
mathematics

Article

Overlap Detection in 2D Amorphous Shapes for Paper
Optimization in Digital Printing Presses

Yainier Labrada-Nueva 1, Martin H. Cruz-Rosales 2 , Juan Manuel Rendón-Mancha 3 , Rafael Rivera-López 4 ,
Marta Lilia Eraña-Díaz 1 and Marco Antonio Cruz-Chávez 1,*

����������
�������

Citation: Labrada-Nueva, Y.;

Cruz-Rosales, M.H.; Rendón-Mancha,

J.M.; Rivera-López, R.; Eraña-Díaz,

M.L.; Cruz-Chávez, M.A. Overlap

Detection in 2D Amorphous Shapes

for Paper Optimization in Digital

Printing Presses. Mathematics 2021, 9,

1033. https://doi.org/10.3390/

math9091033

Academic Editors: Frank Werner and

Massimiliano Ferrara

Received: 10 March 2021

Accepted: 28 April 2021

Published: 2 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Research Center in Engineering and Applied Sciences, Autonomous University of Morelos State (UAEM),
Cuernavaca 62209, Mexico; yainier.labrada@uaem.mx (Y.L.-N.); merana@uaem.mx (M.L.E.-D.)

2 Faculty of Accounting, Administration & Informatics, UAEM, Cuernavaca 62209, Mexico; mcr@uaem.mx
3 Research Center in Sciences, IICBA-UAEM, Cuernavaca 62209, Mexico; rendon@uaem.mx
4 Computation and Systems Department, National Technological Institute/Veracruz Technological Institute,

Veracruz 91860, Mexico; rrivera@itver.edu.mx
* Correspondence: mcruz@uaem.mx

Abstract: Paper waste in the mockups design with regular, irregular, and amorphous patterns is
a critical problem in digital printing presses. Paper waste reduction directly impacts production
costs, generating business and environmental benefits. This problem can be mapped to the two-
dimensional irregular bin-packing problem. In this paper, an iterated local search algorithm using
a novel neighborhood structure to detect overlaps between amorphous shapes is introduced. This
algorithm is used to solve the paper waste problem, modeled as one 2D irregular bin-packing
problem. The experimental results show that this approach works efficiently and effectively to detect
and correct the overlaps between regular, irregular, and amorphous figures.

Keywords: overlaps; neighborhood structure; amorphous shapes; paper waste; resource alloca-
tion; perturbations

1. Introduction

The two-dimensional (2D) bin-packing problem (BPP) is a combinatorial optimization
problem classified as NP-Complete [1] since no exact algorithm for this problem is known to
run in polynomial time. Then, computational heuristics have to be used to find near-optimal
problem solutions. 2D BPP consists of placing a set of usually small elements (pieces) in
one or more large objects (bins) and optimizing some objective function. In digital printing
presses, a bin is a paper sheet where elements (regular, irregular, or amorphous shapes)
are placed without overlapping so that the residual area is minimal. The residual area
is the difference between the paper sheet area and the sum of each of the shapes’ areas
placed in it. It is then a geometric problem of optimally accommodating the shapes (regular,
irregular, and amorphous) without overlapping them.

In the existing literature, there are several approaches to 2D irregular BPP. In [2], a
Constructive Algorithm (CA) to the nesting problem with irregular pieces is introduced.
The solution is built by successively adding a new one to a set of pieces previously placed
on a plate. Several criteria to choose the next piece to be added and to define its orientation
are also proposed. A not-fit polygon (NFP) algorithm to determine the feasible location
points in the placed pieces’ contour is used. In [3], a tutorial of the primary geometric
methodologies currently used for cutting and packaging irregular pieces is provided. They
use the NFP algorithm as their insertion procedure. This algorithm traverses the inserted
pieces’ contour, trying to place a new one as close as possible to this contour, considering its
concavities. In [4], authors explore different problem representations and mechanisms to
move between solutions and evaluate basic approaches to solve them. In [5], one ordered
list of pieces to be packed represents the 2D irregular BPP, which is solved using both

Mathematics 2021, 9, 1033. https://doi.org/10.3390/math9091033 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3601-3797
https://orcid.org/0000-0002-9629-7050
https://orcid.org/0000-0002-5254-4195
https://orcid.org/0000-0001-8450-8247
https://orcid.org/0000-0001-9967-3886
https://doi.org/10.3390/math9091033
https://doi.org/10.3390/math9091033
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9091033
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9091033?type=check_update&version=2

Mathematics 2021, 9, 1033 2 of 22

TOPOS and beam-search approaches. In [6], the 2D irregular (convex) BPP with guillotine
constraints is solved using three two-stage strategies. These strategies first place one or
two pieces in a rectangle area that is then packed using a competitive algorithm.

In [7], a one-dimensional (1D) BPP heuristic is adapted to solve the 2D irregular BPP.
The authors carried out several tests using a wide variety of convex polygons and applied
various insertion techniques, such as First Fit (FF), First Fit Decreasing (FFD), First Fit
Increasing (FFI), Filler, and Best Fit (BF). Unlike the NFP method, these strategies insert
polygons, omitting their concavities. The insertion is carried out by ordering the polygons
and placing them, starting in the coordinates (0,0). In [8], several variants of a constructive
algorithm able to solve a wide variety of 2D irregular BPP variants are described. This
algorithm first applies an Integer Programming model to assign pieces to bins and then
uses a Mixed Integer Programming model for placing the pieces into the bins. The second
stage tests a promising set of rotations for the piece and puts the one that fits the piece
into the bin. A tested method is the FF algorithm, which is similar to the FFD method
proposed in [9] to solve the 1D BPP. FFD takes an ordered list of pieces and assigns them
sequentially to bins. To assign a piece, FFD examines the bins in the order they are opened
and places the piece in the first bin that it will fit into. If the piece does not fit in any
existing bin, a new one is created, and the piece is assigned to it. This algorithm is efficient
but critically dependent on the initial order of the pieces. In [10], an evolutionary hyper-
heuristic that chooses the best of six deterministic algorithms to solve BPP instances, either
1D or 2D, and uses regular or irregular pieces is introduced. In [11], the Heuristic Search
Diversification Mechanism (HSDM), addressing both the piece allocation and placement
problems together, is proposed. The authors implemented several strategies to handle
piece rotations, such as Bottom-Left, Minimum-Length, and Maximum Utilization. These
strategies can use a set of four angles or unrestricted rotations. In [12], a review about
mathematical models for the cutting and packing problem using 2D/3D construction
techniques is detailed. Furthermore, authors use the technique to insert each piece at
the bottom left of another already inserted. This technique considers the pieces already
inserted to avoid overlapping between them and to be able to fill the spaces that were left
empty in previous insertion stages. Finally, in [13], one improved typology of cutting and
packing problems is introduced, based on the one proposed by Dyckhoff [14], but with
a new criterion and setting new and different categories. The authors demonstrated the
typology viability, classifying the papers in the existing literature between 1995 and 2004.

Unlike the approaches proposed in the existing literature, this article presents an
iterated local search-based approach to insert pieces in bins. The iterated local search (ILS)
is a powerful technique, simple to implement, robust, and highly efficient to traverse a
complex solution space and reach near-optimal solutions [15,16]. In particular, in this
paper, ILS uses a neighborhood structure that consists of making small movements on
pieces previously placed in the bin to obtain more available space for new pieces. This
neighborhood structure has been successfully used to solve various NP-complete prob-
lems [1]. For the paper waste reduction problem, the neighborhood structure is determined
using a geometry-based method for overlap detection between pieces (regular, irregular,
amorphous, or a combination of them) [4] and achieving feasible and optimized results.
The experimental results show that this approach works efficiently and effectively to detect
and correct the overlaps between regular, irregular, and amorphous figures.

The rest of this paper is organized as follows. Section 2 describes the paper waste
reduction problem using a graphical representation and mathematical model based on the
2D BPP. The neighborhood structure proposed in this paper, as well as the ILS algorithm
to solve the problem, is detailed in Section 3. Section 4 presents the experimental results
obtained by the proposed method, and the comparison with those of several algorithms in
the existing literature using five benchmark problems. Finally, the conclusions of this work
are discussed in Section 5.

Mathematics 2021, 9, 1033 3 of 22

2. Paper Waste Reduction Problem in Digital Printing Presses
2.1. Graphical Representation

Figure 1 is a graphical representation of the mockup design for a possible serial
production on one paper sheet’s printable area (PPA) using a digital press. The paper
in the figure has a rectangular PPA (colored black) with several pieces of various sizes
distributed in it. The minimization of the residual area is required, inserting as many pieces
as possible in the PPA. The residual area is the difference between the PPA and the total
area of the pieces.

Mathematics 2021, 9, x FOR PEER REVIEW 3 of 23

gorithms in the existing literature using five benchmark problems. Finally, the conclu-

sions of this work are discussed in Section 5.

2. Paper Waste Reduction Problem in Digital Printing Presses

2.1. Graphical Representation

Figure 1 is a graphical representation of the mockup design for a possible serial

production on one paper sheet’s printable area (PPA) using a digital press. The paper in

the figure has a rectangular PPA (colored black) with several pieces of various sizes dis-

tributed in it. The minimization of the residual area is required, inserting as many pieces

as possible in the PPA. The residual area is the difference between the PPA and the total

area of the pieces.

Figure 1. Mockup design for the digital printing of pieces with diverse sizes.

2.2. Mathematical Model

The paper optimization problem in digital printing presses consists of placing as

many pieces as possible in a rectangular region without overlap between them. The

pieces should be placed inside the rectangular region known as the Printable Paper Sheet

Area (PPA). The pieces arranged on a PPA are regular, irregular, amorphous pieces, or a

combination of them. The mathematical model used in this work to solve the waste re-

duction problem in digital presses is based on that used to represent a 2D BPP in [17] and

is an approximate model to solve the paper optimization problem in digital presses.

