
applied
sciences

Article

A Multi-Branch-and-Bound Binary Parallel Algorithm
to Solve the Knapsack Problem 0–1 in a
Multicore Cluster

José Crispín Zavala-Díaz 1 , Marco Antonio Cruz-Chávez 2,* , Jacqueline López-Calderón 1,
José Alberto Hernández-Aguilar 1 and Martha Elena Luna-Ortíz 3

1 Faculty of Accounting, Administration & Informatics, UAEM, Avenida Universidad 1001 Colonia Chamilpa,
C.P. 62209 Cuernavaca, Mexico; crispin_zavala@uaem.mx (J.C.Z.-D.); jackielopez026@gmail.com (J.L.-C.);
jose_hernandez@uaem.mx (J.A.H.-A.)

2 Research Center in Engineering and Applied Sciences, Autonomous University of Morelos State (UAEM),
Avenida Universidad 1001 Colonia Chamilpa, C.P. 62209 Cuernavaca, Mexico

3 Department of Research and Technological Development (IDT), Emiliano Zapata Technological University of
Morelos State, C. P. 62760 Emiliano Zapata, Mexico; marthaluna@utez.edu.mx

* Correspondence: mcruz@uaem.mx

Received: 8 October 2019; Accepted: 3 December 2019; Published: 9 December 2019
����������
�������

Featured Application: An uncorrelated instance is equivalent to solving any problem where the
benefit is independent of the weight. A weakly correlated instance has a high correlation between
the benefit and the weight of each element. Typically, the benefit differs from the weight by a
small percentage. Such instances are the most practical in administration, such as with a return
on an investment, which is generally proportional to the sum of the amount invested.

Abstract: This paper presents a process that is based on sets of parts, where elements are fixed and
removed to form different binary branch-and-bound (BB) trees, which in turn are used to build a
parallel algorithm called “multi-BB”. These sequential and parallel algorithms calculate the exact
solution for the 0–1 knapsack problem. The sequential algorithm solves the instances published by
other researchers (and the proposals by Pisinger) to solve the not-so-complex (uncorrelated) class
and some problems of the medium-complex (weakly correlated) class. The parallel algorithm solves
the problems that cannot be solved with the sequential algorithm of the weakly correlated class in a
cluster of multicore processors. The multi-branch-and-bound algorithms obtained parallel efficiencies
of approximately 75%, but in some cases, it was possible to obtain a superlinear speedup.

Keywords: uncorrelated; weakly correlated; superlinear speedup

1. Introduction

The KP 0–1 (knapsack problem 0–1) has a wide variety of applications in everyday life, including
production planning, financial modeling, project selection, the allocation of data in distributed systems,
and facility capacity planning [1].

Due to the diversity of real problems, it is necessary to consider them through problem models,
such as those proposed by Reference [2]. They proposed seven classes of problems, and we focused
on solving two of them in this work: the uncorrelated and the weakly correlated. Uncorrelated
problems model any problem in which the weights of the elements are not correlated with their benefit.
The weakly correlated problem model offers many practical applications, such as capital budgeting,
project selection, resource allocation, cutting stock, and investment decision-making [3]. In this way, if
an algorithm performs well in solving these instances, it is likely to solve a problem in everyday life.

Appl. Sci. 2019, 9, 5368; doi:10.3390/app9245368 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-3129-0114
https://orcid.org/0000-0001-9967-3886
https://orcid.org/0000-0002-5184-0005
http://www.mdpi.com/2076-3417/9/24/5368?type=check_update&version=1
http://dx.doi.org/10.3390/app9245368
http://www.mdpi.com/journal/applsci

Appl. Sci. 2019, 9, 5368 2 of 18

The characteristic of this problem is that its items cannot be split among themselves and is
classified as an NP-hard problem, where NP, indicates non-polynomial behavior problems. For certain
sizes of the instances of these problems, it is possible to calculate their optimal solution by means of
algorithms and parallel computers. Therefore, a parallel BB (Branch and Bound) algorithm is proposed
to calculate the exact solution of KP 0–1 for instances of medium and low complexity (weak and
uncorrelated [2], respectively).

The novelty of this work is that using a different approach to a binary tree (from a formulation of
a set of parts), we propose generating several different trees to find the optimal solution [4–10]. Each of
these trees represents a decision tree that is generated by fixing or removing elements, so the roots
of these trees are located in different search spaces with respect to the initial tree. Each binary tree
forms new search spaces, and consequently there are a greater number of feasible solutions available.
Because each decision tree is independent of the others, each of them is assigned in a processing unit for
execution, and therefore it is possible to calculate the optimal solution more quickly and thus reduce
the computation time, sometimes determining superlinear speedup as well as solving the instances
that cannot be resolved with a sequential approach.

The factors involved in efficient parallel implementation are diverse: those corresponding to the
algorithm and those inherent in the use of parallel computers. It is important to consider algorithms
that are efficiently parallelizable, i.e., algorithms whose execution times are polylogarithmic and use
a number of polynomial processors (both depending on the size of the input) [11]. However, in the
parallel BB algorithms applied to solve the integer knapsack problem and its version, 0–1, additional
variables were used to express complexity, such as the capacity of the knapsack c and the weights of
the elements (the maximum wmax and the minimum wmin [12]). This indicates that these variables
influence the complexity of the instance and, consequently, its execution time.

On the other hand, the factors that influence the performance of the parallel implementation of the
BB are shared knowledge, knowledge use, division of work, and synchronization. These are considered
independently of the computer architecture and the BB parallel algorithm to solve KP 0–1 [13].

In different parallel BB algorithms and their implementation in multicore computer architectures
and GPUs (Graphics Processing Units), two points of view are considered: developing a parallel
algorithm and the factors that influence that algorithm’s implementation [14,15]. This paper proposes
a way to search for the optimal solution from an algorithmic point of view, generating greater spaces
with feasible solutions and their implementation in a multicore cluster.

In BB parallel models, a decision tree travels through the space of feasible solutions until reaching
the optimum [14–16]. That is to say, collectively, a single tree is crossed until reaching the optimal
solution. In our BB parallel model, we propose generating several different trees to find the optimal
solution [4–10]. Each of these trees represents a decision that is generated by fixing or removing
elements, so the roots of these trees are located in different search spaces with respect to the initial
tree. The implementation of this algorithm was performed in the multicore cluster “Ioevolution”,
with 136 cores distributed among four servers.

The sequential algorithm solves all the uncorrelated instances, and our algorithm, the “multi-BB”
solves all of the weakly correlated instances, with superlinear speedup found in some solutions.

