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Abstract 
 
In this paper, a solution is presented to the unrelated 
parallel machines problem that minimizes the total 
weighted completion time (∑ ). Simulated 

annealing is applied to the problem, which is modeled 
as a Weighted Bipartite Matching Problem. 
Experimental results with benchmarks are presented, 
evaluating the efficiency and efficacy of the algorithm. 
It is then compared with an exact algorithm that 
solves the pondered model of Integer Linear 
Programming. The results demonstrate that Simulated 
Annealing Algorithm has high performance because 
for all the evaluated instances, it finds the optimum 
global solution. 
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1. Introducción 
 
The general problem of a sequence of jobs n on 
unrelated parallel machines m without interruptions is 
classified as an NP-complete problem [2].  
Researchers have focused on this type of problem 
because of the hardness it presents when searching for 
an optimum solution. It is also of interest due to its 
wide application in the manufacturing industry. 
Many investigations have been carried out in order to 
find algorithms that solve this problem. In [7], the 
model UPMP, acronym of unrelated parallel machines 
problem, has been used to solve transport problems, 
and has been solved with approximation algorithms 
demonstrating better performance than that obtained 
with the formulations of integer linear programming. 
In [8], a search is conducted to optimize the total 
weighted tardiness. A hybrid ant colony algorithm is 
proposed which incorporates a genetic transfer 
operator in a local search, yielding excellent 
performance by the algorithm. In [9], an efficient 
method in order to optimize the total weighted 
tardiness is presented. An optimization approach with 
ant colony is applied, using paths of artificial 

pheromone and information from the heuristic. In [10], 
the setup times are involved to minimize the total 
weighted number of tardy jobs. This applies an 
iterative local search algorithm. In [11], the problem is 
simplified to an assignment problem with the objective 
of reducing the setup times required in order to 
exchange production of one type of product for 
another. A Branch and Bound algorithm is used. In 
[12], a shifting bottleneck algorithm is presented. With 
this algorithm, a bottleneck is identified and a 
scheduling of bottlenecks is built. It is used to 
elaborate stoppage scheduling that is used in the 
assignment of jobs between the intervals identified as 
bottlenecks. In [13], an application is described which 
focuses on the analysis of an automated on line support 
process for a computation center. The on line 
consulting activity of the center is modeled as a group 
of unrelated Parallel machines. The users have a 
process of on line help applications, which is an 
incoming rain of jobs. The automatic index is a type of 
Natural Language Processing, which is applied to each 
job in order to estimate the processing time depending 
on the respective machine. In [14], a rounding 
algorithm is developed to find a scheduling in 
unrelated parallel machines; this algorithm works well 
with models of linear programming, quadratic 
programming, and convex programming expanded 
from a scheduling to optimize the makespan.  
The present work gives a solution to a pondered model 
of Integer Linear Programming (ILP) of unrelated 
parallel machines presented in [3].  
The study of problems of unrelated parallel machines 
is very important because of its frequency in industry. 
The efficient and effective solution to theoretical 
models makes a simpler approach to the study of real 
models that permit the manufacturing industry to 
increase their degree of competitiveness. 
This work presents a solution to the weighted unrelated 
parallel machines problem using a simulated annealing 
algorithm that solves the problem as a weighted 
bipartite matching problem. 



The paper is divided into the following sections: 
Section 1 presents the introduction to the problem and 
mentions some investigations carried out by the 
scientific community. Section 2 describes the model of 
integer linear programming for the SUPM problem. 
Section 3 explains the model of the bipartite graph that 
is used in the simulated annealing algorithm in order to 
find a solution to the problem. Section 4 describes the 
simulated annealing algorithm. Section 5 reports the 
solution methodology applied in simulated annealing. 
Section 6 presents the test scenario. Section 7 shows 
the experimental results. Finally, in section 8 are the 
conclusions. 
 
2. Weighted Integer Linear Programming 
Model 
 
The problem Rm || ΣCj, [1], is a model of the NP-
complete type. It can be formulated as a problem of 
Integer Lineal Programming (ILP), with a special 
structure, which makes the problem solvable in 
polynomial time using a deterministic algorithm. This 
ILP model presents the problem as a set of machines 
that should execute a set of jobs. Each job requires one 
operation in order to be finished. Each machine can 
carry out any job. The processing time of each job 
depends on the machine that executes it. 
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The ILP problem presented in [3] is formulated as 
follows: The contribution to the objective function in 
(1) of each job j to be carried out, depends on the 
machine i where the job j is carried out, as well as on 
the position k where the job is executed in the machine 
i within an orderly set of the jobs the machine i 
executes. The job j contributes kpij to the value of the 
objective function. The objective function is the 
optimization of the total weighted completion time 
(ΣkCj). In this model, the constraints in (4) indicate 
that the variables x take only values 0 or 1. If xikj = 1, 
then the job j is assigned to the machine i in the k-th 
position. If xikj= 0, it is the opposite. Constraints in (2) 
assure that each job is assigned to only one position k. 
Constraints in (3) assure that each position k for each 

