
Experimental Analysis of a Neighborhood Generation Mechanism Applied
to Scheduling Problems

Marco Antonio Cruz-Chávez1, Juan Frausto-Solis2, Jesús Roberto Cora-Mora1

1Engineering and Applied Science Research Center, UAEM

Av. Universidad 1001, Col. Chamilpa, 62270, Cuernavaca Morelos, MEXICO
mcruz@uaem.mx, jrcmricky@hotmail.com

2Department of Computer Science, ITESM, Campus Cuernavaca
Paseo de la Reforma 182-A, 62589, Temixco Morelos, MEXICO

Juan.frausto@itesm.mx

Abstract

This paper presents a neighborhood generation

mechanism for the job shop scheduling problems
(JSSP). In order to obtain a feasible neighbor with the
generation mechanism, it is only necessary to generate
a permutation of an adjacent pair of operations in a
scheduling of the JSSP. If there is no slack-time
between the adjacent pair of operations that is
permuted, then it is proven, through experimentation
that the new neighbor (schedule) generated is feasible.

1. Introduction

The job shop scheduling problem is classified in the
Theory of Complexity as one of the most difficult
problems inside the NP-complete class [1]. For this
reason, Meta heuristics are frequently applied to search
for the solution in instances of JSSP [2,3,4]. These
algorithms have the characteristic of approaching the
solution of the problem through searches in
neighborhoods. Because of this, the development of
new neighborhood generation mechanisms that are
more efficient is important. This development will
enable an increase in the efficiency of the Meta
heuristic when the new mechanisms are used to search
for the solution of the JSSP.

The Meta heuristics, such as simulated annealing
and some procedures of genetic algorithms [5], take
the longest amount of execution time in the local
searches. In JSSP, the local search requires a
generation mechanism for new schedules. In each
iteration that the Meta Heuristic carries out, a local
search improves the schedule. This is done using a
neighborhood generation mechanism (local search)

and the Meta heuristic specifies criteria that direct the
search toward good solutions.

In this article, an efficient neighborhood generation
mechanism for the JSSP is proposed. The mechanism
requires only a permutation in a pair of operations that
belong to the same machine. The approach used to
select the pair of operations to be permuted in order to
generate a new schedule is both simple and efficient.

After this introduction, section two explains the
model of the disjunctive graph of the JSSP, which is
used in the proposed neighborhood generation
mechanism in order to generate neighbors (schedules).
Section three describes the neighborhood generation
mechanism and its origins. Section four presents the
experimental tests that demonstrate the efficiency and
feasibility of the proposed neighborhood generation
mechanism. The final section states the conclusions
that can be drawn from the presented work.

2. Disjunctive Graph Model

Figure 1 shows the disjunctive graph model G = (A,
E, O) for a JSSP of 3x3 (three machines and three
jobs). This disjunctive graph is formed by three sets.
The operations set, O, is made up of the nodes G,
numbered one to nine. The processing time appears
next to each operation. The beginning and ending
operations (I and * respectively) are fictitious, with
processing times equal to zero. The set A is composed
of conjunctive arcs, each one of these arcs unites a pair
of operations that belong to the same job. The
operations 1, 2, and 3 are connected by one of these
arcs and therefore form job one. Jobs two and three are
made up of the operations 4, 5, 6 and 7, 8, 9
respectively. Each arc of A represents a precedence

constraint. For example, in job one, operation two
must finish before operation three begins. Set E is
composed of disjunctive arcs. Each arc that belongs to
E unites a pair of operations that belong to the same
machine. It can be seen that operations 1, 5 and 7 are
executed by machine one and united by these arcs.
Likewise, machines two and three execute the
operations 2, 6, 8 and 3, 4, 9 respectively. Each
machine forms a clique (a subset of E which is
completely connected). Each arc of E represents a
resources capacity constraint between a pair of
operations that belong to the same machine. This type
of restriction indicates that the machine cannot execute
more than one operation in the same interval of time.