The formulation of the KP 0–1 and related works are discussed in Section 2. In Section 3, we describe
the hypotheses of our work and the procedure to generate the decision trees. The implementation and
testing are done in Section 4, as is a discussion of the results. In Section 5, we present the conclusions
of this paper.

2. Foundation

2.1. Problem Formulation

The 0–1 knapsack problem has been among the most studied problems in the literature since
1897 [17]. The mathematician Tobias Dantzig named the problem in the early 20th century [18].

Appl. Sci. 2019, 9, 5368 3 of 18

Its formulation is simple, but its solution turns out to be complex, since it is a problem that grows
exponentially. Therefore, in the theory of complexity, KP 0–1 is classified as an NP problem [19].

The 0–1 knapsack problem arises as follows:

fopt = max
n∑

i=1

pixi, (1)

subject to
n∑

i=1

wixi ≤ c, (2)

where fopt = optimal function; pi = element benefit i, pi ∈ Z+; wi = element weight i, wi ∈ Z+; c =

knapsack capacity, c ≤
∑n

i=1 wi; and xi = element xi ∈ {0, 1}.
The formula in Equation (1) refers to maximizing the utility of the knapsack based on the sum of the

benefits of each of its elements. This restriction indicates that it is necessary to take into account the sum of
the weights of the items that will be stored in the knapsack, whose capacity is determined by the variable c.
The variable xi is “0” when the item is not included in the knapsack and “1” when the item is included.

The KP 0–1 consists of determining the elements that should be included in the knapsack,
so the total utility of the selected elements is maximum, without exceeding the allowed capacity of
the knapsack.

2.2. Related Works

The BB parallel algorithms used to solve KP 0–1 have been designed primarily for static computer
architectures, such as rings, toroids, and hypercubes [12]. Subsequently, these algorithms have been
implemented in dynamic configuration computers, multicore CPUs (Central Processing Units), and
GPUs [14,15], where the focus is mainly on the four factors that influence implementation: shared
knowledge, knowledge utilization, division of work, and synchronization [13].

The complexity of the BB parallel algorithms that solve the KP 0–1 is a function of the problem
instance variables. For example, when the computer architecture is a hypercube, the complexity is
given by [12,15]

O
(

nc
p

wmax

wmin

)
(3)

for a number of processors of p < c
log wmax

.

In Equation (3), one of the terms is
(

wmax
wmin

)
. If this term grows, then the complexity increases, unlike

the classification proposed by Martello et al. [20], where the complexity of KP 0–1 is given by the
variability of the benefit with respect to the weights of the elements (pi and wi). Martello et al. [20]
classified the complexity of KP 0–1 into seven different instances grouped into three complexities based
on the correlation between the pi benefit and the weight wi [2]. The equations for three of the seven
representative instances of each of the complexity classes are shown below:

not correlated : wi ∈ [1, R] and pi ∈ [1, R]; (4)

weakly correlated : wi ∈ [1, R] and pi ∈

[
wi −

1
10

R, wi +
1

10
R
]

such that pi ≥ 1; (5)

strongly correlated : wi ∈ [1, R] and pi = wi +
1

10
R; (6)

where pi = the benefit of element i; wi = element weight i; and R ∈ {1, 000, 10, 000}.

Appl. Sci. 2019, 9, 5368 4 of 18

As observed in the previous equations, the complexity of the instance is not only given by the
variability of the weights of the elements (wi), because the elements are calculated in the same way in
the three instances. Therefore, the increase in complexity is given by the variability of the benefit of the
elements pi with respect to wi.

The other term of Equation (3),
(

nc
p

)
, indicates that the capacity of the knapsack is important

in determining the execution time of the algorithm. This coincides with the results of various
researchers [2,14], who determined that the capacity of the knapsack affects complexity, so the tests are
carried out by varying the capacity of the knapsack or half of the sum of the weights of the elements.

In recent implementations in multicore computer architectures and GPUs [14–16], the focus has
been on the four factors identified by Trienekens and de Bruin [13], as well as on using the two search
criteria in combination: the first is depth, and the second is breadth [15]. With depth, the tree levels are
advanced, and with breadth, the volume of subproblems is generated to use massive computation.
However, the search remains for a single decision tree. Once the volume of children is generated to use
these architectures, scholars have focused on developing an algorithm that considers the following:

• Shared knowledge: this consists of the list or lists of the subproblems or nodes that are stored for
later calculation and divided in two (the type of storage of the subproblems (general or local) and
how that list is updated);

• Knowledge use: This is divided in two (the access strategy for the list of subproblems and whether
that knowledge is shared with the results) and is updated immediately (the optimal solution
and limits);

• Division of work: This is formed by the active processes. In this way, the unit of work in each
process and the load balance are determined;

• Synchronization: This refers to the synchronization of each of the concurrent processes for
data communication.

3. Proposed Model

3.1. Considerations for the Elaboration of the Parallel Algorithm

Our model starts from a sequential algorithm that has been previously described in Reference [21],
to which some improvements and modifications were made to elaborate on the parallel algorithm.

The search space for the discrete knapsack problem 0–1 is given by the power set of the elements
of the initial problem. If these elements are in the set I = {1, 2, . . . , m}, then the number of subsets of the
power set or parts is |P(I)| = 2m. The power set can be represented using the terms of the empty set
φ and the set I, whereby the power set can be denoted by P (m) = [φ, I]. If the fixed elements are in
the set ω1, and the elements assigned to the node are in the set ω2, then P(m) can also be denoted by
P(m) = [ω1,ω2] [22,23].

An example of the initial search space of a KP 0–1 with five elements is shown in Figure 1.
The search space is for set I = {1, 2, 3, 4, 5}.

This space is divided into two when an item is fixed or removed. In Figure 1, the line l0l′0 divides
the search space in two by setting and removing element 1: the left side is the left child and the right
side is the right child. As can be seen in Figure 1, the search space of the left child consists of all the
subsets containing element 1. On the other hand, in the search space of the right child, no subset has
element 1 as its element. These two spaces correspond to level 1 of the binary tree, as shown in Figure 2.

Appl. Sci. 2019, 9, 5368 5 of 18
Appl. Sci. 2019, 9, x FOR PEER REVIEW 5 of 17

Figure 1. Search space P(m) of the set 𝐼 = ሼ1,2,3,4,5ሽ [24].