(1)

s.t.

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

The objective Function (1) is to minimize the PPA residual area. W and H represent

the PPA width and height, respectively. Vectors w and h are the dimensions of the regu-

lar polygons enveloping the amorphous pieces. is the total residual area

between regular polygons and amorphous pieces, and xi and yi are the coordinates of the

Figure 1. Mockup design for the digital printing of pieces with diverse sizes.

2.2. Mathematical Model

The paper optimization problem in digital printing presses consists of placing as many
pieces as possible in a rectangular region without overlap between them. The pieces should
be placed inside the rectangular region known as the Printable Paper Sheet Area (PPA).
The pieces arranged on a PPA are regular, irregular, amorphous pieces, or a combination of
them. The mathematical model used in this work to solve the waste reduction problem in
digital presses is based on that used to represent a 2D BPP in [17] and is an approximate
model to solve the paper optimization problem in digital presses.

min f (W, H, w, h, a) = (W ∗ H)−∑(wi ∗ hi) + ∑(wi ∗ hi − ai) (1)

s.t.
0 ≤ xi ≤W − wi ∀i ∈ N (2)

0 ≤ yi ≤ H − hi ∀i ∈ N (3)

xi + wi ≤ xj ∀i, j ∈ N (4)

xj + wj ≤ xi ∀i, j ∈ N (5)

yi + hi ≤ yj ∀i, j ∈ N (6)

yj + hj ≤ yi ∀i, j ∈ N (7)

xi, yi, wi,hi, W, H ∈ N (8)

The objective Function (1) is to minimize the PPA residual area. W and H represent
the PPA width and height, respectively. Vectors w and h are the dimensions of the regu-
lar polygons enveloping the amorphous pieces. ∑(wi ∗ hi − ai) is the total residual area
between regular polygons and amorphous pieces, and xi and yi are the coordinates of the
upper left edge of the i-th piece inserted into the PPA. The PPA residual area is computed
as follows: First, each i-th amorphous piece ai inside a regular polygon is encoded in a
binary matrix (wi ∗ hi). In this matrix, values of 1 represent the piece pixels ai, and values

Mathematics 2021, 9, 1033 4 of 22

of 0 describe the rest of the polygon pixels (wi ∗ hi − ai). Then, in Equation (1), the PPA
residual area is the difference between the PPA (W ∗ H) and the area used by all regular
polygons, ∑(wi ∗ hi), added to the rest of the polygon pixels, ∑(wi ∗ hi − ai), that is, the
number of values of 0 in the encoded matrices.

Constraints in (2) and (3) indicate that each i-th piece must be within the PPA. Con-
straints (4)–(7) indicate that each i-th piece must not have an overlap, that is, each inequality
means one of four relative locations: to the left of, to the right of, below, or above. Finally,
according to (8), the mathematical model does not accept negative values in the variables.

The optimization model described in (1)–(8) represents the 2D BPP with a single bin.
Since only one bin is used (a paper sheet’s printable area), it can be solved in polynomial
time despite being an NP-complete problem [1]. This is an integer linear programming
model that can be solved with commercial software such as CPLEX. CPLEX must be
adapted to treating amorphous pieces, combining with the algorithms presented in this
work to read pixel-based images and with overlap detection.

3. Neighborhood Structure

A solution s for the waste reduction problem represented as a set of pieces placed in
the PPA is a graphical representation of a model, as explained in Section 2.1. This solution
is feasible if there are no overlaps between the pieces present in the model.

Given a feasible solution s of the set of feasible solutions S of the problem (s ∈ S), the
neighborhood of that solution is a subset of solutions S′(S′ ⊂ S) that are close to s. If s′

is a neighbor of s, then s′∈ S′ [18]. If distH(s, s′) ∨ S′ × S′ → R is the Hamming distance
between two solutions s and s′, the neighborhood of s N(s) ⊆ S′ is as follows:

N(s) =
{

s′ ∈ S′ ∨ distHamming
(
s, s′

)
6 ε

}
∀ε > 0 (9)

where ε is the maximum distance of a neighbor of s. If β is the maximum perturbations
number in the piece coordinates, s′ can be created from s. Accordingly, the neighborhood
of s is defined by Equation (10), where s′ is reached from s, by applying a slight movement
in the coordinates of a piece placed in the PPA.

N(s) =
{

s′ ∈ S′ ∨ s β
→

s′
}

(10)

3.1. Neighborhood Structure with Simple Perturbations

Algorithm 1 shows the Neighborhood Structure with simple perturbation (NSSP)
procedure. This procedure uses an iterated local search to create new neighborhood
solutions to the current solution.

Algorithm 1 NSSP neighborhood structure

1: procedure NSSP(s)
2: NF← |s|
3: while (NF ≤MaxNF)
4: do
5: F← rand (0, NF)
6: x← rand (0, W–w, β)
7: y← rand (0, H–h, β)
8: s’← f (F, x, y, β)
9: while (CheckOverlaps(s′))
10: do
11: s← s’ ∪ {G}
12: while (CheckOverlaps(s))
13: end while
14: end procedure

Mathematics 2021, 9, 1033 5 of 22

The algorithm starts with a feasible initial solution s representing a set of NF pieces
placed in the PPA. Next, a new solution s′ is created (lines 4–9) by selecting one piece from
s, named F, and generating new F coordinates, using the maximum perturbations value β.
Both the selection of F and the generation of its new coordinates is carried out at random.
This solution is accepted as a neighbor feasible solution if and only if it does not have
overlaps with the other placed pieces, using the CheckOverlaps() function. Finally, a new
piece, G, is inserted in s, as long as G does not have overlaps too (lines 10–12). The algorithm
is blind because it unknown if the space created by moving the piece F is enough to insert
piece G. This condition knows as soon as it can insert G without generating any overlap. If
G cannot be inserted, lines 4 to 9 are repeated to choose another piece, F maintains its new
PPA location. This procedure is iteratively repeated until the number of pieces is greater
than the maximum number of pieces (MaxNF).

The CheckOverlaps function is based on [4] and implements a geometric method
to detect overlaps for amorphous pieces. This method uses masks to detect overlaps.
Masks represent figures for which an overlap needs to be detected. A mask represents
a rectangular area that inscribes a figure. It is encoded with a binary matrix and with
the values of its dimensions (width and height). Each figure pixel is mapped as a binary
value in the array. Active pixels have a value of 1, and deactivated pixels have a value
of 0. Active pixels are inside the figure, including its borders. Deactivated pixels do not
represent figures, but they are part of the mask. The distance between masks is calculated
to validate the existence of overlaps between the figures. If this distance is considerable,
then there is no overlap. Otherwise, overlaps between active pixels must be verified. If
there are active pixels in the same location in both masks, then there are overlaps in the
figures. Algorithm 2 shows the steps of this function.

Algorithm 2 CheckOverlaps Function

1: function CheckOverlaps (maska, maskb, x, y)
2: x← (maska(w) + maskb(w)/2–abs(x)
3: y← (maska(h) + maskb(h)/2–abs(y)
4: if (x ≤ 0 || y ≤ 0)
5: return false
6: endif
7: x1 ← (maska(w–x) * (x < 0 ? 1 : 0)
8: y1 ← (maska(h)–y) * (y < 0 ? 1 : 0)
9: x2 ← (maskb(w)–x) * (x < 0 ? 0 : 1)
10: y2 ← (maskb(h)–y) * (y < 0 ? 0 : 1)
11: for i← 0 to x
12: for j← 0 to y
13: if (maska → bits[(x1 + i) * maska → w + (y1 + j)] = 1

ˆ maskb → bits[(x2 + u) * maskb → w + (y2 + j)] = 1)
14: return true
15: end if
16: end for
17: end for
18: return false
19: end function

The CheckOverlaps function receives as parameters the masks mapping the pieces to
be compared and the location (x, y) of the perturbed piece in s′. First, the mean width and
mean height of the masks are computed (lines 2–3). If some mean is negative, overlapping
does not exist and the function returns false (lines 4–6). Next, the overlaps between the
masks are verified in lines 7–17.

An example of this overlap-checking process is shown in Figure 2. Figure 2a represents
a solution s, where the space in the upper left area is not sufficient to insert a new figure.
The perturbation β applied with the proposed neighborhood structure is as follows: (1)
randomly choosing a figure F of s (marked with yellow in Figure 2a); (2) (Figure 2b)

Mathematics 2021, 9, 1033 6 of 22

modifying its coordinates and verifying overlaps with the rest of the model’s figures. If
an overlap exists, the coordinates modification is repeated until it is feasible. This process
allows for generating the necessary space so that another figure can be inserted into the
bin; (3) a new figure G (marked with red in Figure 2c) is inserted into the available space.
If the previous procedure does not generate overlaps, the new residual area is computed.
Figure 2c represents a neighboring solution s’, with s applying a perturbative motion β
(movement in the direction of the yellow arrow) to the already inserted piece F (yellow
color), and then inserting another piece G (red color). This process is done iteratively until
a new feasible neighboring solution is found.

Mathematics 2021, 9, x FOR PEER REVIEW 6 of 23

19: end function

The CheckOverlaps function receives as parameters the masks mapping the pieces to

be compared and the location (x, y) of the perturbed piece in s’. First, the mean width and

mean height of the masks are computed (lines 2–3). If some mean is negative, overlap-

ping does not exist and the function returns false (lines 4–6). Next, the overlaps between

the masks are verified in lines 7–17.

An example of this overlap-checking process is shown in Figure 2. Figure 2a repre-

sents a solution s, where the space in the upper left area is not sufficient to insert a new

figure. The perturbation β applied with the proposed neighborhood structure is as fol-

lows: (1) randomly choosing a figure F of s (marked with yellow in Figure 2a); (2b) mod-

ifying its coordinates and verifying overlaps with the rest of the model’s figures. If an

overlap exists, the coordinates modification is repeated until it is feasible. This process

allows for generating the necessary space so that another figure can be inserted into the

bin; (3) a new figure G (marked with red in Figure 2c) is inserted into the available space.

