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Abstract 

 
This paper presents a neighborhood generation 

mechanism for the job shop scheduling problems 
(JSSP). In order to obtain a feasible neighbor with the 
generation mechanism, it is only necessary to generate 
a permutation of an adjacent pair of operations in a 
scheduling of the JSSP. If there is no slack-time 
between the adjacent pair of operations that is 
permuted, then it is proven, through experimentation 
that the new neighbor (schedule) generated is feasible. 
 
1. Introduction 
 

The job shop scheduling problem is classified in the 
Theory of Complexity as one of the most difficult 
problems inside the NP-complete class [1]. For this 
reason, Meta heuristics are frequently applied to search 
for the solution in instances of JSSP [2,3,4]. These 
algorithms have the characteristic of approaching the 
solution of the problem through searches in 
neighborhoods. Because of this, the development of 
new neighborhood generation mechanisms that are 
more efficient is important. This development will 
enable an increase in the efficiency of the Meta 
heuristic when the new mechanisms are used to search 
for the solution of the JSSP. 

The Meta heuristics, such as simulated annealing 
and some procedures of genetic algorithms [5], take 
the longest amount of execution time in the local 
searches. In JSSP, the local search requires a 
generation mechanism for new schedules. In each 
iteration that the Meta Heuristic carries out, a local 
search improves the schedule. This is done using a 
neighborhood generation mechanism (local search) 

and the Meta heuristic specifies criteria that direct the 
search toward good solutions. 

In this article, an efficient neighborhood generation 
mechanism for the JSSP is proposed. The mechanism 
requires only a permutation in a pair of operations that 
belong to the same machine. The approach used to 
select the pair of operations to be permuted in order to 
generate a new schedule is both simple and efficient. 

After this introduction, section two explains the 
model of the disjunctive graph of the JSSP, which is 
used in the proposed neighborhood generation 
mechanism in order to generate neighbors (schedules). 
Section three describes the neighborhood generation 
mechanism and its origins. Section four presents the 
experimental tests that demonstrate the efficiency and 
feasibility of the proposed neighborhood generation 
mechanism. The final section states the conclusions 
that can be drawn from the presented work. 
 
2. Disjunctive Graph Model  
 

Figure 1 shows the disjunctive graph model G = (A, 
E, O) for a JSSP of 3x3 (three machines and three 
jobs). This disjunctive graph is formed by three sets. 
The operations set, O, is made up of the nodes G, 
numbered one to nine. The processing time appears 
next to each operation. The beginning and ending 
operations (I and * respectively) are fictitious, with 
processing times equal to zero. The set A is composed 
of conjunctive arcs, each one of these arcs unites a pair 
of operations that belong to the same job. The 
operations 1, 2, and 3 are connected by one of these 
arcs and therefore form job one. Jobs two and three are 
made up of the operations 4, 5, 6 and 7, 8, 9 
respectively. Each arc of A represents a precedence 



constraint. For example, in job one, operation two 
must finish before operation three begins. Set E is 
composed of disjunctive arcs. Each arc that belongs to 
E unites a pair of operations that belong to the same 
machine. It can be seen that operations 1, 5 and 7 are 
executed by machine one and united by these arcs. 
Likewise, machines two and three execute the 
operations 2, 6, 8 and 3, 4, 9 respectively. Each 
machine forms a clique (a subset of E which is 
completely connected). Each arc of E represents a 
resources capacity constraint between a pair of 
operations that belong to the same machine. This type 
of restriction indicates that the machine cannot execute 
more than one operation in the same interval of time. 
 
 

 
Figure 1. Representation of a JSSP with three jobs 

and three machines using a disjunctive graph 
 
 
3. Neighborhood Generation Mechanism 
 

In the development of the proposed neighborhood 
generation mechanism, the following previous 
knowledge and restrictions were considered.  
 

a) The generation mechanism is applied in 
schedules generated from a disjunctive graph, 
for example, the schedule (digraph) that is 
presented in Figure 2. This schedule has 
Hamilton type routes [6]; there is one 
Hamilton route in each machine. The 
schedule is generated with the scheduling 
algorithm [7]. 

b) Only pairs of operations that are adjacent in 
the schedule and belong to the same machine 
can be permuted. For example, according to 
Figure 2, it is possible to permute the adjacent 
pairs of operations (1,7), (7,5), (8,2), (2,6), 
(4,9) and (9,3). 

c) It is known that if a pair of operations that 
belongs to the critical path of a schedule is 
permuted, the result will be a feasible 
schedule [8]. In Figure 2, the critical path of 
the schedule is shown with a thicker line. In 

each adjacent pair of operations (i,j) that 
belongs to the critical path, slack-time does 
not exist [9]. That means that when the 
machine finishes operation i, it immediately 
begins operation j.  

d) If a pair of adjacent operations that belong to 
the critical path is permuted, the result of this 
permutation can originate a better schedule if 
the objective function is to search for the 
minimization of the makespan of the problem. 
If the permutation is applied to a pair of 
operations that does not belong to the critical 
path of the schedule, the result cannot be a 
better schedule than the previous one [8] 

 

 
Figure 2. A schedule of 3x3 where the operations that 

form the critical path are shown by a thicker line 
 

 
Figure 3. Gantt chart. Scheduling generated from 

Figure 2, starting with the fictitious operation I. 
 

The generation mechanism starts with a feasible 
schedule, from which scheduling is generated and start 
times for each of the operations are found. The 
scheduling of the schedule in Figure 2 is shown in 
Figure 3 with a Gantt chart. In Figure 3, it can be seen 
which pairs of adjacent operations belong to the same 
machine. The number of the operation is shown 
enclosed in a circle.  