This space is divided into two when an item is fixed or removed. In Figure 1, the line 𝑙𝑙ᇱ
divides the search space in two by setting and removing element 1: the left side is the left child and
the right side is the right child. As can be seen in Figure 1, the search space of the left child consists of
all the subsets containing element 1. On the other hand, in the search space of the right child, no
subset has element 1 as its element. These two spaces correspond to level 1 of the binary tree, as
shown in Figure 2.

In turn, these search spaces are divided in two by setting and removing element 2. The line 𝑙ଵ𝑙ଵᇱ
shows the spaces generated with the left child, and line 𝑙ଶ𝑙ଶᇱ shows the spaces generated with the
right child. Therefore, at level 2, there will be four nodes. Each of these children is divided into two
sets whose search space is a smaller dimension than the search space of the node from which they
come. There are two sets of level 3 for each of the sets of level 2. In level 3, there will be eight sets. In
general, at the level of 𝑘, 0 ≤ 𝑘 ≤ 𝑚, 2, subsets can be formed, where the search spaces of every two
sets are disjointed sets and the union of all spaces of the same level is the initial power set P(m).
Following this procedure, at the last level, a subset of the initial power set is assigned to each leaf
[25].

Figure 1. Search space P(m) of the set I = {1, 2, 3, 4, 5} [24].
Appl. Sci. 2019, 9, x FOR PEER REVIEW 6 of 17

Figure 2. Binary tree of search spaces [24].

In the last levels of the binary tree, most of the elements will be fixed at ω1, leaving a small
number of free elements. Taking into account the above, the KP 0–1 is formulated below: 𝑓௧ = 𝑚𝑎𝑥 ∑ 𝑝∈ఠభ + ∑ 𝑝𝑥∈ሺఠమ ఠభ⁄)∑ 𝑤∈ఠభ + ∑ 𝑤𝑥∈ሺఠమ ఠభ⁄) ≤ 𝑐𝑥𝜖ሼ0,1ሽ 𝑓𝑜𝑟 𝑖 ∈ 𝐼 ,

 𝑐 = 𝜆𝐶

(7)

 𝐶 = ∑ 𝑤ୀଵ , (8) 0 ≤ 𝜆 ≤ 1, 𝑤 , 𝑝 ∈ 𝑍ା

where 𝑝 is the benefit of element 𝑖, 𝑤 is the element weight i, and 𝑐 is the knapsack capacity.
Equation (7) is divided into two terms: fixed ሺ𝜔ଵ) and free elements ሺ𝜔ଶ 𝜔ଵ⁄). Therefore, the

formulation of the problem is adapted to the part of the problem that contains free elements: this is
because it is not known which of them will be part of the solution. The modification consists of
calculating the capacity of the available knapsack, once the fixed elements have been stored in the
knapsack, according to Equation (9): 𝑐 = 𝑐 − 𝑤∈ఠభ . (9)

This algorithm begins with the calculation of a feasible solution and its upper and lower limits:
these are obtained as proposed by Dantzig (1957) [18] with Equation (10). The algorithm calculates
them only once at the beginning of the calculations:

Figure 2. Binary tree of search spaces [24].

In turn, these search spaces are divided in two by setting and removing element 2. The line l1l′1
shows the spaces generated with the left child, and line l2l′2 shows the spaces generated with the right
child. Therefore, at level 2, there will be four nodes. Each of these children is divided into two sets
whose search space is a smaller dimension than the search space of the node from which they come.

Appl. Sci. 2019, 9, 5368 6 of 18

There are two sets of level 3 for each of the sets of level 2. In level 3, there will be eight sets. In general,
at the level of k, 0 ≤ k ≤ m, 2k, subsets can be formed, where the search spaces of every two sets are
disjointed sets and the union of all spaces of the same level is the initial power set P(m). Following this
procedure, at the last level, a subset of the initial power set is assigned to each leaf [25].

In the last levels of the binary tree, most of the elements will be fixed at ω1, leaving a small number
of free elements. Taking into account the above, the KP 0–1 is formulated below:

fopt = max

∑

i∈ω1
pi +

∑
i∈(ω2/ω1) pixi∑

i∈ω1
wi +

∑
i∈(ω2/ω1) wixi ≤ c

xi ∈ {0, 1} f or i ∈ I

,
c = λC

(7)

C =
n∑

i=1

wi, (8)

0 ≤ λ ≤ 1, wi , pi ∈ Z+

where pi is the benefit of element i, wi is the element weight i, and c is the knapsack capacity.
Equation (7) is divided into two terms: fixed (ω1) and free elements (ω2/ω1).

Therefore, the formulation of the problem is adapted to the part of the problem that contains free
elements: this is because it is not known which of them will be part of the solution. The modification
consists of calculating the capacity of the available knapsack, once the fixed elements have been stored
in the knapsack, according to Equation (9):

c0 = c−
∑
i∈ω1

wi. (9)

This algorithm begins with the calculation of a feasible solution and its upper and lower limits:
these are obtained as proposed by Dantzig (1957) [18] with Equation (10). The algorithm calculates
them only once at the beginning of the calculations:

pi1
wi1
≥

pi2
wi2
≥ . . . ≥

pin
win

. (10)

Subsequently, for free items (ω2/ω1), the critical variable xs is determined by Equation (11),
the upper bound (UB) limit by Equation (12), and the lower bound (LB) limit by Equation (13), where the
LB will be the first optimal integer solution (fopt):

xs = min

l0 :
l0∑

ik=1

wik > c0

, (11)

UB =

LB +

c0 −

l0−1∑
ik=1

wik

 pi0
wi0

, (12)

LB =
∑
i∈ω1

pi +

l0−1∑
ik=1

pik , (13)

where c0 is the available capacity of the knapsack that will be filled with free items (ω2/ω1), l0 is the
minimum number of free elements that cause the sum of the weights wi to be greater than c0, pi is the
benefit of the critical element, and wi is the weight of that critical element.

After determining the critical variable and the root limits (UB and LB), two children are generated
using the procedure described previously, and each of the children will have a UBchild that is used to

Appl. Sci. 2019, 9, 5368 7 of 18

determine if that child is pruned or branched. In order for the child to branch out, the following must
be fulfilled:

UBchild > fopt. (14)

If Equation (14) is met, there is a possible LBchild that is better than the current one and, consequently,
a better optimal solution if LBchild > fopt. On the other hand, if UBchild < fopt, then that branch of the
tree is pruned, since there will be no LBchild greater than the best fopt that has so far been calculated.
The optimal solution fopt is the control variable.