machine i takes at most one job j. This model can be 
mapped to the transport problems [4] if the constraints 
set in (4) are replaced by a set of constraints of  non 
negative values, that is, xikj >= 0. This is important 
because with this relaxed model one could obtain 
bounds with exact algorithms for NP-complete 
problems, like the model Rm|| Cj. In the case of the 
model with the presented structure, the relaxed 
formulation gives results of 0 or 1 for the x variables. 
Due to this, it is possible to use an exact algorithm like 
SIMPLEX in order to give a solution to the model, 
without needing to relax the restrictions in (4). 
 
3. Bipartite Graph Model  
 
A special case of the transport problem is the WBMP 
(acronym of Weighted Bipartite Matching Problem). 
The model Rm | | ΣkCj for the structure defined in the 
ILP model of section 2, can also be represented as a 
WBMP [3]. Figure 1 presents an instance of 3 jobs and 
2 machines for the problem Rm | | ΣkCj by means of a 
bipartite graph.  The graph is composed of n jobs and 
mn positions where each machine can process at most 
n jobs. The job j that is assigned the position ik, 
presents a cost kpij.  The objective is to determine the 
assignment ik for each j in the bipartite graph with a 
minimum cost of total time. 
The interpretation occurs based on Figure 1 as follows. 
For the machine i = 1, the job j = 1, first place (p11), 
second place (2p11) or in third place (3p11). For the 
same machine, the job j = 2 can be processed in first 
place (p12), second place (2p12) or in third place (3p12). 
The job j = 3 could be processed in first place (p13), 
second place (2p13) or in third place (3p13). 
 

 
 

Figure 1. Bipartite Graph for ΣkCj 
 
For the machine i = 2, the job j = 1 can be processed in 
first place (p21), second place (2p21) or in third place 
(3p21), and so on. 
The WBMP model can be solved with several meta 
heuristics. The following is the meta heuristic of 
simulated annealing by which a solution is obtained in 
this paper. 
 
 



4. Simulated Annealing Algorithm 
 
The foundations of the Meta heuristic denominated SA 
(acronym of Simulated Annealing) were introduced by 
Kirkpatrick [5]. He proposes a probabilistic method of 
local search in order to escape to the optimum local. 
The name of this method comes from the similarity 
with the metallurgist process of slow annealing, with 
which a solid of minimum entropy is obtained. This 
follows a similar outline in order to work with 
optimization problems. 
Figure 2 presents the SA used in this work. The 
process of SA requires of the knowledge of the 
following parameters: 
 
so : Initial solution of the problem. 
T : Parameter of control of SA. 
r : Coefficient of control. 0 < r < 1. 
MCS > 0: Markov Chain Size. 
C: Function of cost. 
N: Neighborhood structure. 
FROZEN: Stop criterion. Minimum value of T. 
 

function SimulatedAnnealing ( ) 
Begin 
   s:= sm:= so, T = T0 
       Repeat  
         cycle := 1 to MCS 
  generate new solution, s’ = N(s) 
   if C(s’) <  C(s) then  s := s’  
   else  
      d := C(s, s’) - C(s, s’) 
                   Random ρ  (0 ,1) 

      if T
d

e
−

≤ρ  then  s := s’ 
   end else 
                 if sm > s then sm := s 
            end cycle 
           T := r T 
       Until FROZEN 
   return sm 
End 

 
Figure 2. Simulated Annealing Algorithm 

 
In Figure 2, at the beginning the SA with a high value 
of T accepts almost all the transitions between the 
solutions. Later T and r gradually diminish so that the 
acceptance of movement is more and more selective. 
Finally the only movements accepted are those that 
improve the current solution. A movement is a 
neighboring s' of s that is obtained from a 
neighborhood structure. The cost function C is the 

objective function of the problem to be solved and it 
allows the evaluation of the solution quality. The 
acceptance of a movement (new solution) is controlled 
by the approach of Metropolis that involves the 
Boltzmman function. In each cycle of T, Metropolis 
repeats MCS cycles.  For the different values of T, 
which pass through the cooling sequence, an 
exploration process is carried out for the best solutions. 
The stop criterion is considered FROZEN, which is the 
minimum value to which T arrives and is controlled by 
r. 
 