The selection of the pair of operations to permute in 
the proposed generation mechanism was defined based 
on the points (c) and (d). What are not considered of 
(c) and (d), is that the pair of operations to be permuted 
must belong to the critical path. This is necessary in 
order to avoid the calculation of the critical path every 



time a search is conducted for a neighbor (schedule) of 
the neighborhood. With this considered, the only pairs 
of operations that are allowed to permute in the 
schedule are the pairs that do not contain slack-time, 
how happen with the pairs that belong to the critical 
path. But it is not necessary that the pair of operations 
belongs to the critical path. This selection forms a 
group of possible pairs of operations to permute. This 
group includes all the pairs of operations that pertain to 
the critical path, plus a few others. For example, the 
pairs of operations (without slack-time) that one could 
permute based on the scheduling in Figure 3 are (1,7), 
(7,5), (8,2) and (2,6). One can see, from examination 
of Figure 2, that all the pairs of operations that are in 
the critical path are also part of the group of pairs of 
operations that can be permuted. From the Figure 2 it 
can be seen that the adjacent pairs of operations that 
form part of the critical path and that one could 
permute are (1,7), (8,2) and (2,6). This is the principle 
that is used in the proposed neighborhood generation 
mechanism.  

 
Hypothesis: In a feasible schedule, the permutation of 
an adjacent pair of operations that belong to the same 
machine, where these operations have no slack-time 
between them, results in a new feasible schedule. 
 
Summary of the generation mechanism: 
 

1. Generate a random schedule, using the 
disjunctive graph model. 

2. Generate the scheduling with the scheduling 
algorithm [7]. 

3. Randomly choose the pair of operations (i,j) 
to permute in the scheduling.  

a. The pair of operations should belong 
to the same machine.  

b. The pair of operations should not 
have slack-time.  

4. To permute the pair of operations. 
5. Apply the algorithm of scheduling in the new 

feasible schedule  
6. Return to 3, if desired, to generate another 

neighbor (schedule)  
7. Finish  

 
The following section presents the results of the test of 
feasibility (in experimental form) on the neighbors 
generated with the proposed generation mechanism. 
The stated hypothesis is proven experimentally. 
 
 
 

4. Experimental results 
 

In order to experimentally prove the hypothesis on 
which the proposed mechanism is based, eight 
problems of different sizes were taken from the OR-
Library [10]. The problems used were: YN1, YN2, 
YN3, YN4 of 20 jobs and 20 machines; the problems 
LA40, LA38 with a size of 15 x 15; and the problems 
FT10 and FT06 with a size of 10x10 and 6 X 6 
respectively. Table 1 presents the obtained results. Ten 
thousand tests for each problem were performed. Each 
test consisted of generating a schedule S randomly. 
The neighborhood of this schedule was revised to 
make sure the pair of adjacent operations did not 
contain slack-time. The configuration mechanism 
chose a pair of operations without slack-time. The pair 
was then permuted, and the resulting schedule S’ was 
checked for feasibility with the scheduling algorithm 
[7]. This was done for each pair of operations without 
slack-time in the schedule S. For example, for the 
problem YN1, the size of the neighborhood is 380 
adjacent pairs of operations, some pairs with slack-
time and others without slack-time between them. Each 
pair of operations without slack-time was evaluated. It 
was found that in every case, a feasible schedule was 
generated by the permutation of these adjacent pairs of 
operations.  

For all the evaluated problems shown in Table 1, in 
no case was an unfeasible schedule generated. This 
indicates that for these problems, the hypothesis is 
proven. The result of this investigation presents a very 
efficient neighborhood generation mechanism because 
the only requirement is the permutation of an adjacent 
pair of operations that does not contain slack-time. 
Finding a pair of operations without slack-time in the 
schedule is not difficult. One can see in Table 1 that a 
high number of adjacent pairs of operations without 
slack exist on the average, compared with the size of 
the neighborhood of the problem. For the problems of 
20x20 and 15x15, the percentage on the average is 
between 48 and 49% from the size of the 
neighborhood. For the problems of 10x10 and 6x6 
presented in this paper, the percentage on the average 
is 54 and 53% respectively. This indicates that for 
approximately half of the neighbors belonging to the 
neighborhoods in this study, permuting an adjacent 
pair of operations without slack-time can generate 
feasible schedules. 

 
 
 
 
 



Table 1. Experimental result from the generation 
mechanism of neighborhoods 

Problem 
(Neighbor
hood Size) 
(Number 

of 
Trials) 

% of pairs of 
operations 

without slack 
that, if 

permutated, 
obtain a 
feasible 

schedule. 

% of pairs of 
operations 

without slack 
that, if 

permutated, 
obtain an 
unfeasible 
schedule. 

Average 
number of 

pairs of 
operations 

without 
slack-time 

YN1 
20x20 
(380) 

(10000) 

 
100 

 
0 

 
181 

YN2 
20x20 
(380) 

(10000) 

 
100 

 
0 

 
185 

YN3 
20x20 
(380) 

(10000) 

 
100 

 
0 

 
184 

YN4 
20x20 
(380) 

(10000) 

 
100 

 
0 

 
187 

LA40 
(210) 

(10000) 

 
100 

 
0 

 
103 

LA38 
(210) 

(10000) 

 
100 

 
0 

 
100 

FT10 
(90) 

(10000) 

 
100 

 
0 

 
49 

FT06 
(90) 

(10000) 

 
100 

 
0 

 
16 

 
 
5. Conclusions 
 

The search for more efficient neighborhood 
mechanisms will enable Meta heuristics to work in a 
more efficient manner. The proposed neighborhood 
generation mechanism requires only the permutation of 
an adjacent pair of operations without slack-time in 
order to obtain a neighbor (feasible schedule) of the 
neighborhood in study.  
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