3.2. Multi-BB Parallel Model

The sequential BB algorithm uses a breadth search to traverse the binary tree and calculate
the optimal solution. This algorithm progresses level by level, calculating all the subsets generated.
Therefore, to explain the proposal of the parallel model, the following example is presented. The subset
{2, 4} is supposed to be the optimal solution to the problem. The subset {2, 4, 5} is at level 3, as is shown
in the tree in Figure 2, where elements 2 and 4 are in the first locations. Thus, the algorithm will have
to reach level 3 to calculate the solution. In the worst case, the algorithm will require 20 + 21 +22 + 23

subsets, so it will also be necessary to perform calculus for the subsets of level 4 (24) to determine that
the solution is optimal. These subsets are stored in a list and are resolved sequentially. In the worst
case, the calculated subsets will be 31.

When at the start of the problem, element 3 is fixed and removed instead of 1, the subsets by
level are level 0 [φ, {1,2,3,4,5}]; level 1 [{3}, {1,2,3,4,5}] and [φ, {1,2,4,5}]; and level 2 [{1,3}, {1,2,3,4,5}],
[{3}, {2,3,4,5}], [{1}, {1,2,4,5}], and [φ, {2,4,5}]. The solution is in the last subset. The number of subsets
needed to reach the solution is 20 + 21 + 22, and the subsets of level 3 (23) will be required to determine
that the solution is optimal. In the worst case, 15 subsets will be calculated, which is 24 operations less
than in the previous case.

Because the fixed or removed element that helps determine the optimal solution in fewer iterations
is not known in advance, we propose generating different binary trees. In each tree, a different element
is fixed or removed. When the element is fixed, that element is forced to be part of the solution,
and when it is removed in another tree, that element will not be part of the solution, meaning that other
elements must form the solution. In each binary tree, the process described previously is followed.
The processing units share their best solution to accelerate the calculation, thereby increasing the
number of branches that are pruned in each tree. Consequently, it is possible to reduce the parallel
computation time. Communications among the processing units influence the synchronization of the
processing units, an aspect that is resolved, as indicated in the following paragraphs. The ideal number
of binary trees is equal to twice the number of elements of the problem, because in one-half of the trees,
a different element is fixed, and in the other half, each element is removed.

Therefore, we propose generating different trees to increase the spaces of the feasible solutions,
with the possibility that in some binary trees, the optimal solution is found in its first levels.

An outline of the algorithm is shown in Figure 3, where the trees that are generated do not
constitute a forest [24] because they share the same leaves.

Appl. Sci. 2019, 9, 5368 8 of 18

Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 17

problem, because in one-half of the trees, a different element is fixed, and in the other half, each
element is removed.

Therefore, we propose generating different trees to increase the spaces of the feasible solutions,
with the possibility that in some binary trees, the optimal solution is found in its first levels.

An outline of the algorithm is shown in Figure 3, where the trees that are generated do not
constitute a forest [24] because they share the same leaves.

Figure 3. Multi-BB (branch-and-bound) tree scheme.

3.3. Multi-BB Algorithm for a Multicore Cluster

In the implementation of the multi-BB algorithm in the multicore cluster (Figure 4), four factors
that influence its efficiency are considered: shared knowledge, knowledge utilization, work division,
and synchronization [13]. These are defined to have a good load balance, a minimum number of
synchronization points, and the shortest communications times.

Shared knowledge, or the subsets that are generated by the branching of trees, is stored in local
lists in each processing unit because each of the multi-BB trees is independent of the others. An
Exclusive Read, Exclusive Write, Parallel Random Access Machine (EREW PRAM) model is used for
access to the subsets and to write the partial solution. Figure 4 shows how the local lists are used in
each processing unit, from how they are started and updated to when the subsets are taken.

For division of the work, both in a static form and at the beginning of the calculation, a tree is
assigned to each processing unit. Each decision tree is expected to grow, and a good load balance is
achieved. This is the first activity that the processes perform, as is seen in Figure 4.

With regard to the use of knowledge and synchronization, the optimal solution is shared
knowledge. The processing units are synchronized to exchange partial solutions and determine the
optimal solution to the problem. A processing unit receives partial solutions, obtains the optimal
solution, and stores the identification of the processing unit within that solution. The above process

Figure 3. Multi-BB (branch-and-bound) tree scheme.

Appl. Sci. 2019, 9, 5368 9 of 18

3.3. Multi-BB Algorithm for a Multicore Cluster

In the implementation of the multi-BB algorithm in the multicore cluster (Figure 4), four factors
that influence its efficiency are considered: shared knowledge, knowledge utilization, work division,
and synchronization [13]. These are defined to have a good load balance, a minimum number of
synchronization points, and the shortest communications times.

Appl. Sci. 2019, 9, x FOR PEER REVIEW 9 of 17

is presented in a green box in Figure 4. The number of local iterations needed to carry out the
synchronization is based on the proposal by Zavala-Díaz [24].

The algorithm is asynchronous when each processing unit travels through its search space.
Synchronization occurs when the processes send and receive information (blue lines in Figure 4).
Communications C1, C4, and C5 are executed only once during the entire calculation process. In
communication C1, the elements in 𝜔ଵ and 𝜔ଶ of the problem are sent. In communication C4, the
master processor sends data to all others as well as and the number of the processing unit that
calculated the optimal solution. In communication C5, the processing unit with the optimal solution
sends the data to the master processor of the optimal solution, such as 𝜔ଵ, 𝜔ଶ (the set of solution
elements for 𝑓 and 𝑓௧). Communications C2 and C3 are made each time the maximum
number of local iterations is reached. In both cases, only two datapoints are sent. In communication
C2, the master sends the updated global solution and the signal to the processing units to continue
the calculations. In communication C3, each processing unit sends its 𝑓௧ solution and the status of
its local list.

The multi-BB algorithm was programmed in ANSI C, and the Message Passing Interface (MPI)
library is used to pass messages. The number of maximum local iterations is one-tenth the size of the
problem [24]. The proposed distribution for the parallel processes number is described in Section 4.2.
The remaining variables have been previously described.

Figure 4. Flowchart of the parallel multi-BB algorithm.

Appl. Sci. 2019, 9, 5368 10 of 18

Shared knowledge, or the subsets that are generated by the branching of trees, is stored in local lists
in each processing unit because each of the multi-BB trees is independent of the others. An Exclusive
Read, Exclusive Write, Parallel Random Access Machine (EREW PRAM) model is used for access to the
subsets and to write the partial solution. Figure 4 shows how the local lists are used in each processing
unit, from how they are started and updated to when the subsets are taken.