5. Methodology of solution 
 
In order to solve Rm | | ΣkCj, the following 
methodology is proposed based on the bipartite graph 
(Figure 1). It consists of the following steps: 
 
1. Symbolic representation of bipartite graph.  
2. Determine a neighborhood structure that obtained 
feasible solutions. 
3. Tuning of parameters of SA. T, r, MCL, FROZEN. 
4. Apply the Meta heuristic of SA.  
5.  Mechanism generator of solutions.  
 
5.1. Symbolic Representation  
 
For the symbolic representation of the bipartite graph, 
a one-dimensional structure of data is used in order to 
represent the mn position that has the machines 
(i=0,..., m-1) and the k-th position that a j job (j=0,..., 
n-1) could take inside of the i machine. This structure 
has n jobs with a schedule on the arrangement of mn 
size and mn - 1 free positions toward which jobs could 
be randomly exchanged. One solution to the instance 
presented in Figure 2 is presented in Figure 3 using the 
symbolic representation. 
 

 
Figure 3. Symbolic Representation of the problem 

 
In Figure 3, the structure represents 2 machines in a 
series and 3 jobs. The job j = 1 is processed at the 
beginning with k = 0, in the first machine i = 0, and 
with a real position of index = 0. The job j = 0 is 
processed with k in second place, k = 1, in the first 
machine i = 0, and with a real position of index = 1 
and so on, successively. The positions inside the 
arrangement that contain j = -1 are available positions. 



5.2. Mechanism to Generate Solutions in SA 
 
The neighborhood structure is based on the symbolic 
representation of the positions that the bipartite graph 
of Figure 1 represents. In this work, a method of local 
search in a neighborhood is developed, which includes 
the following steps: 
 
1. Generate initial schedule randomly.  
2. Apply direct mapping and indirect mapping.  
3. Generate a quick mapping.  
4. Change position of a job randomly toward a free 
position.  
5. Randomly exchange of two jobs. 
 
In order to generate an initial solution, a job j and a 
machine i are selected. The job j is located on the 
selected machine. Figure 4 presents the algorithm that 
generates the initial solution.  A set of jobs J and a set 
of machines M are used to make a schedule. A job j 
and a machine i are randomly selected from the sets J 
and M respectively. A position ki is assigned in the 
machine where there is still no job assignment. The job 
j is stored in Array (Figure 3) in the ki position. The 
position ki is updated, and j is eliminated from the set 
J. The procedure is repeated as long as J is not an 
empty set. 

 
function initial_solution( ) 
Begin 
  k = {k1=0,...,km-1=0} 
   M = {m1 = 0,...,mm=m-1}  
   J= {0,...,n-1} 
   Repeat 
      j = random(j0) 
      i = random(0,m-1) 
      Array[n* mi + ki] = j  
      ki=ki + 1 
      J = J - {j} 
   Until j0 ≠ φ      
End 

 
Figure 4. Generation of an initial solution 

 
The indirect mapping finds the elements ikj starting 
from a real position inside the neighborhood structure. 
The real position is obtained from the index of access 
to the Array. The functions are: 
 

j = Array( index )  (5) 
i = integer_truncate(index / n )  (6)
k = operator_ module (index, n)  (7)

 

For example, in Figure 3, using (5), for index = 3 job 2 
in Array results. With the same index, using (6), 
machine 1 is obtained. Using (7), the k = 0 position is 
found. 
Direct mapping finds the real position inside the 
neighborhood structure denoted by index using the 
elements ikj. The function is: 
 

index = i * n + k  (8)
 
Figure 5 presents the quick mapping which generates a 
schedule in a structure of jobs of the size 2n. The 
Array corresponds to a schedule (jobs, machines and 
positions) smaller in size than the neighborhood 
structure size mn. This structure allows a job to be 
randomly selected and located inside the neighborhood 
structure based on the mapping functions previously 
described.   
The efficiency in the search for a new solution also 
increases. It can be seen in Figure 5 that the order of 
the neighborhood structure is according to the number 
of machines and the structure of quick mapping for the 
number of jobs. 
 