If the previous procedure does not generate overlaps, the new residual area is computed.

Figure 2c represents a neighboring solution s’, with s applying a perturbative motion β

(movement in the direction of the yellow arrow) to the already inserted piece F (yellow

color), and then inserting another piece G (red color). This process is done iteratively until

a new feasible neighboring solution is found.

s

s’

(a) (b) (c)

Figure 2. Neighborhood structure from the movements of the figures. (a) Piece F (yellow color),

chosen in a solution s. F movement, modifying its coordinates. New piece G (red color) inserted in s

generates s'.

3.2. Iterated Local Search Algorithm

Figure 3 shows the Iterated Local Search Algorithm (ILS) graphical representation

for paper waste reduction in digital printing presses. ILS is a powerful, simple to im-

plement, robust, and highly efficient technique [16]. It starts by generating a feasible so-

lution that consists of selecting a set of pieces (regular, irregular, amorphous, or a com-

bination). The user defines both the number and the form of the pieces. The pieces can be

patterns with small or large areas or with a size defined at random. These pieces are

placed at random into the PPA. The problem constraints indicate that there are no over-

laps between pieces and that they all must lie inside the PPA. The algorithm has one

overlap counter, which is updated each time a new piece tries to be inserted in the PPA.

Suppose the overlap number is not less than a predefined limit (LimOverlap), and no

more non-overlapped pieces can be inserted. In that case, a feasible initial solution s is

found. A local search is executed with s applying NSSD to obtain neighboring solutions

s’, according to the procedure explained in Section 3.1. With the neighborhood structure,

pieces are inserted, and the overlap is corrected. Each neighbor solution s’ is compared

with s using the cost function f (W, H, w, h), as described in Equation (1).

Figure 2. Neighborhood structure from the movements of the figures. (a) Piece F (yellow color),
chosen in a solution s. (b) F movement, modifying its coordinates. (c) New piece G (red color)
inserted in s generates s′.

3.2. Iterated Local Search Algorithm

Figure 3 shows the Iterated Local Search Algorithm (ILS) graphical representation for
paper waste reduction in digital printing presses. ILS is a powerful, simple to implement,
robust, and highly efficient technique [16]. It starts by generating a feasible solution that
consists of selecting a set of pieces (regular, irregular, amorphous, or a combination). The
user defines both the number and the form of the pieces. The pieces can be patterns with
small or large areas or with a size defined at random. These pieces are placed at random
into the PPA. The problem constraints indicate that there are no overlaps between pieces
and that they all must lie inside the PPA. The algorithm has one overlap counter, which is
updated each time a new piece tries to be inserted in the PPA. Suppose the overlap number
is not less than a predefined limit (LimOverlap), and no more non-overlapped pieces can be
inserted. In that case, a feasible initial solution s is found. A local search is executed with s
applying NSSD to obtain neighboring solutions s′, according to the procedure explained
in Section 3.1. With the neighborhood structure, pieces are inserted, and the overlap is
corrected. Each neighbor solution s′ is compared with s using the cost function f (W, H, w,
h), as described in Equation (1).

The neighbor solution s′ represents the best solution obtained by the local search
procedure. This process is repeated until the number of iterations IterLS is greater than
the neighborhood size (SN). In each ILS iteration, the best solution is stored in the LocalS
variable. After completing the local search, the LocalS is compared with the GlobalS. The
GlobalS variable represents the best solution obtained by ILS when it finishes its execution.
The result is a reduction of wasted paper by increasing the number of figures inserted in
the PPA. The iterative process is repeated as long as the number of iterations (Iter) is greater
than the number of global iterations (IterILS). For an efficient ILS operation, one parameter
tuning is needed through a sensitivity analysis. The parameters that must be tuned are
LimOverlap, NS, and IterILS.

Mathematics 2021, 9, 1033 7 of 22

Mathematics 2021, 9, x FOR PEER REVIEW 7 of 23

Figure 3. ILS flow diagram to the paper waste optimization problem.

The neighbor solution s’ represents the best solution obtained by the local search

procedure. This process is repeated until the number of iterations IterLS is greater than

the neighborhood size (SN). In each ILS iteration, the best solution is stored in the LocalS

variable. After completing the local search, the LocalS is compared with the GlobalS. The

GlobalS variable represents the best solution obtained by ILS when it finishes its execu-

tion. The result is a reduction of wasted paper by increasing the number of figures in-

serted in the PPA. The iterative process is repeated as long as the number of iterations

(Iter) is greater than the number of global iterations (IterILS). For an efficient ILS opera-

tion, one parameter tuning is needed through a sensitivity analysis. The parameters that

must be tuned are LimOverlap, NS, and IterILS.

4. Experimental Results

The experimental tests were carried out on a HP PC computer (México, City) with

an, Intel Core i7-870 2.93 Ghz CPU and 5.0 GB RAM, using a Windows 10 operating

system, install from the factory by HP with a Microsoft Visual C ++ 2012, and the Allegro

Ver 5.0 with free software license (GitHub, Inc.) for the overlap detection.

For the initial ILS tests, amorphous pieces, such as those presented in Figure 2, were

used. Figure 4 depicts the landscape behavior of 500 tests carried out, each one consum-

ing 500 seconds. The parameters shown are (1) shapes (the number of pieces placed on

the PPA), (2) residual area, and (3) overlaps (the number of overlaps generated). The red

Figure 3. ILS flow diagram to the paper waste optimization problem.

4. Experimental Results

The experimental tests were carried out on a HP PC computer (México, City) with an,
Intel Core i7-870 2.93 Ghz CPU and 5.0 GB RAM, using a Windows 10 operating system,
install from the factory by HP with a Microsoft Visual C ++ 2012, and the Allegro Ver 5.0
with free software license (GitHub, Inc.) for the overlap detection.

For the initial ILS tests, amorphous pieces, such as those presented in Figure 2, were
used. Figure 4 depicts the landscape behavior of 500 tests carried out, each one consuming
500 seconds. The parameters shown are (1) shapes (the number of pieces placed on the
PPA), (2) residual area, and (3) overlaps (the number of overlaps generated). The red
rectangle in Figure 4 encloses the best solutions found using a high number of attempts
(based on the number of checked overlaps before reaching a feasible solution). This figure
also shows a portion enclosed in a grid of black lines, indicating the best values reached
using the fewest attempts. These values ranged between 48 and 50 for the number of
pieces placed on the PPA. ILS obtained the best solution when the objective function with
50 pieces was placed on the PPA.

Mathematics 2021, 9, 1033 8 of 22

Mathematics 2021, 9, x FOR PEER REVIEW 8 of 23

rectangle in Figure 4 encloses the best solutions found using a high number of attempts

(based on the number of checked overlaps before reaching a feasible solution). This fig-

ure also shows a portion enclosed in a grid of black lines, indicating the best values

reached using the fewest attempts. These values ranged between 48 and 50 for the

number of pieces placed on the PPA. ILS obtained the best solution when the objective

function with 50 pieces was placed on the PPA.

It is interesting to see the difficulty degree of obtaining feasible solutions. Suppose

the solutions had a more significant number of pieces inserted on the PPA. In that case,

ILS could generate many overlaps before finding improved solutions. However, the best

solutions found generated close to 500,000 to 1,500,000 overlaps. In contrast, solutions

with a lower value (marked in Figure 4 with a red rectangle) used 46 and 47 pieces and

detected close to 3,500,000 overlaps. This result is interesting since it points out that a

local search finds a better trajectory in the solution space, avoiding further exploration of

the best solutions.

Figure 4. ILS landscape average of 500 tests (shapes, overlaps, and residual area).

Table 1 shows the best and worst values and the mean and mode of the objective

function values. The PPA value was 983,040 square pixels. The area of each piece was

7242 square pixels. The best solution obtained from the implemented algorithm’s objec-

tive function represents 63.16% of the occupation area. This data was obtained consid-

ering the pieces inserted on the PPA and the PPA without pieces.

Table 1. ILS results of 500 experimental tests.

Time = 500 s

Solution Quality Number of Pieces Residual Area (Pixels)

Best solution 50 620,940

Worst solution 42 678,876

Mean 46 649,908

Mode 45 657,150

Figure 5 shows the landscape behavior as a function of time. This graph is based on

the number of pieces, the number of overlaps, and the execution time in seconds, using

120 experimental tests.

Figure 4. ILS landscape average of 500 tests (shapes, overlaps, and residual area).

It is interesting to see the difficulty degree of obtaining feasible solutions. Suppose
the solutions had a more significant number of pieces inserted on the PPA. In that case,
ILS could generate many overlaps before finding improved solutions. However, the best
solutions found generated close to 500,000 to 1,500,000 overlaps. In contrast, solutions
with a lower value (marked in Figure 4 with a red rectangle) used 46 and 47 pieces and
detected close to 3,500,000 overlaps. This result is interesting since it points out that a local
search finds a better trajectory in the solution space, avoiding further exploration of the
best solutions.

Table 1 shows the best and worst values and the mean and mode of the objective
function values. The PPA value was 983,040 square pixels. The area of each piece was
7242 square pixels. The best solution obtained from the implemented algorithm’s objective
function represents 63.16% of the occupation area. This data was obtained considering the
pieces inserted on the PPA and the PPA without pieces.

Table 1. ILS results of 500 experimental tests.

Time = 500 s

Solution Quality Number of Pieces Residual Area (Pixels)

Best solution 50 620,940
Worst solution 42 678,876

Mean 46 649,908
Mode 45 657,150

Figure 5 shows the landscape behavior as a function of time. This graph is based on
the number of pieces, the number of overlaps, and the execution time in seconds, using 120
experimental tests.