For division of the work, both in a static form and at the beginning of the calculation, a tree is
assigned to each processing unit. Each decision tree is expected to grow, and a good load balance is
achieved. This is the first activity that the processes perform, as is seen in Figure 4.

With regard to the use of knowledge and synchronization, the optimal solution is shared knowledge.
The processing units are synchronized to exchange partial solutions and determine the optimal solution
to the problem. A processing unit receives partial solutions, obtains the optimal solution, and stores the
identification of the processing unit within that solution. The above process is presented in a green box
in Figure 4. The number of local iterations to carry out the synchronization is based on the proposal by
Zavala-Díaz [24].

The algorithm is asynchronous when each processing unit travels through its search space.
Synchronization occurs when the processes send and receive information (blue lines in Figure 4).
Communications C1, C4, and C5 are executed only once during the entire calculation process.
In communication C1, the elements in ω1 and ω2 of the problem are sent. In communication C4,
the master processor sends data to all others and the number of the processing unit that calculated
the optimal solution. In communication C5, the processing unit with the optimal solution sends the
data to the master processor of the optimal solution, such as ω1, ω2 (the set of solution elements
for flinear and fopt). Communications C2 and C3 are made each time the maximum number of local
iterations is reached. In both cases, only two datapoints are sent. In communication C2, the master
sends the updated global solution and the signal to the processing units to continue the calculations.
In communication C3, each processing unit sends its fopt solution and the status of its local list.

The multi-BB algorithm was programmed in ANSI C, and the Message Passing Interface (MPI)
library is used to pass messages. The number of maximum local iterations is one-tenth the size of the
problem [24]. The proposed distribution for the parallel processes number is described in Section 4.2.
The remaining variables have been previously described.

4. Computational Experimentation

Computational experimentation is divided into two parts. In the first part, the sequential algorithm
is tested, the published instances are resolved, and the uncorrelated and weakly correlated instances
are resolved. In the second part, the most complex instances found in the first section with the parallel
algorithm are solved. Table 1 shows the main characteristics of the Ioevolution cluster.

Table 1. Characteristics of the Ioevolution cluster.

Machines Processor Number of
Processors

Cores per
Processor

Cores
Available

Ioevolution Intel(R) Xeon (R) CPU @
3.40 Ghz 8 4 32

compute-0–0 Intel(R) Xeon(R) CPU
E5645 @ 2.40 Ghz 12 6 72

compute-0–1 Intel(R) Xeon(R) CPU
X3430 @ 2.40 Ghz 4 4 16

compute-0–2 Intel(R) Xeon(R) CPU
X3430 @ 2.40 Ghz 4 4 16

Total 136

Appl. Sci. 2019, 9, 5368 11 of 18

For a comparison between the results obtained with the sequential BB and parallel multi-BB
algorithms, the following tests were carried out. In the first test, it was verified that the algorithm
elaborated using sets of parts calculated the optimal solution. For this purpose, the optimal solution
(based on the published instances with solutions) was calculated [26–28]. The second part consisted of
solving the instances classified as uncorrelated and weakly correlated: their coefficients were given by
equations as each author calculated them [14]. Therefore, it was not possible to directly compare these
equations to other algorithms.

The sizes of the instances of our tests were similar to those used in other analyses: up to
50 elements [14] and up to 500 elements, with the size of the instances of 50 elements being frequent [29]
(up to 2000 elements [16]).

4.1. Results of the Sequential Algorithm

Sequential execution was carried out on the Ioevolution server. To verify that the proposed
method solved the knapsack problem 0–1, the instances published by References [26–28] were resolved.
Tables 2–4 show the results obtained.

Table 2. Tests of the instances from Reference [26].

Instance Dimension Knapsack
Capacity

Optimal Solution
Reference

fopt

Kp_01 10 269 295 295
Kp_02 20 878 1024 1024
Kp_03 4 20 35 35
Kp_04 10 60 52 52
Kp_05 7 50 107 107
Kp_06 23 10,000 9767 9767
Kp_07 5 80 130 130
Kp_08 20 897 1025 1025

Table 3. Tests of the instances from Reference [27].

Instance Dimension Knapsack
Capacity

Optimal Solution
Reference

fopt

Kp_01 4 100 473 473
Kp_02 10 100 798 798
Kp_03 25 300 3307 3307
Kp_04 40 600 4994 4994

Table 4. Tests of the instances from Reference [28].

Instance Dimension Knapsack
Capacity

Optimal Solution
Reference

fopt

Kp_01 30 577 1437 1437
Kp_02 40 819 1821 1821
Kp_03 50 882 2448 2448
Kp_04 60 1006 2917 2917
Kp_05 65 1319 2818 2818

As can be seen in Tables 2–4, the sequential algorithm was capable of solving any simple instance.
The importance of the comparison is in showing that the process of building ever-smaller solution
spaces works to determine the optimal solution.

The second step was to resolve the instances of KP 0–1 that were classified as uncorrelated or
weakly correlated. The tests were done with six sets of 1000 elements, for which the optimal solution
for every 100 elements was calculated: n = 100, 200, . . . , 1000. In this way, the influence of the size of

Appl. Sci. 2019, 9, 5368 12 of 18

the problem could be measured, and it could be determined if the execution time depended on other
variables. The value of the constant R was equal to 1000 for the first three series and was equal to
10,000 for the second three series. For each test, the capacity of the knapsack is given by Equation (15).
Table 5 and Figure 5 contain the sequential execution times for the uncorrelated instance problems:

c = 0.5
n∑

i=1

wi. (15)

Table 5. Execution times of the uncorrelated instances.

Number of Elements
Time in Seconds

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6

100 0.04 0.02 0.03 0.03 0.01 0.02
200 0.13 0.32 0.14 0.55 0.21 0.31
300 0.26 0.86 0.22 1.38 0.41 0.73
400 0.34 4.29 0.25 2.79 3.77 10.59
500 3.1 2.8 2.7 8.81 4.92 17.29
600 11.26 6.55 11.65 10.9 33.61 7.16
700 17.64 31.02 9.44 24.43 54.52 21.3
800 109.58 260.64 105.71 124.82 14.08 44.93
900 196.51 18.51 279.35 311.9 25.2 68.39

1000 304.91 1127.53 25.6 132.39 474.34 72.61
Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 17

Figure 5. Uncorrelated instance runtime.