Figure 1. Representation of a JSSP with three jobs

and three machines using a disjunctive graph

3. Neighborhood Generation Mechanism

In the development of the proposed neighborhood
generation mechanism, the following previous
knowledge and restrictions were considered.

a) The generation mechanism is applied in
schedules generated from a disjunctive graph,
for example, the schedule (digraph) that is
presented in Figure 2. This schedule has
Hamilton type routes [6]; there is one
Hamilton route in each machine. The
schedule is generated with the scheduling
algorithm [7].

b) Only pairs of operations that are adjacent in
the schedule and belong to the same machine
can be permuted. For example, according to
Figure 2, it is possible to permute the adjacent
pairs of operations (1,7), (7,5), (8,2), (2,6),
(4,9) and (9,3).

c) It is known that if a pair of operations that
belongs to the critical path of a schedule is
permuted, the result will be a feasible
schedule [8]. In Figure 2, the critical path of
the schedule is shown with a thicker line. In

each adjacent pair of operations (i,j) that
belongs to the critical path, slack-time does
not exist [9]. That means that when the
machine finishes operation i, it immediately
begins operation j.

d) If a pair of adjacent operations that belong to
the critical path is permuted, the result of this
permutation can originate a better schedule if
the objective function is to search for the
minimization of the makespan of the problem.
If the permutation is applied to a pair of
operations that does not belong to the critical
path of the schedule, the result cannot be a
better schedule than the previous one [8]

Figure 2. A schedule of 3x3 where the operations that

form the critical path are shown by a thicker line

Figure 3. Gantt chart. Scheduling generated from

Figure 2, starting with the fictitious operation I.

The generation mechanism starts with a feasible
schedule, from which scheduling is generated and start
times for each of the operations are found. The
scheduling of the schedule in Figure 2 is shown in
Figure 3 with a Gantt chart. In Figure 3, it can be seen
which pairs of adjacent operations belong to the same
machine. The number of the operation is shown
enclosed in a circle.

The selection of the pair of operations to permute in
the proposed generation mechanism was defined based
on the points (c) and (d). What are not considered of
(c) and (d), is that the pair of operations to be permuted
must belong to the critical path. This is necessary in
order to avoid the calculation of the critical path every

time a search is conducted for a neighbor (schedule) of
the neighborhood. With this considered, the only pairs
of operations that are allowed to permute in the
schedule are the pairs that do not contain slack-time,
how happen with the pairs that belong to the critical
path. But it is not necessary that the pair of operations
belongs to the critical path. This selection forms a
group of possible pairs of operations to permute. This
group includes all the pairs of operations that pertain to
the critical path, plus a few others. For example, the
pairs of operations (without slack-time) that one could
permute based on the scheduling in Figure 3 are (1,7),
(7,5), (8,2) and (2,6). One can see, from examination
of Figure 2, that all the pairs of operations that are in
the critical path are also part of the group of pairs of
operations that can be permuted. From the Figure 2 it
can be seen that the adjacent pairs of operations that
form part of the critical path and that one could
permute are (1,7), (8,2) and (2,6). This is the principle
that is used in the proposed neighborhood generation
mechanism.

Hypothesis: In a feasible schedule, the permutation of
an adjacent pair of operations that belong to the same
machine, where these operations have no slack-time
between them, results in a new feasible schedule.

Summary of the generation mechanism:

1. Generate a random schedule, using the
disjunctive graph model.

2. Generate the scheduling with the scheduling
algorithm [7].

3. Randomly choose the pair of operations (i,j)
to permute in the scheduling.

a. The pair of operations should belong
to the same machine.

b. The pair of operations should not
have slack-time.

4. To permute the pair of operations.
5. Apply the algorithm of scheduling in the new

feasible schedule
6. Return to 3, if desired, to generate another

neighbor (schedule)
7. Finish

The following section presents the results of the test of
feasibility (in experimental form) on the neighbors
generated with the proposed generation mechanism.
The stated hypothesis is proven experimentally.

4. Experimental results

In order to experimentally prove the hypothesis on
which the proposed mechanism is based, eight
problems of different sizes were taken from the OR-
Library [10]. The problems used were: YN1, YN2,
YN3, YN4 of 20 jobs and 20 machines; the problems
LA40, LA38 with a size of 15 x 15; and the problems
FT10 and FT06 with a size of 10x10 and 6 X 6
respectively. Table 1 presents the obtained results. Ten
thousand tests for each problem were performed. Each
test consisted of generating a schedule S randomly.
The neighborhood of this schedule was revised to
make sure the pair of adjacent operations did not
contain slack-time. The configuration mechanism
chose a pair of operations without slack-time. The pair
was then permuted, and the resulting schedule S’ was
checked for feasibility with the scheduling algorithm
[7]. This was done for each pair of operations without
slack-time in the schedule S. For example, for the
problem YN1, the size of the neighborhood is 380
adjacent pairs of operations, some pairs with slack-
time and others without slack-time between them. Each
pair of operations without slack-time was evaluated. It
was found that in every case, a feasible schedule was
generated by the permutation of these adjacent pairs of
operations.