Mathematics 2021, 9, 1033 9 of 22Mathematics 2021, 9, x FOR PEER REVIEW 9 of 23

Figure 5. ILS landscape average of 120 tests (shapes, overlaps, and time).

The total ILS iterations are 10,000. The best solutions obtained are within the range

of 100,000 to 1,500,000 overlaps, with 1000 and 2000 s of execution time, as shown in

Figure 5. The red dots identify the best solutions on the figure. It can be seen that the

worst solutions were when the number of overlaps increased until approximately

2,000,000 overlaps. Peaks and valleys are observed in the figure, representing the best

and worst solutions, respectively. This behavior indicates that the quality increase is not

directly or inversely proportional to the ILS execution time. It is observed that bad solu-

tions in the landscape surround the best solutions. This behavior indicates that the ILS

execution can find good solutions in each of its executions. Tables 2 and 3 show a sum-

mary of all results obtained by the implemented algorithm.

From the values in Tables 2 and 3, it can be concluded that the best solutions ob-

tained by the algorithm were in the time intervals between 1000 and 1500 s, with 50

pieces. However, in the time interval of 2000 s, a solution of 49 pieces was found.

Table 2. ILS behavior with different executions times.

Time = 500 s Time = 1000 s

Solution Quality Number of Pieces Solution Quality Number of Pieces

Best solution 48 Best solution 50

Worst solution 44 Worst solution 45

Mean 45 Mean 46

Mode 45 Mode 46

Table 3. ILS behavior with different executions times.

Time = 1500 s Time= 2000 s

Solution Quality Number of Pieces Solution Quality Number of Pieces

Best solution 50 Best solution 49

Worst solution 45 Worst solution 43

Mean 46 Mean 46

Mode 45 Mode 47

The graph in Figure 6 shows the landscape behavior as a function of time.

Figure 5. ILS landscape average of 120 tests (shapes, overlaps, and time).

The total ILS iterations are 10,000. The best solutions obtained are within the range
of 100,000 to 1,500,000 overlaps, with 1000 and 2000 s of execution time, as shown in
Figure 5. The red dots identify the best solutions on the figure. It can be seen that the
worst solutions were when the number of overlaps increased until approximately 2,000,000
overlaps. Peaks and valleys are observed in the figure, representing the best and worst
solutions, respectively. This behavior indicates that the quality increase is not directly or
inversely proportional to the ILS execution time. It is observed that bad solutions in the
landscape surround the best solutions. This behavior indicates that the ILS execution can
find good solutions in each of its executions. Tables 2 and 3 show a summary of all results
obtained by the implemented algorithm.

Table 2. ILS behavior with different executions times.

Time = 500 s Time = 1000 s

Solution Quality Number of Pieces Solution Quality Number of Pieces

Best solution 48 Best solution 50
Worst solution 44 Worst solution 45

Mean 45 Mean 46
Mode 45 Mode 46

Table 3. ILS behavior with different executions times.

Time = 1500 s Time= 2000 s

Solution Quality Number of Pieces Solution Quality Number of Pieces

Best solution 50 Best solution 49
Worst solution 45 Worst solution 43

Mean 46 Mean 46
Mode 45 Mode 47

From the values in Tables 2 and 3, it can be concluded that the best solutions obtained
by the algorithm were in the time intervals between 1000 and 1500 s, with 50 pieces.
However, in the time interval of 2000 s, a solution of 49 pieces was found.

The graph in Figure 6 shows the landscape behavior as a function of time.

Mathematics 2021, 9, 1033 10 of 22
Mathematics 2021, 9, x FOR PEER REVIEW 10 of 23

Figure 6. ILS landscape average of 120 tests (residual area, overlaps, and time).

In Figure 3, the behavior of the parameters on 120 experimental tests is represented.

In this figure, bad solutions can be distinguished based on the largest residual area,

which stands out in the landscape peaks. The worst and best solutions are displayed in

the landscape using yellow and red dots, respectively. It can be seen that the worst solu-

tions increased the number of overlaps to about 2,000,000. A black point in Figure 6

identifies the worst solution obtained by the objective function. This point is located on

the upper right corner of the graph, specifically where the blue part of the landscape with

the worst solutions is located. The algorithm behavior is considered variably since the

surface describes an irregular landscape where the best solutions are found. The total it-

erations were 10,000.

Tables 4 and 5 represent a summary of the results obtained by the objective function.

It is observed that the best and the worst values are 620,940 and 671,634 square pixels,

respectively. The best solutions found in the time intervals of 1000, 1500, and 2000 s were

620,940, 620,940, and 628,182 square pixels, respectively, with 63.13% and 63.90% of the

PPA used. In these intervals, the algorithm consumed more time applying perturbation

movements to exploiting the solutions space.

Table 4. ILS behavior with different execution times (residual area).

Time = 500 s Time = 1000 s

Solution Quality Residual Area Solution Quality Residual Area

Best solution 635,424 Best solution 620,940

Worst solution 664,392 Worst solution 657,150

Mean 657,150 Mean 649,908

Mode 657,150 Mode 649,908

Table 5. ILS behavior with different execution times (residual area).

Time = 1500 s Time = 2000 s

Solution Quality Residual Area Solution Quality Residual Area

Best solution 620,940 Best solution 628,182

Worst solution 657,150 Worst solution 671,634

Mean 649,908 Mean 649,908

Mode 657,150 Mode 642,666

Figure 6. ILS landscape average of 120 tests (residual area, overlaps, and time).

In Figure 3, the behavior of the parameters on 120 experimental tests is represented.
In this figure, bad solutions can be distinguished based on the largest residual area, which
stands out in the landscape peaks. The worst and best solutions are displayed in the
landscape using yellow and red dots, respectively. It can be seen that the worst solutions
increased the number of overlaps to about 2,000,000. A black point in Figure 6 identifies
the worst solution obtained by the objective function. This point is located on the upper
right corner of the graph, specifically where the blue part of the landscape with the worst
solutions is located. The algorithm behavior is considered variably since the surface
describes an irregular landscape where the best solutions are found. The total iterations
were 10,000.

Tables 4 and 5 represent a summary of the results obtained by the objective function.
It is observed that the best and the worst values are 620,940 and 671,634 square pixels,
respectively. The best solutions found in the time intervals of 1000, 1500, and 2000 s were
620,940, 620,940, and 628,182 square pixels, respectively, with 63.13% and 63.90% of the
PPA used. In these intervals, the algorithm consumed more time applying perturbation
movements to exploiting the solutions space.

Table 4. ILS behavior with different execution times (residual area).

Time = 500 s Time = 1000 s

Solution Quality Residual Area Solution Quality Residual Area

Best solution 635,424 Best solution 620,940
Worst solution 664,392 Worst solution 657,150

Mean 657,150 Mean 649,908
Mode 657,150 Mode 649,908

Mathematics 2021, 9, 1033 11 of 22

Table 5. ILS behavior with different execution times (residual area).

Time = 1500 s Time = 2000 s

Solution Quality Residual Area Solution Quality Residual Area

Best solution 620,940 Best solution 628,182
Worst solution 657,150 Worst solution 671,634

Mean 649,908 Mean 649,908
Mode 657,150 Mode 642,666

Comparative tests of the ILS algorithm were performed with other algorithms pro-
posed in the existing literature, using the following benchmark instances [2]: Shapes 0,
Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the
Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different
shapes were required. For the Shape 2 instance, 7 different shapes were required. For the
Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different
shapes were required. The sizes of each figure used for ILS testing were the same. Note that
no amorphous shapes were used in these instances, and studies in the existing literature
with comparable results did not use rotational movements either. They placed the pieces to
build sets with different orientations (0◦, 90◦, 180◦, and 270◦) before inserting them into the
bin. In the algorithm proposed in this paper, some figures were rotated before introducing
them to ILS to match the solution presented in the existing literature, since in this work,
ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Shapes 1

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Shapes 2

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Shirts

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Swim

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Mathematics 2021, 9, x FOR PEER REVIEW 11 of 23

Comparative tests of the ILS algorithm were performed with other algorithms pro-

posed in the existing literature, using the following benchmark instances [2]: Shapes 0,

Shapes 1, Shapes 2, Shirts, and Swim. Table 6 presents the pieces in each instance. For the

Shape 0 instance, 4 different shapes were required. For the Shape 1 instance, 6 different

shapes were required. For the Shape 2 instance, 7 different shapes were required. For the

Shirts instance, 8 different shapes were required, and for the Swim instance, 10 different

shapes were required. The sizes of each figure used for ILS testing were the same. Note

that no amorphous shapes were used in these instances, and studies in the existing liter-

ature with comparable results did not use rotational movements either. They placed the

pieces to build sets with different orientations (0°, 90°, 180°, and 270°) before inserting

them into the bin. In the algorithm proposed in this paper, some figures were rotated

before introducing them to ILS to match the solution presented in the existing literature,

since in this work, ILS does not handle figure rotation.

Table 6. Pieces used in each benchmark instance.

Instance
Piece

1 2 3 4 5 6 7 8 9 10

Shapes 0

Shapes 1

Shapes 2

Shirts

Swim

Table 7 presents the comparative tests of ILS with other algorithms in the existing

literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with

Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search

Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept

constant and the paper size is reduced until the same number of pieces can no longer be

inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).

To use pixels, a transformation of those dimensions from world coordinates to screen

coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total

sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the

others to find the same solution. This behavior is due to the fact that the overlap detection

algorithm used by ILS must be generating the mask of each piece moving in the PPA to

find a new neighboring solution s’. This algorithm always considers amorphous pieces

even if they are not present. Therefore, it was necessary to evaluate the pixels mask rep-

resenting the piece for overlapping detection. However, the solutions presented in Table

7 of each instance were found. As the ILS algorithm does not have some rotation proce-

dure, the pieces were previously rotated to be used in the algorithm to compare the re-

sults with those described in the existing literature. For example, in Shape 1 instance

shown in Table 6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before

introducing them to the algorithm. It has been established that in future work, the pieces

will rotate at any angle to improve the ILS algorithm efficiency.