The results show that the sequential version calculated all of the series of uncorrelated
instances. Table 5 and Figure 5 show that the runtime increment was primarily based on the size of
the problem, tending to increase as the problem size increased. This increase was not linear (like the
increase in the number of elements was), and in Figure 5, the vertical axis is presented in base
logarithm 10. Only one of the results obtained had an execution time of more than 1000 s. This result
was from series 2, with n = 1000. The values of this series were calculated with R = 1000, indicating
that it is not practical to use R = 10,000 (in series 4, 5, and 6).

Table 6 and Figure 6 show the sequential execution times for a weakly correlated instance.

Table 6. Execution times of the weakly correlated instances.

Number of Elements
Time in Seconds

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6
100 0.19 0.13 0.21 0.24 0 0.05
200 12.04 1 11.85 2.73 0.17 0.69
300 178.49 2.78 153.05 3.66 76.77 6.82
400 67.03 26.75 61.77 13.8 9334.98 52.75
500 2751.75 710.1 2424.91 22.62 16.74 9.25
600 275.78 11.36 251.82 -------- 43.34 46.11
700 5629.58 9017.98 352.74 32,133.68 151.03 177.34
800 640.93 1097.54 -------- ------- 2063.79 47,107.17
900 -------- 30.6 5.54 10,480.83 --------- ---------
1000 207.47 923.5 400.23 ------- 100.84 498.51

0

0

1

10

100

1,000

10,000

1 2 3 4 5 6 7 8 9 10

Se
co

nd
s

X 100 elements

Execution Times
Uncorrelated Instances

Series1 Series2 Series3 Series4 Series5 Series6

Figure 5. Uncorrelated instance runtime.

The results show that the sequential version calculated all of the series of uncorrelated instances.
Table 5 and Figure 5 show that the runtime increment was primarily based on the size of the problem,
tending to increase as the problem size increased. This increase was not linear (like the increase in
the number of elements was), and in Figure 5, the vertical axis is presented in base logarithm 10.
Only one of the results obtained had an execution time of more than 1000 s. This result was from
series 2, with n = 1000. The values of this series were calculated with R = 1000, indicating that it is not
practical to use R = 10,000 (in series 4, 5, and 6).

Table 6 and Figure 6 show the sequential execution times for a weakly correlated instance.

Appl. Sci. 2019, 9, 5368 13 of 18

Table 6. Execution times of the weakly correlated instances.

Number of Elements
Time in Seconds

Series 1 Series 2 Series 3 Series 4 Series 5 Series 6

100 0.19 0.13 0.21 0.24 0 0.05
200 12.04 1 11.85 2.73 0.17 0.69
300 178.49 2.78 153.05 3.66 76.77 6.82
400 67.03 26.75 61.77 13.8 9334.98 52.75
500 2751.75 710.1 2424.91 22.62 16.74 9.25
600 275.78 11.36 251.82 ——– 43.34 46.11
700 5629.58 9017.98 352.74 32,133.68 151.03 177.34
800 640.93 1097.54 ——– ——- 2063.79 47,107.17
900 ——– 30.6 5.54 10,480.83 ——— ———

1000 207.47 923.5 400.23 ——- 100.84 498.51
Appl. Sci. 2019, 9, x FOR PEER REVIEW 13 of 17

Figure 6. Runtime of the weakly correlated instance.

With the sequential algorithm, it was not possible to obtain the optimal solution for all the
problems in this instance. Seven of the sixty problems were not solved by the sequential algorithm,
as shown in Table 6 and Figure 6. Some instances were not resolved because a number of generated
children used all the memory of the Ioevolution server. Figure 6 shows that an increase in size
influenced the execution time but also influenced the variability of pi with respect to 𝑤, which
caused a greater dispersion of execution times. The influence of using a constant R equal to 10,000
increases complexity in this kind of problem. Four of the instances exceeded the execution time of
10,000 s: the instances of series 4, 5, and 6.

4.2. Application of the Multi-BB Parallel Algorithm

When the multi-BB algorithm was applied, the generated trees were distributed uniformly to all
servers: one tree for each processing unit. Table 7 shows the number of cores used for the parallel
computational experimentation. The distribution of the number of cores of the different servers was
produced with the intention of having the same workload on each server. The same number of cores
was used until the maximum of the smallest servers was covered. When more cores were required,
they were assigned to the cores of the servers with the largest quantities to cover the maximums of
all servers.

Table 7. Load balance of the Ioevolution cluster.

Machine–Cores 20 40 60 80 100 120
Ioevolution 5 10 15 25 30 30

compute-0–0 5 10 15 25 40 60
compute-0–1 5 10 15 15 15 15
compute-0–2 5 10 15 15 15 15

The elements to be removed and fixed were selected from a list of items in decreasing order
(depending on the ratio ሺ𝑝 𝑤⁄)). In one tree, the element was fixed, and in another, the same element
was removed. In the processing unit with odd numbers, the element was fixed, and when it had an
even number, that same element was removed, and the element to be fixed or removed was calculated
with Equation (16). If 𝑝𝑟𝑜𝑐 was odd, the 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = 𝑝𝑟𝑜𝑐 ∗ ∆𝑤 was fixed. If 𝑝𝑟𝑜𝑐 was even, the
element 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 = ሺ𝑝𝑟𝑜𝑐 − 1) ∗ ∆𝑤 was removed:

௪ = ௨ ௧௦௨ ௦௦ ௨௧௦. (16)

0

0

1

10

100

1,000

10,000

100,000

1 2 3 4 5 6 7 8 9 10

Se
co

nd
s

X 100 elements

Execution time
Weakly correlated instances

Series1 Series2 Series3 Series4 Series5 Series6

Figure 6. Runtime of the weakly correlated instance.

With the sequential algorithm, it was not possible to obtain the optimal solution for all the problems
in this instance. Seven of the sixty problems were not solved by the sequential algorithm, as shown
in Table 6 and Figure 6. Some instances were not resolved because a number of generated children
used all the memory of the Ioevolution server. Figure 6 shows that an increase in size influenced
the execution time but also influenced the variability of pi with respect to wi, which caused a greater
dispersion of execution times. The influence of using a constant R equal to 10,000 increases complexity
in this kind of problem. Four of the instances exceeded the execution time of 10,000 s: the instances of
series 4, 5, and 6.

4.2. Application of the Multi-BB Parallel Algorithm

When the multi-BB algorithm was applied, the generated trees were distributed uniformly to all
servers: one tree for each processing unit. Table 7 shows the number of cores used for the parallel
computational experimentation. The distribution of the number of cores of the different servers was
produced with the intention of having the same workload on each server. The same number of cores
was used until the maximum of the smallest servers was covered. When more cores were required,
they were assigned to the cores of the servers with the largest quantities to cover the maximums of
all servers.