For all the evaluated problems shown in Table 1, in
no case was an unfeasible schedule generated. This
indicates that for these problems, the hypothesis is
proven. The result of this investigation presents a very
efficient neighborhood generation mechanism because
the only requirement is the permutation of an adjacent
pair of operations that does not contain slack-time.
Finding a pair of operations without slack-time in the
schedule is not difficult. One can see in Table 1 that a
high number of adjacent pairs of operations without
slack exist on the average, compared with the size of
the neighborhood of the problem. For the problems of
20x20 and 15x15, the percentage on the average is
between 48 and 49% from the size of the
neighborhood. For the problems of 10x10 and 6x6
presented in this paper, the percentage on the average
is 54 and 53% respectively. This indicates that for
approximately half of the neighbors belonging to the
neighborhoods in this study, permuting an adjacent
pair of operations without slack-time can generate
feasible schedules.

Table 1. Experimental result from the generation
mechanism of neighborhoods

Problem
(Neighbor
hood Size)
(Number

of
Trials)

% of pairs of
operations

without slack
that, if

permutated,
obtain a
feasible

schedule.

% of pairs of
operations

without slack
that, if

permutated,
obtain an
unfeasible
schedule.

Average
number of

pairs of
operations

without
slack-time

YN1
20x20
(380)

(10000)

100

0

181

YN2
20x20
(380)

(10000)

100

0

185

YN3
20x20
(380)

(10000)

100

0

184

YN4
20x20
(380)

(10000)

100

0

187

LA40
(210)

(10000)

100

0

103

LA38
(210)

(10000)

100

0

100

FT10
(90)

(10000)

100

0

49

FT06
(90)

(10000)

100

0

16

5. Conclusions

The search for more efficient neighborhood
mechanisms will enable Meta heuristics to work in a
more efficient manner. The proposed neighborhood
generation mechanism requires only the permutation of
an adjacent pair of operations without slack-time in
order to obtain a neighbor (feasible schedule) of the
neighborhood in study.

6. References

[1] C.H. Papadimitriou and K. Steiglitz, Combinatorial

optimization: algorithms and complexity, Dover
Publications Inc., USA. ISBN 0-486-40258-4, 496 pp.,
1998.

[2] K. Steinhöfel, A. Albrecht, C.K. Wong, “An
Experimental Analysis of Local Minima to Improve
Neighborhood Search”, Computers & Operations
Research, 30(14):2157-2173, 2003.

[3] Aydin, M.E. and Fogarty, T. C. (2004), “A distributed
evolutionary simulated annealing algorithm for
combinatorial optimization problems”, Journal of
Heuristics, 10 (3): 269-292, May 2004.

[4] M.A. Cruz-Chavez and J. Frausto-Solís, “Simulated
Annealing with Restart to Job Shop Scheduling Problem
Using Upper Bounds”, Lecture Notes in Computer
Science, Springer-Verlag, ISSN: 0302-9743, Vol. 3070,
860 – 865 pp, June 7-11, 2004.

[5] T. Yamada and R. Nakano, “A Genetic Algorithm with
Multi-Step Crossover for Job-Shop Scheduling
Problems”, Genetic Algorithms in Engineering Systems:
Innovations and Applications, No. 414, IEE, 1995.

[6] M.R. Garey and D.S. Johnson, Computers and
intractability: a guide to the theory of NP-completeness,
ISBN 0-7167-1045-5, W.H. Freeman and Company,
USA, 340 pp., 1991.

[7] R. Nakano and T. Yamada, “Conventional Genetic
Algorithm for Job-Shop. Problems”, in Kenneth, M. K.
and Booker, L. B. (eds) Proceedings of the 4th
International Conference on Genetic Algorithms and their
Applications, San Diego, USA, pp. 474-479, 1991.

[8] P. J. M. Van Laarhooven, E. H. L. Aarts, and J. K.
Lenstra, “Job Shop Scheduling by Simulated Annealing”,
Operations Research, Jan-Feb, 40(1), 113-125, 1992.

[9] F. S. Hiller, and G. J. Lieberman, Introduction to
Operations Research, ISBN: 0-07-113989-3, International
Editions, 1995.

[10] J. E. Beasley. OR-Library: “Distributing test problems
by electronic mail”, Journal of the Operational Research
Society, Vol. 41, No. 11, 1069-1072, 1990. Last update
2003.