Table 7 presents the comparative tests of ILS with other algorithms in the existing
literature, including the Constructive Algorithm (CA) [2], the Placement Heuristic with
Not-Fit-Polygon (PHNFP) [5], the First Fit algorithm (FF) [8], and the Heuristic Search
Diversification Mechanism (HSDM) [11]. In these methods, the number of pieces is kept
constant and the paper size is reduced until the same number of pieces can no longer be
inserted. In the case of the ILS procedure, the paper size is kept constant (40 × 80 units).
To use pixels, a transformation of those dimensions from world coordinates to screen
coordinates is conducted to obtain the sheet size in pixels, which is 625 × 1250, with a total
sheet area of 781,250 pixels. It is observed in this table that ILS takes more time than the
others to find the same solution. This behavior is due to the fact that the overlap detection
algorithm used by ILS must be generating the mask of each piece moving in the PPA to find
a new neighboring solution s’. This algorithm always considers amorphous pieces even if
they are not present. Therefore, it was necessary to evaluate the pixels mask representing
the piece for overlapping detection. However, the solutions presented in Table 7 of each
instance were found. As the ILS algorithm does not have some rotation procedure, the
pieces were previously rotated to be used in the algorithm to compare the results with

Mathematics 2021, 9, 1033 12 of 22

those described in the existing literature. For example, in Shape 1 instance shown in Table
6, 4 pieces of type 5 were used and 2 pieces (5 and 6) were rotated before introducing them
to the algorithm. It has been established that in future work, the pieces will rotate at any
angle to improve the ILS algorithm efficiency.

Table 7. Time used to find the same solution using different algorithms.

Instance

Algorithms

CA [2] PHNFP [5] FF [8] HSDM [11] ILS

Time (s)

Shapes 0 34.6 7.8 14 263.7 1106
Shapes 1 23.3 360 19 408.3 1560
Shapes 2 10.9 223.8 1 60.7 1952

Shirts 210.5 168.6 97 618.3 1603
Swim — 535.6 121 1988.1 2079

Figures 7–11 present the solution for the five instances. These are the same as those
found for the compared algorithms. However, the locations of the pieces in the PPA were
naturally different and the residual area was huge.

Mathematics 2021, 9, x FOR PEER REVIEW 12 of 23

Table 7. Time used to find the same solution using different algorithms.

Instance

Algorithms

CA [2] PHNFP [5] FF [8] HSDM [11] ILS

Time (s)

Shapes 0 34.6 7.8 14 263.7 1106

Shapes 1 23.3 360 19 408.3 1560

Shapes 2 10.9 223.8 1 60.7 1952

Shirts 210.5 168.6 97 618.3 1603

Swim --- 535.6 121 1988.1 2079

Figures 7–11 present the solution for the five instances. These are the same as those

found for the compared algorithms. However, the locations of the pieces in the PPA were

naturally different and the residual area was huge.

Figure 7. Solution found by the ILS algorithm using 43 pieces for the Shape 0 instance.

Figure 8. Solution found by the ILS algorithm using 43 pieces for the Shape 1 instance.

Figure 7. Solution found by the ILS algorithm using 43 pieces for the Shape 0 instance.

Mathematics 2021, 9, x FOR PEER REVIEW 12 of 23

Table 7. Time used to find the same solution using different algorithms.

Instance

Algorithms

CA [2] PHNFP [5] FF [8] HSDM [11] ILS

Time (s)

Shapes 0 34.6 7.8 14 263.7 1106

Shapes 1 23.3 360 19 408.3 1560

Shapes 2 10.9 223.8 1 60.7 1952

Shirts 210.5 168.6 97 618.3 1603

Swim --- 535.6 121 1988.1 2079

Figures 7–11 present the solution for the five instances. These are the same as those

found for the compared algorithms. However, the locations of the pieces in the PPA were

naturally different and the residual area was huge.

Figure 7. Solution found by the ILS algorithm using 43 pieces for the Shape 0 instance.

Figure 8. Solution found by the ILS algorithm using 43 pieces for the Shape 1 instance. Figure 8. Solution found by the ILS algorithm using 43 pieces for the Shape 1 instance.

Mathematics 2021, 9, 1033 13 of 22

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 23

Figure 9. Solution found by the ILS algorithm using 28 pieces for the Shape 2 instance.

Figure 10. Solution found by the ILS algorithm using 99 pieces for the Shirts instance.

Figure 11. Solution found by the ILS algorithm using 48 pieces for the Swim instance.

Table 8 presents the optimized ILS tests with the benchmark instances of Table 6

based on a time limit of two hours, keeping the sheet size constant and increasing the

number of inserted pieces. There were 30 tests performed for each instance, and the best,

worst, and mode solutions are presented. ILS could insert more pieces in the same sheet

size if the time increased to 2 h. However, the percentage of residual area was still huge

(between 36.78% to 66.52%). It is not possible to compare the results of other methods

described in the existing literature, since they reduce the bin area using a constant num-

ber of pieces to be inserted. Alternatively, the method proposed in this study was used to

Figure 9. Solution found by the ILS algorithm using 28 pieces for the Shape 2 instance.

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 23

Figure 9. Solution found by the ILS algorithm using 28 pieces for the Shape 2 instance.

Figure 10. Solution found by the ILS algorithm using 99 pieces for the Shirts instance.

Figure 11. Solution found by the ILS algorithm using 48 pieces for the Swim instance.

Table 8 presents the optimized ILS tests with the benchmark instances of Table 6

based on a time limit of two hours, keeping the sheet size constant and increasing the

number of inserted pieces. There were 30 tests performed for each instance, and the best,

worst, and mode solutions are presented. ILS could insert more pieces in the same sheet

size if the time increased to 2 h. However, the percentage of residual area was still huge

(between 36.78% to 66.52%). It is not possible to compare the results of other methods

described in the existing literature, since they reduce the bin area using a constant num-

ber of pieces to be inserted. Alternatively, the method proposed in this study was used to

Figure 10. Solution found by the ILS algorithm using 99 pieces for the Shirts instance.

Mathematics 2021, 9, x FOR PEER REVIEW 13 of 23

Figure 9. Solution found by the ILS algorithm using 28 pieces for the Shape 2 instance.

Figure 10. Solution found by the ILS algorithm using 99 pieces for the Shirts instance.

Figure 11. Solution found by the ILS algorithm using 48 pieces for the Swim instance.

Table 8 presents the optimized ILS tests with the benchmark instances of Table 6

based on a time limit of two hours, keeping the sheet size constant and increasing the

number of inserted pieces. There were 30 tests performed for each instance, and the best,

worst, and mode solutions are presented. ILS could insert more pieces in the same sheet

size if the time increased to 2 h. However, the percentage of residual area was still huge

(between 36.78% to 66.52%). It is not possible to compare the results of other methods

described in the existing literature, since they reduce the bin area using a constant num-

ber of pieces to be inserted. Alternatively, the method proposed in this study was used to

Figure 11. Solution found by the ILS algorithm using 48 pieces for the Swim instance.

Table 8 presents the optimized ILS tests with the benchmark instances of Table 6 based
on a time limit of two hours, keeping the sheet size constant and increasing the number of
inserted pieces. There were 30 tests performed for each instance, and the best, worst, and
mode solutions are presented. ILS could insert more pieces in the same sheet size if the
time increased to 2 h. However, the percentage of residual area was still huge (between
36.78% to 66.52%). It is not possible to compare the results of other methods described in
the existing literature, since they reduce the bin area using a constant number of pieces to
be inserted. Alternatively, the method proposed in this study was used to optimize the
paper waste in digital printers where the paper area was constant. However, if irregular

Mathematics 2021, 9, 1033 14 of 22

pieces with few concavities were used, the results of other authors were better than the
method proposed in this work. RA is the residual area in percentage, and RAOp is the
optimized residual area in percentage, both measured in square pixels.

Table 8. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RA %RAOp

Shapes 0 49 47 48 65.72 61.10
Shapes 1 48 47 48 65.72 61.48
Shapes 2 31 30 31 38.74 36.78

Shirts 101 100 101 57.75 56.92
Swim 51 50 51 69.45 66.52

Figures 12–16 show the ILS algorithm’s solution for each instance with 2 h of process-
ing time. In each figure, can be observed that several pieces presented an approach within
the mask of inactive pixels. This allowed for a better approach without overlapping the
pieces’ edges (regular, irregular, amorphous, or a combination). This behavior can allow
for a more significant number of piece insertions when amorphous pieces are used.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 23

optimize the paper waste in digital printers where the paper area was constant. Howev-

er, if irregular pieces with few concavities were used, the results of other authors were

better than the method proposed in this work. RA is the residual area in percentage, and

RAOp is the optimized residual area in percentage, both measured in square pixels.

Table 8. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RA %RAOp

Shapes 0 49 47 48 65.72 61.10

Shapes 1 48 47 48 65.72 61.48

Shapes 2 31 30 31 38.74 36.78

Shirts 101 100 101 57.75 56.92

Swim 51 50 51 69.45 66.52

Figures 12–16 show the ILS algorithm’s solution for each instance with 2 h of pro-

cessing time. In each figure, can be observed that several pieces presented an approach

within the mask of inactive pixels. This allowed for a better approach without overlap-

ping the pieces’ edges (regular, irregular, amorphous, or a combination). This behavior

can allow for a more significant number of piece insertions when amorphous pieces are

used.

Figure 12. Solution found by the ILS algorithm inserting 49 pieces for the Shape 0 instance, con-

suming 2 h of processing time.

Figure 13. Solution found by the ILS algorithm inserting 48 pieces for the Shape 1 instance, con-

suming 2 h of processing time.