Appl. Sci. 2019, 9, 5368 14 of 18

Table 7. Load balance of the Ioevolution cluster.

Machine–Cores 20 40 60 80 100 120

Ioevolution 5 10 15 25 30 30
compute-0–0 5 10 15 25 40 60
compute-0–1 5 10 15 15 15 15
compute-0–2 5 10 15 15 15 15

The elements to be removed and fixed were selected from a list of items in decreasing order
(depending on the ratio (pi/wi)). In one tree, the element was fixed, and in another, the same element
was removed. In the processing unit with odd numbers, the element was fixed, and when it had an
even number, that same element was removed, and the element to be fixed or removed was calculated
with Equation (16). If proci was odd, the elementk = proci ∗ ∆w was fixed. If proci was even, the element
elementk = (proci − 1) ∗ ∆w was removed:

∆w =
number o f elements

number o f processing units
. (16)

4.2.1. Solution of the Weakly Correlated Instance of Series 6 (with n = 800)

The first application of the multi-BB algorithm was to solve the weakly correlated instance of series
6 (with n = 800), which required 47,107.17 s. To measure the results of the parallel implementation,
speedup and parallel efficiency were used, which are described in Equations (17) and (18):

Speedup : Sp =
Sequential runtime

Runtime in p processors
, (17)

Parallel e f f iciency : Ep =
Speedup with p processors

number o f processors p
. (18)

The ideal speedup value is a linear value, that is, Sp = p (number of processors).
However, for parallel efficiency, its ideal value is equal to 1 or 100%. Table 8 shows the execution time,
the speedup

(
Sp

)
, and the parallel efficiency

(
Ep

)
for different numbers of cores.

Table 8. Multi-BB runtime of the weakly correlated instance of series 6 (with n = 800).

Processing Units Time (s) Sp (T1/Tp) Ep (Sp/p) %

20 325.16 144.87 724.36
40 1562.57 30.15 75.37
60 1059.92 44.44 74.07
80 546.87 86.14 107.67

100 1050.72 44.83 44.83
120 589.62 79.89 66.58

As is shown in Table 8, the weakly correlated instance of series 6 (with n = 800) could be solved
in parallel with different numbers of cores. Because binary trees are generated to explore different
solution spaces, by fixing and removing elements, it is possible to reduce parallel computation times.
This is due to the calculation of optimal local solutions, which allow for more efficient calculations of
the global optimal solution. This method is used in all binary trees to determine which branches are
pruned or branched. The multi-BB algorithm accelerates its calculation process by sending the global
optimal solution to each interval of the local iterations, allowing for the pruning of a greater number of
branches of each binary tree. In this case, the elements selected to be fixed or removed were correct
because the parallel execution time was reduced: only on two occasions was a superlinear speedup
achieved. This scenario could change if another method for selecting the numbers of elements to be

Appl. Sci. 2019, 9, 5368 15 of 18

fixed or removed in the decision trees is used. The two times a superlinear speedup was reached were
when 20 and 80 processing units were used. Parallelism in these algorithms is speculative because
dependencies are ignored and subtrees are explored in a parallel form whose algorithm efficiencies
can result in an anomalous performance, as defined in Reference [29]: “It may be that a parallel task
finds a strong incumbent more quickly than in the sequential execution, leading to less work being
done. In this case we observe superlinear speedups.” In the first case of a speedup, 144.87 was reached,
which was much higher than the 20 cores used. In the second case, a speedup of 86.14 with 80 cores was
achieved. These two cases gave parallel efficiencies of 724.36% and 107.67%, on speedup respectively,
which were both higher than the ideal value of 100%. In the other solved cases, a superlinear speedup
was not reached, and the efficiencies were lower than 100%. Figure 6 shows the workload when
20 processing units were used.

As is seen in Figure 7, 4 of the 20 processing units concluded their calculations in the first iterations,
and a fifth processor concluded its calculations as 20% of the iterations converged. Thus, the Ioevolution
cluster required approximately 75% efficiency to obtain an optimal solution. The above results indicate
that the execution time was algorithmically reduced, but not by the efficient use of the Ioevolution
cluster. This indicates that the hypothesis of reducing the number of operations is possibly true if the
operation starts from another point in the search space of feasible solutions.Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 17

Figure 7. Workload of the 20 processing units for the problem in Figure 7.

4.2.2. Solution of Weakly Correlated Instances without a Sequential Solution

The application of the multi-BB algorithm for the problems of weakly correlated instances
without sequential solutions was the same as in the previous problem. The results are shown in
Table 9 and Figure 8.

Table 9. Difficult problems of weakly correlated instances (s).

Cores 900 Series 1 800 Series 3 600 Series 4 800 Serie 4 1000 Series 4 900 Series 5 900 Series 6
20 541.146778 113.254955 805.19268 1747.37338 --------- 247.920172 207.720432
40 575.536042 1794.82854 166.197532 1502.92257 --------- 2093.40998 3200.67639
60 655.732152 431.479931 535.095924 471.045603 1708.20222 536.465767 488.187185
80 2744.39269 916.620007 361.507553 425.59499 2364.02109 695.022149 1670.71194
100 897.756751 374.327425 297.126635 558.170916 4019.2701 817.248092 733.272021
120 578.094729 ---------- 420.501619 634.75545 3293.75821 1696.82872 1590.29178

0

20,000

40,000

60,000

80,000

100,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ite
ra

tio
ns

Proccesing Units

Iterations to converge
Instance n= 800 series 6

with calculation without calculation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12

Se
co

nd
s

X 10 cores

Difficult weakly correlated instances

900_series1 800_series3 600_series4 800_series4 1000_series4 900_series5 900_series6

Figure 7. Workload of the 20 processing units for the problem in Figure 7.

4.2.2. Solution of Weakly Correlated Instances without a Sequential Solution

The application of the multi-BB algorithm for the problems of weakly correlated instances without
sequential solutions was the same as in the previous problem. The results are shown in Table 9 and
Figure 8.

Table 9. Difficult problems of weakly correlated instances (s).