 
 

Figure 5. Quick mapping 
 
The movement of a job toward an empty position of 
Array generates a neighbor. The neighborhood 
structure selects a job randomly using a quick mapping 
that contains all the schedule jobs, as shown in Figure 
6a.  Then it carries out the transformation operations 
described in steps 1 through 5 of the local search, in 
order to locate the index that targets that job in the 
neighborhood structure, Figure 6b.  
Next a position inside Array is selected and an index 
chosen. This position represents the place toward 
which the previously selected job moves. Figure 6c 
shows a free position (-1). In Figure 6d, the movement 
of the job j = 0 is shown from position 1 to position 4. 
Lastly, based on the mapping operations described, the 
positions of the job j = 0 are updates, as can be seen in 
Figure 6e. 
The exchange of a pair of jobs in a solution also 
generates a new neighbor. In Figure 7d the exchange 



of jobs between positions 1 and 3 is shown. The 
selection of the pair of jobs is random. 
Lastly, in Figure 7e, it can be seen that it is necessary 
to update the content of the jobs 0 and 2 to have a 
correct reference. 
  

 
 

Figure 6. Operation that moves a job from position 
 
 
 
 

 
 

Figure 7. Operation swap 
 

 

6. Scenario of Tests 
 
Five test problems were used, these benchmarks were 
proposed in [15]. Each benchmark contains 60 jobs 
and 4 parallel unrelated machines. Information on 
setup times is not taken into account, given that the 
model used in this work does not use these. 
In order to prove the efficiency and efficacy of the SA 
algorithm, an exact algorithm (SIMPLEX) was 
developed which solves instances with a maximum of 
60 jobs with 4 machines. With this algorithm the 
global optimum solution was obtained. After obtaining 
the solution, the proposed SA algorithm was used to 
search for the optimum based on 30 tests for each one 
of the five benchmarks. The PC used in order to carry 
out the tests was a PC Intel Celeron E1400 of 2.0 GHz, 
2 Gb Memory with S.O. Scientific Linux 4.7 and GCC 
compiler 3.4.3. 
SA, because it is a recurrent local search algorithm, 
requires a very efficient local search so that it can be 
efficient. The temporary function of the local search 
presented in section 5 is t(n) = 6mn+8m+11, and the 
asymptotic complexity is O(mn), where m is the 
number of machines and n the number of jobs. 
 
7. Experimental results 
 
For all the tests carried out, the values for the 
parameters entered in the RS algorithm were tuning. T 
= 25, r = 0.985, FROZEN = 0,985 and MCS is six 
times the neighborhood size. According to [6], the 
tuning of r was in the range of (0.8 <= r <= 0.99).   
 

Benchmark Opt. Best Worst σ RE 
Average 

60on4Rp50Rs50_1 62646 62646 62659 3.8201 0.0073 
60on4Rp50Rs50_2 62185 62185 62246 13.5190 0.0190 
60on4Rp50Rs50_3 62637 62637 62698 14.0426 0.0170 
60on4Rp50Rs50_4 62973 62973 63036 11.9474 0.0188 
60on4Rp50Rs50_5 63032 63032 63075 12.2476 0.0160 

Table 1. Efficacy of the SA Algorithm 
 
In Table 1 it is observed that for all five benchmarks 
the SA always finds the optimum, showing acceptable 
standard deviations and Relative Errors under 0.02% 
for the average of 30 tests for each problem. The best 
result obtained by the SA algorithm was for the 
benchmark 60on4Rp50Rs50_1, and the worst result 
obtained of the 30 tests was 62659 with a standard 
deviation of 3.8201 and an average relative error of  
0.0073%.  
Table 2 shows the efficiency results. For the first 
benchmark, the SA algorithm shows that its best result 



of thirty tests reduces the execution time by 96.02% 
vs. SIMPLEX. For the best results with regard to 
benchmarks 2, 3, 4 and 5, it is observed that SA 
reduces the execution time by arriving at the optimum 
solution 96% more quickly than SIMPLEX. 
 
 

SIMPLEX SA Opt. Opt. Benchmark CPU sec. CPU sec. best % best 
60on4Rp50Rs50_1 78.02 3.13 62646 96.02 
60on4Rp50Rs50_2 80.09 2.99 62185 96.26 
60on4Rp50Rs50_3 81.05 3.12 62637 96.15 
60on4Rp50Rs50_4 78.41 3.08 62973 96.07 
60on4Rp50Rs50_5 90.0 2.97 63032 96.70 
Table 2. Comparative efficiency of SA vs. SIMPLEX 

 
8. Conclusions 
   
The quick mapping on the algorithm of SA causes that 
the search of the optimum on the solutions space to be 
more efficient than the SIMPLEX method in the five 
analyzed benchmark. When comparing the efficiency 
in the cases where SA obtains the global optimum, the 
SA is observed that this is for up of the 96% with 
regard to SIMPLEX. The efficacy of SA is 100% for 
the proven benchmark, because it found the optimum 
solution for all the benchmarks. 
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