Figure 12. Solution found by the ILS algorithm inserting 49 pieces for the Shape 0 instance, consuming
2 h of processing time.

Mathematics 2021, 9, x FOR PEER REVIEW 14 of 23

optimize the paper waste in digital printers where the paper area was constant. Howev-

er, if irregular pieces with few concavities were used, the results of other authors were

better than the method proposed in this work. RA is the residual area in percentage, and

RAOp is the optimized residual area in percentage, both measured in square pixels.

Table 8. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RA %RAOp

Shapes 0 49 47 48 65.72 61.10

Shapes 1 48 47 48 65.72 61.48

Shapes 2 31 30 31 38.74 36.78

Shirts 101 100 101 57.75 56.92

Swim 51 50 51 69.45 66.52

Figures 12–16 show the ILS algorithm’s solution for each instance with 2 h of pro-

cessing time. In each figure, can be observed that several pieces presented an approach

within the mask of inactive pixels. This allowed for a better approach without overlap-

ping the pieces’ edges (regular, irregular, amorphous, or a combination). This behavior

can allow for a more significant number of piece insertions when amorphous pieces are

used.

Figure 12. Solution found by the ILS algorithm inserting 49 pieces for the Shape 0 instance, con-

suming 2 h of processing time.

Figure 13. Solution found by the ILS algorithm inserting 48 pieces for the Shape 1 instance, con-

suming 2 h of processing time.
Figure 13. Solution found by the ILS algorithm inserting 48 pieces for the Shape 1 instance, consuming
2 h of processing time.

Mathematics 2021, 9, 1033 15 of 22
Mathematics 2021, 9, x FOR PEER REVIEW 15 of 23

Figure 14. Solution found by the ILS algorithm inserting 31 pieces for the Shape 2 instance, con-

suming 2 h of processing time.

Figure 15. Solution found by the ILS algorithm inserting 101 pieces for the Shirts instance, con-

suming 2 h of processing time.

Figure 16. Solution found by the ILS algorithm inserting 51 pieces for the Swim instance, consum-

ing 2 h of processing time.

Each piece used in the instances described in Table 6 had a reduced number of ver-

tices and few concavities. The complexity to compute overlaps in two convex pieces, A

and B, is O(nm), where n and m are the number of vertices of A and B, respectively.

Concavities found in concave polygons are a challenge to avoiding overlap between

them, and are more difficult when there are a large number of concavities in the pair of

pieces A and B. This problem has been dealt with in the literature by dividing each piece

Figure 14. Solution found by the ILS algorithm inserting 31 pieces for the Shape 2 instance, consuming
2 h of processing time.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 23

Figure 14. Solution found by the ILS algorithm inserting 31 pieces for the Shape 2 instance, con-

suming 2 h of processing time.

Figure 15. Solution found by the ILS algorithm inserting 101 pieces for the Shirts instance, con-

suming 2 h of processing time.

Figure 16. Solution found by the ILS algorithm inserting 51 pieces for the Swim instance, consum-

ing 2 h of processing time.

Each piece used in the instances described in Table 6 had a reduced number of ver-

tices and few concavities. The complexity to compute overlaps in two convex pieces, A

and B, is O(nm), where n and m are the number of vertices of A and B, respectively.

Concavities found in concave polygons are a challenge to avoiding overlap between

them, and are more difficult when there are a large number of concavities in the pair of

pieces A and B. This problem has been dealt with in the literature by dividing each piece

Figure 15. Solution found by the ILS algorithm inserting 101 pieces for the Shirts instance, consuming
2 h of processing time.

Mathematics 2021, 9, x FOR PEER REVIEW 15 of 23

Figure 14. Solution found by the ILS algorithm inserting 31 pieces for the Shape 2 instance, con-

suming 2 h of processing time.

Figure 15. Solution found by the ILS algorithm inserting 101 pieces for the Shirts instance, con-

suming 2 h of processing time.

Figure 16. Solution found by the ILS algorithm inserting 51 pieces for the Swim instance, consum-

ing 2 h of processing time.

Each piece used in the instances described in Table 6 had a reduced number of ver-

tices and few concavities. The complexity to compute overlaps in two convex pieces, A

and B, is O(nm), where n and m are the number of vertices of A and B, respectively.

Concavities found in concave polygons are a challenge to avoiding overlap between

them, and are more difficult when there are a large number of concavities in the pair of

pieces A and B. This problem has been dealt with in the literature by dividing each piece

Figure 16. Solution found by the ILS algorithm inserting 51 pieces for the Swim instance, consuming
2 h of processing time.

Each piece used in the instances described in Table 6 had a reduced number of vertices
and few concavities. The complexity to compute overlaps in two convex pieces, A and B,
is O(nm), where n and m are the number of vertices of A and B, respectively. Concavities
found in concave polygons are a challenge to avoiding overlap between them, and are
more difficult when there are a large number of concavities in the pair of pieces A and

Mathematics 2021, 9, 1033 16 of 22

B. This problem has been dealt with in the literature by dividing each piece into convex
polygons, which are simpler to deal with. A different approach is to slide a reference point
of piece B around the circumference of piece A. Another approach uses diagrams, where
the slope is computed only in the piece concavities requiring special treatment [19]. The
methods to overlap detection between a pair of pieces using trigonometric calculations
have one increased time complexity to detect overlaps in irregular pieces when the number
of concavities and vertices is increased. In this work, ILS generated a mask with the
Allegro software for each inserted piece and used the CheckOverlaps function of Algorithm
2, avoiding the use of trigonometric. Because no instances with amorphous pieces were
found in the literature to be able to make comparisons with ILS, in this work, instances
containing amorphous pieces were proposed. Table 9 shows the instances proposed in
this paper using amorphous figures. These figures have a huge number of vertices and
concavities that are commonly printed in digital printers. Instances A0-A3 presented
different piece designs to be able to evaluate the ILS procedure and check if the residual
area increased according to the complexity of the inserted figures, depending on their
vertices and concavities. Instance A0 showed several figures with pronounced concavities
and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

A1

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

A2

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

A3

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Mathematics 2021, 9, x FOR PEER REVIEW 16 of 23

into convex polygons, which are simpler to deal with. A different approach is to slide a

reference point of piece B around the circumference of piece A. Another approach uses

diagrams, where the slope is computed only in the piece concavities requiring special

treatment [19]. The methods to overlap detection between a pair of pieces using trigo-

nometric calculations have one increased time complexity to detect overlaps in irregular

pieces when the number of concavities and vertices is increased. In this work, ILS gener-

ated a mask with the Allegro software for each inserted piece and used the CheckOverlaps

function of Algorithm 2, avoiding the use of trigonometric. Because no instances with

amorphous pieces were found in the literature to be able to make comparisons with ILS,

in this work, instances containing amorphous pieces were proposed. Table 9 shows the

instances proposed in this paper using amorphous figures. These figures have a huge

number of vertices and concavities that are commonly printed in digital printers. In-

stances A0-A3 presented different piece designs to be able to evaluate the ILS procedure

and check if the residual area increased according to the complexity of the inserted fig-

ures, depending on their vertices and concavities. Instance A0 showed several figures

with pronounced concavities and a large number of vertices.

Table 9. Amorphous pieces used in each instance.

Instance
Piece

1 2 3 4 5 6 7 8

A0

A1

A2

A3

Table 10 presents the ILS results of running the algorithm for 2 h for each instance

with amorphous pieces. There were 30 tests conducted for each instance. We observed

that the residual area RAOp obtained for the four instances was similar to that obtained

for the instances that handled few vertices and reduced concavities (Table 8), except for

Shape 2, where the inserted pieces had a larger area, allowing for better optimization of

the RAOp. This behavior indicates that the execution of ILS does not have a visible effect

when the number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h

of running time. We performed a comparison of the RAOp results with the instances

presented in the literature with irregular pieces (Table 8) and the proposed instances of

amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp

was 36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances

in Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we

see instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17)

Table 10 presents the ILS results of running the algorithm for 2 h for each instance
with amorphous pieces. There were 30 tests conducted for each instance. We observed that
the residual area RAOp obtained for the four instances was similar to that obtained for the
instances that handled few vertices and reduced concavities (Table 8), except for Shape 2,
where the inserted pieces had a larger area, allowing for better optimization of the RAOp.
This behavior indicates that the execution of ILS does not have a visible effect when the
number of vertices and concavities in the pieces to be inserted is high.

Table 10. ILS results for each benchmark instance consuming 2 h of processing time.

Instance Maximum Minimum Mode %RAOp

A0 41 39 40 59.60

A1 84 80 80 66.30

A2 73 70 72 61.24

A3 78 77 77 56.97

Figures 17–20, show the solution of the ILS algorithm for A0–A4 instances with 2 h
of running time. We performed a comparison of the RAOp results with the instances

Mathematics 2021, 9, 1033 17 of 22

presented in the literature with irregular pieces (Table 8) and the proposed instances of
amorphous pieces (Table 10). From Table 8, for the Shape 2 instance, where the RAOp was
36.78%, it can be seen (Figure 14) that the pieces were larger than the other instances in
Table 8, indicating that when ILS inserts larger figures, it works more efficiently. If we see
instance A0 (Table 10), which obtains one of the best RAOp, it is observed (Figure 17) that
the figures were a little larger than instances A1 to A3, but we can also see that instance
A3 obtained the best RAOp and presented the largest number of different pieces to insert.
This behavior indicates that ILS works better when a greater number of different pieces are
inserted and when they have a greater number of vertices and concavities.

Mathematics 2021, 9, x FOR PEER REVIEW 17 of 23

that the figures were a little larger than instances A1 to A3, but we can also see that in-

stance A3 obtained the best RAOp and presented the largest number of different pieces to

insert. This behavior indicates that ILS works better when a greater number of different

pieces are inserted and when they have a greater number of vertices and concavities.

