setups, 4th IEEE Conference on Automation
Science and Engineering, Washington DC, USA, August 23-
26, ISBN: 978-1-4244-2023-0, pp. 578-582, 2008.

	1. Introducción