Figure 17. Solution found by the ILS algorithm when inserting 50 pieces for the A0 instance, con-

suming 4 h of processing time.

Figure 18. Solution found by the ILS algorithm when inserting 84 pieces for the A1 instance, con-

suming 4 h of processing time.

Figure 17. Solution found by the ILS algorithm when inserting 50 pieces for the A0 instance,
consuming 4 h of processing time.

Mathematics 2021, 9, x FOR PEER REVIEW 17 of 23

that the figures were a little larger than instances A1 to A3, but we can also see that in-

stance A3 obtained the best RAOp and presented the largest number of different pieces to

insert. This behavior indicates that ILS works better when a greater number of different

pieces are inserted and when they have a greater number of vertices and concavities.

Figure 17. Solution found by the ILS algorithm when inserting 50 pieces for the A0 instance, con-

suming 4 h of processing time.

Figure 18. Solution found by the ILS algorithm when inserting 84 pieces for the A1 instance, con-

suming 4 h of processing time.
Figure 18. Solution found by the ILS algorithm when inserting 84 pieces for the A1 instance,
consuming 4 h of processing time.

Mathematics 2021, 9, 1033 18 of 22
Mathematics 2021, 9, x FOR PEER REVIEW 18 of 23

Figure 19. Solution found by the ILS algorithm when inserting 73 pieces for the A2 instance, con-

suming 4 h of processing time.

Figure 20. Solution found by the ILS algorithm when inserting 71 pieces for the A3 instance, con-

suming 4 h of processing time.

For conducting the statistical analysis, both data normality and homoscedasticity

were first verified. The test data were the run times (Table 7) to obtain the same results in

each evaluated algorithm (PHNFP, FF, HSDM, and ILS). The null hypothesis, in

Equation (11), indicates that the means of the results are equal. The alternative hypothe-

sis, Equation in (12), points out that the means are not equal, or at least one is dif-

ferent.

 (11)

 (12)

Figure 21 shows no normality for the data since the points are not located on the

graph’s diagonal.

Figure 19. Solution found by the ILS algorithm when inserting 73 pieces for the A2 instance,
consuming 4 h of processing time.

Mathematics 2021, 9, x FOR PEER REVIEW 18 of 23

Figure 19. Solution found by the ILS algorithm when inserting 73 pieces for the A2 instance, con-

suming 4 h of processing time.

Figure 20. Solution found by the ILS algorithm when inserting 71 pieces for the A3 instance, con-

suming 4 h of processing time.

For conducting the statistical analysis, both data normality and homoscedasticity

were first verified. The test data were the run times (Table 7) to obtain the same results in

each evaluated algorithm (PHNFP, FF, HSDM, and ILS). The null hypothesis, in

Equation (11), indicates that the means of the results are equal. The alternative hypothe-

sis, Equation in (12), points out that the means are not equal, or at least one is dif-

ferent.

 (11)

 (12)

Figure 21 shows no normality for the data since the points are not located on the

graph’s diagonal.

Figure 20. Solution found by the ILS algorithm when inserting 71 pieces for the A3 instance,
consuming 4 h of processing time.

For conducting the statistical analysis, both data normality and homoscedasticity
were first verified. The test data were the run times (Table 7) to obtain the same results
in each evaluated algorithm (PHNFP, FF, HSDM, and ILS). The null hypothesis, H0 in
Equation (11), indicates that the means of the results are equal. The alternative hypothesis,
Equation H1 in (12), points out that the means are not equal, or at least one is different.

H0 : X1 = X2 = . . . = Xr (11)

H1 : Not all are the same (12)

Figure 21 shows no normality for the data since the points are not located on the
graph’s diagonal.

Mathematics 2021, 9, 1033 19 of 22
Mathematics 2021, 9, x FOR PEER REVIEW 19 of 23

Figure 21. Normality graphs for PHNFP, FF, HSDM, and ILS algorithms.

The homoscedasticity analysis is shown using the box-and-whisker graphs pre-

sented in Figure 22. It can be seen that the boxes for each algorithm are not equal, so a

difference in variances can be admitted, which indicates that homoscedasticity cannot

exist. As the normality and homoscedasticity of the data do not exist, the parametric

ANOVA test could not be used. Thus, a robust ANOVA with the Welch and Box tests[20]

was used.

Figure 22. Box-and-whisker graphs for PHNFP, FF, HSDM, and ILS algorithms.

Welch’s test, defined by Equations (13)–(23), uses weights wi to reduce the data het-

erogeneity. The weights wi in Equation (13) are based on the sample size ni of the data

generated by the i-th algorithm and the observed variance s2w,i for each i-th group of data

generated by the i-th algorithm. For the i-th group of data generated by the i-th algorithm,

(13)

where ni is the sample size of the i-th algorithm, s2w,i is the winsorized variance (of the

trimmed data), hi is the adequate sample size of the i-th group (number of observations

remaining after the cut-off).

(14)

Figure 21. Normality graphs for PHNFP, FF, HSDM, and ILS algorithms.

The homoscedasticity analysis is shown using the box-and-whisker graphs presented
in Figure 22. It can be seen that the boxes for each algorithm are not equal, so a difference
in variances can be admitted, which indicates that homoscedasticity cannot exist. As the
normality and homoscedasticity of the data do not exist, the parametric ANOVA test could
not be used. Thus, a robust ANOVA with the Welch and Box tests [20] was used.

Mathematics 2021, 9, x FOR PEER REVIEW 19 of 23

Figure 21. Normality graphs for PHNFP, FF, HSDM, and ILS algorithms.

The homoscedasticity analysis is shown using the box-and-whisker graphs pre-

sented in Figure 22. It can be seen that the boxes for each algorithm are not equal, so a

difference in variances can be admitted, which indicates that homoscedasticity cannot

exist. As the normality and homoscedasticity of the data do not exist, the parametric

ANOVA test could not be used. Thus, a robust ANOVA with the Welch and Box tests[20]

was used.

Figure 22. Box-and-whisker graphs for PHNFP, FF, HSDM, and ILS algorithms.

Welch’s test, defined by Equations (13)–(23), uses weights wi to reduce the data het-

erogeneity. The weights wi in Equation (13) are based on the sample size ni of the data

generated by the i-th algorithm and the observed variance s2w,i for each i-th group of data

generated by the i-th algorithm. For the i-th group of data generated by the i-th algorithm,

(13)

where ni is the sample size of the i-th algorithm, s2w,i is the winsorized variance (of the

trimmed data), hi is the adequate sample size of the i-th group (number of observations

remaining after the cut-off).

(14)

Figure 22. Box-and-whisker graphs for PHNFP, FF, HSDM, and ILS algorithms.

Welch’s test, defined by Equations (13)–(23), uses weights wi to reduce the data
heterogeneity. The weights wi in Equation (13) are based on the sample size ni of the data
generated by the i-th algorithm and the observed variance s2

w,i for each i-th group of data
generated by the i-th algorithm. For the i-th group of data generated by the i-th algorithm,

di =
(ni − 1)s2

w,i

hi(hi − 1)
(13)

where ni is the sample size of the i-th algorithm, s2
w,i is the winsorized variance (of the

trimmed data), hi is the adequate sample size of the i-th group (number of observations
remaining after the cut-off).

wi =
1
di

(14)

U =
r

∑
i=1

wi (15)

X =
1
U

r

∑
i=1

wixα.i (16)

Mathematics 2021, 9, 1033 20 of 22

where
¯
xα.i are the trimmed means.

A =
1

r− 1

r

∑
i=1

wi
(

xα.i − X
)2 (17)

B =
2(r− 2)
r2 − 1

r

∑
i=1

(
1− wi

U
)2

hi − 1
(18)

Fw= A
1+B

(19)

From the Fw statistic, if H0 is true, then a Snedecor Fw distribution with v1 and v2
degrees of freedom is used, where

v1 = r− 1 (20)

v2 =
2r− 4

3B
(21)

Then, the decision rule to control the significance level α is

Hois accepted if Fw ≤ F(1−α;v1,v2)
(22)

Ho is refused if Fw > F(1−α;v1,v2)
(23)

If Ho is true, the Fw statistic follows a Snedecor probability distribution with (1− α; v1, v2)
degrees of freedom.

The robust generalization of the Box test is presented in (24)–(27), where the Fw statistic
is as follows:

Fw =
∑r

i=1 hi(xα.i − x)2

∑r
i=1

(
1− hi

H

)
S2

i

(24)

where

H =
r

∑
i=1

hi (25)

x =
∑r

i=1 hixα,i

H
(26)

S2
i =

(ni − 1)s2
w,i

hi − 1
(27)

The null hypothesis is rejected for large values of the Fw statistic. If the null hypothesis
is accepted, it follows a Snedecor F-distribution with the following freedom degrees:

v1 =

(
∑r

i=1(1− fi)S2
i
)2(

∑r
i=1 S2

i fi
)2

+ ∑r
i=1 S4

i (1− 2 fi)
(28)

v2 =

(
∑r

i=1(1− fi)S2
i
)2

∑r
i=1 S4

i (1− fi)
2

(hi−1)

(29)

where
fi =

hi
H

(30)

In this work, the statistical analysis was carried out using the robust ANOVA test,
defined in Equations (12)–(23) with Welch’s test and (24)–(30) with Box’s.

Welch was implemented in the t1way (x, tr, grp) function of the WRS R package [21]. In
the t1way function, x is the data, tr is the trimmed means, and grp indicates the subset size
to be compared. In this case, 4 algorithms were compared using 10% of the trimmed means.
A p-value of 3.315954 × 10−4 was obtained. The null hypothesis was refused since there

Mathematics 2021, 9, 1033 21 of 22

were differences between the algorithms’ trimmed means. The Fw value was 26.45909, and
the freedom degrees were v1 = 3, and v2 = 7.039397, with 1− α = 0.95, the v1 and v2 values,
Fisher table values [22], and a Snedecor value of 4.347. Since 26.45909 > 4.347(0.95;3,7.039397),
the H0 was refused, indicating that differences in the trimmed means existed.

The robust generalization of the Box test was implemented with tr = 10% in the
box1way (x, 0.1) function of the WRS R package [21]. A p-value of 6.406586 × 10−3 was
obtained, Fw was 13.219, and v1 and v2 were 1.527593 and 6.5418, respectively. The Snedecor
value was 7.322 and the null hypothesis was refused (26.45909 > 4.347(0.95;3,7.039397)). These
values indicate that differences existed between the behaviors of the analyzed algorithms.

5. Conclusions

It can be understood that the neighborhood structure developed in this work oper-
ates effectively and efficiently since it detects and corrects the overlaps between regular,
irregular, and amorphous figures. According to the landscape analysis, this structure
can optimize the solution by finding better ones not depending proportionally on the
overlaps generated. Moreover, it does not present a clear proportionality as a function of
time. This behavior implies that the increase in a much greater execution time of ILS does
not always improve the solution. The comparison with other algorithms in the existing
literature using regular and irregular figures shows the ILS effectiveness in finding the
same solutions. Statistical tests show that differences between the behavior of the compared
algorithms exist.

The contribution of this paper is to apply the 2D BPP to solve the paper waste reduc-
tion problem in digital printing presses with amorphous shapes. This approach creates
models where the figures are distributed on the printable paper area and can reduce the
residual area. The figures used in digital printing presses are of all kinds (regular, irregular,
amorphous, and combinations of these).

In future research, it is crucial to improve the ILS execution time to make it more
efficient and significantly reduce the residual area RAOp. One proposal is to parallelize
the overlap detection algorithm to speed up reading the masks’ pixels that detect overlaps.
Works with distributed processing have been done using cloud computing to solve the
bin packing problem [23]. To reduce the residual area, the developed neighborhood
structure can also be improved by applying movements such as insertion in pairs of figures,
translation, rotation, and a combination of these movements. This has already been done
in other works and is known as a variable neighborhood [24]. More regular, irregular, and
amorphous figures can be inserted into the paper sheet with these perturbations, generating
more significant space for new solutions and greater movements in the neighborhood
structure. An important point is the rotation treatment, an orientation of the figures at
different angles before inserting them into the paper sheet, which is already included in
the literature. We will handle, in future work, the rotation of figures already inserted in the
paper sheet, with the possibility of rotating the figure at random, which we think can give
greater efficiency to the neighborhood variable that will be designed.

Author Contributions: Conceptualization, M.A.C.-C. and Y.L.-N.; methodology, M.A.C.-C., M.H.C.-
R. and J.M.R.-M.; software, Y.L.-N. and M.H.C.-R.; validation, M.H.C.-R., M.L.E.-D. and R.R.-L.;
formal analysis, M.H.C.-R.; investigation, M.L.E.-D.; resources, M.L.E.-D.; data curation, R.R.-L.;
writing—original draft preparation, Y.L.-N.; writing—review and editing, M.A.C.-C. and R.R.-L.; vi-
sualization, J.M.R.-M.; supervision, M.A.C.-C.; project administration, M.A.C.-C.; funding acquisition,
M.A.C.-C. All authors have read and agreed to the published version of the manuscript

Funding: This research was funded by PRODEP, grant number SA-DDI-UAEM/15/451” and “The
APC” was funded by PRODEP.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable

Mathematics 2021, 9, 1033 22 of 22

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Garey, M.R.; Johnson, S.S. Computers and Intractability a Guide to the Theory of NP-Completeness; Freeman: New York, NY, USA,

1979; ISBN 0-7167-1044-7.
2. Oliveira, J.F.; Gomes, A.M.; Ferreira, J.S. TOPOS—A new constructive algorithm for nesting problems. OR-Spektrum 2000,

22, 263–284. [CrossRef]
3. Bennell, J.A.; Oliveira, J.F. The geometry of nesting problems: A tutorial. Eur. J. Oper. Res. 2008, 184, 397–415. [CrossRef]
4. Bennell, J.A.; Oliveira, J.F. A tutorial in irregular shape packing problems. J. Oper. Res. Soc. 2009, 60, S93–S105. [CrossRef]
5. Bennell, J.A.; Song, X. A beam search implementation for the irregular shape packing problem. J. Heuristics 2010, 16, 167–188.

[CrossRef]
6. Han, W.; Bennell, J.A.; Zhao, X.; Song, X. Construction heuristics for two dimensional irregular shape bin packing with guillotine

constraints. Eur. J. Oper. Res. 2013, 230, 495–504. [CrossRef]
7. López-Camacho, E.; Ochoa, G.; Terashima-Marin, H.; Burke, E.K. An effective heuristic for the two-dimensional irregular bin

packing problem. Ann. Oper. Res. 2013, 206, 241–264. [CrossRef]
8. Martinez-Sykora, A.; Alvarez-Valdes, R.; Bennell, J.A.; Ruiz, R.; Tamarit, J.M. Metaheuristics for the irregular bin packing problem

with free rotations. Eur. J. Oper. Res. 2017, 258, 440–455. [CrossRef]
9. Johnson, D.S.; Demers, A.; Ullman, J.D.; Garvey, M.R.; Graham, R.L. Worst-case performace bounds for simple one-dimensional

packing algorithms. SIAM J. Comuting 1974, 3, 299–325. [CrossRef]
10. López-Camacho, E.; Terashima-Marin, H.; Ross, P.; Ochoa, G. A unified hyper-heuristic framework for solving packing problems.

Expert Syst. Appl. 2014, 41, 6876–6889. [CrossRef]
11. Abeysooriya, R.P.; Bennell, J.A.; Martinez-Sykora, A. Jostle heuristics for the 2D-irregular shapes bin packing problems with free

rotation. Int. J. Prod. Econ. 2018, 195, 12–26. [CrossRef]
12. Chernov, N.; Stoyan, Y.; Romanova, T. Mathematical model and efficient algorithms for objects packing problem. Comput. Geom.

Theory Appl. 2010, 43, 535–553. [CrossRef]
13. Wäscher, G.; Haußner, H.; Schumann, H. An improved typology of cutting and packing problems. Eur. J. Oper. Res. 2007,

183, 1109–1130. [CrossRef]
14. Dyckhoff, H. A typology of cutting and packing problems. Eur. J. Oper. Res. 1990, 44, 145–159. [CrossRef]
15. Lourenco, H.R.; Martin, O.; Stützle, T. A beginner´s introduction to iterated local search. In Proceedings of the MIC2001: 4th

Metaheuristics International Conference, Porto, Portugal, 16–20 July 2001; pp. 1–6.
16. Handbook of Metaheuristics, Chapter Iterated Local Search; Lourenço, H.R.; Martin, O.C.; Stützle, T.; Kochenberger, G. (Eds.) Kluwer

Academic Publishers: Norwell, MA, USA, 2002; pp. 321–353.
17. Salto, C. Meta heurísticas Híbridas paralelas para problemas industriales de corte, empaquetado y otros relacionados. In

Proceedings of the WICC2010: XII Workshop de Investigadores en Ciencias de la Computación, Comodoro Rivadavia, Argentina,
5–6 May 2010; pp. 822–831.

18. Papadimitriou, C.H.; Steiglitz, K. Combinatorial Optmization. Algorithms and Complexity; Dover Publication: Mineola, NY, USA,
1998; ISBN 0-486-40258-4.

19. Dowsland, K.A.; Dowsland, W.B.; Bennell, J.A. Jostling for position: Local improvement for irregular cutting patterns. J. Oper.
Res. Soc. 1998, 49, 647–658. [CrossRef]

20. Wilcox, R. Introduction to Robust Estimation and Hypothesis Testing, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013; ISBN
9780123869838. [CrossRef]

21. R Version 4.0.5. Copyright ©, The Foundation for Statistical Computing. Available online: https://cran.r-project.org/bin/
windows/base/ (accessed on 31 March 2021).

22. Guenther, W. Introducción a la Inferencia Estadística, 1st ed.; McGraw-Hill: Panama, PA, South America, 1977; 357p; ISBN 978-84-
219-0061-1.

23. Aydın, N.; Muter, I.; Birbil, I. Multi-objective temporal bin packing problem: An application in cloud computing. Comput. Oper.
Res. 2020, 121, 104959. [CrossRef]

24. Baioletti, M.; Milani, A.; Santucci, V. Variable neighborhood algebraic differential evolution: An application to the linear ordering
problem with cumulative costs. Inf. Sci. 2020, 507, 37–52. [CrossRef]

http://doi.org/10.1007/s002910050105
http://doi.org/10.1016/j.ejor.2006.11.038
http://doi.org/10.1057/jors.2008.169
http://doi.org/10.1007/s10732-008-9095-x
http://doi.org/10.1016/j.ejor.2013.04.048
http://doi.org/10.1007/s10479-013-1341-4
http://doi.org/10.1016/j.ejor.2016.09.043
http://doi.org/10.1137/0203025
http://doi.org/10.1016/j.eswa.2014.04.043
http://doi.org/10.1016/j.ijpe.2017.09.014
http://doi.org/10.1016/j.comgeo.2009.12.003
http://doi.org/10.1016/j.ejor.2005.12.047
http://doi.org/10.1016/0377-2217(90)90350-K
http://doi.org/10.1057/palgrave.jors.2600563
http://doi.org/10.1016/B978-0-12-386983-8.00016-0
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
http://doi.org/10.1016/j.cor.2020.104959
http://doi.org/10.1016/j.ins.2019.08.016

	Introduction
	Paper Waste Reduction Problem in Digital Printing Presses
	Graphical Representation
	Mathematical Model

	Neighborhood Structure
	Neighborhood Structure with Simple Perturbations
	Iterated Local Search Algorithm

	Experimental Results
	Conclusions
	References