Cores 900 Series 1 800 Series 3 600 Series 4 800 Serie 4 1000 Series 4 900 Series 5 900 Series 6

20 541.146778 113.254955 805.19268 1747.37338 ——— 247.920172 207.720432
40 575.536042 1794.82854 166.197532 1502.92257 ——— 2093.40998 3200.67639
60 655.732152 431.479931 535.095924 471.045603 1708.20222 536.465767 488.187185
80 2744.39269 916.620007 361.507553 425.59499 2364.02109 695.022149 1670.71194

100 897.756751 374.327425 297.126635 558.170916 4019.2701 817.248092 733.272021
120 578.094729 ———- 420.501619 634.75545 3293.75821 1696.82872 1590.29178

Appl. Sci. 2019, 9, 5368 16 of 18

Appl. Sci. 2019, 9, x FOR PEER REVIEW 15 of 17

Figure 7. Workload of the 20 processing units for the problem in Figure 7.

4.2.2. Solution of Weakly Correlated Instances without a Sequential Solution

The application of the multi-BB algorithm for the problems of weakly correlated instances
without sequential solutions was the same as in the previous problem. The results are shown in
Table 9 and Figure 8.

Table 9. Difficult problems of weakly correlated instances (s).

Cores 900 Series 1 800 Series 3 600 Series 4 800 Serie 4 1000 Series 4 900 Series 5 900 Series 6
20 541.146778 113.254955 805.19268 1747.37338 --------- 247.920172 207.720432
40 575.536042 1794.82854 166.197532 1502.92257 --------- 2093.40998 3200.67639
60 655.732152 431.479931 535.095924 471.045603 1708.20222 536.465767 488.187185
80 2744.39269 916.620007 361.507553 425.59499 2364.02109 695.022149 1670.71194
100 897.756751 374.327425 297.126635 558.170916 4019.2701 817.248092 733.272021
120 578.094729 ---------- 420.501619 634.75545 3293.75821 1696.82872 1590.29178

0

20,000

40,000

60,000

80,000

100,000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ite
ra

tio
ns

Proccesing Units

Iterations to converge
Instance n= 800 series 6

with calculation without calculation

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 3 4 5 6 7 8 9 10 11 12

Se
co

nd
s

X 10 cores

Difficult weakly correlated instances

900_series1 800_series3 600_series4 800_series4 1000_series4 900_series5 900_series6

Figure 8. Difficult problems of a weakly correlated instance.

The results in Table 9 and Figure 8 show that as the number of processing units increased,
the dispersion of the results was smaller. Except for series 4, all others tended to be less variable for
100 processing units, and the variability increased again with 120 processing units. This indicates that
the element that decreased the computations may have been a greater number of processing units.
The same held true for series 4 with 1000 elements: it was only possible to determine its solution with
a larger number of processing units.

5. Conclusions

From the results obtained, the following conclusions could be made:
It is possible to make binary branch-and-bound trees by fixing and removing subset elements to

build a parallel algorithm, which calculates the optimal solution of the 0–1 knapsack problem.
Consideration of the four factors that affect the implementation of parallel algorithms is important,

because they guide the process of obtaining efficient parallel algorithms, such as the one presented in
this work.

The multi-BB algorithm calculated the optimal solution of the weakly correlated instances that
could not be solved with the sequential version, instances that required excessive memory usage.
This indicates that despite the fact that a larger number of search spaces were generated, the algorithm
calculated the optimal solution without using the full memory of any server in the cluster. This shows
that the moment when the global optimal function is updated is the correct one, because it allows for
the pruning of a large number of binary tree branches assigned in the cores.

The parallel efficiencies reached were around 75%, but in some cases, it was possible to achieve
superlinear speedup.

The improvement that can be made to the algorithm is to calculate, in a more efficient way,
the elements that are fixed in the solution process, which perhaps could be done through hybridization
of the algorithm. This will be a future task, along with including parallel programming via GPUs,
which will allow for shared memory to be used and which will considerably accelerate communication
between the procedures generated by the algorithm.

Appl. Sci. 2019, 9, 5368 17 of 18

Author Contributions: conceptualization, J.C.Z.-D. and M.A.C.-C.; investigation, J.C.Z.-D., M.A.C.-C., and J.L.-C.;
methodology, J.C.Z.-D., M.A.C.-C., and J.A.H.-A.; validation, J.A.H.-A. and M.E.L.-O.; writing—original draft,
J.C.Z.-D. and M.E.L.-O.

Funding: This research was funded by PRODEP, grant number SA-DDI-UAEM/15/451.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Bretthauer, K.M.; Shetty, B. The nonlinear knapsack problem-algorithms and applications. Eur. J. Oper. Res.
2002, 138, 459–472. [CrossRef]

2. Pisinger, D. Where are the hard knapsack problems? Comput. Oper. Res. 2005, 32, 2271–2284. [CrossRef]
3. Lv, J.; Wang, X.; Huang, M.; Cheng, H.; Li, F. Solving 0-1 knapsack problem by greedy degree and expectation

efficiency. Appl. Soft Comput. 2016, 41, 94–103. [CrossRef]
4. Crainic, T.; Cun, B.; Roucariol, C. Parallel Branch and Bound Algorithms. In Parallel Combinatiorial Optimization,

1st ed.; Talbi, E.-G., Ed.; John Wiley & Sons: New York, NY, USA, 2006; pp. 1–28.
5. Gendron, B.; Crainic, T. Parallel Branch and Bound Algorithms: Survey and Synthesis. Oper. Res.

1994, 42, 1042–1066. [CrossRef]
6. Gmys, J.; Mezmaz, M.; Melab, N.; Tuyttens, D. IVM-based parallel branch-and-bound using hierarchical

work stealing on multi-GPU systems. Concurr. Comput. Pract. Exp. 2017, 29, e4019. [CrossRef]
7. Shen, J.; Shigeoka, K.; Ino, F.; Hagihara, K. GPU-based branch-and-bound method to solve large 0-1 knapsack

problems with data-centric strategies. Concurr. Comput. Pract. Exper. 2019, 31, e4954. [CrossRef]
8. Volosshinov, V.; Smirnos, S.; Sukhoroslov, O. Implementation and Use of Coarse-grained Parallel Branch and

Bound in Everest Distributed Environment. Procedia Comput. Sci. 2017, 108, 1532–1541. [CrossRef]
9. Quan, Z.; Wu, L. Design and evaluation of a parallel neighbor algorithm for the disjunctively constrained

knapsack problem. Concurr. Comput. Pract. Exp. 2017, 29, e3848. [CrossRef]
10. Vu, T.; Derbel, B. Parallel Branch-and-Bound in multi-core multi-CPU multi-GPU heterogeneous

environments. Future Gener. Comput. Syst. 2016, 56, 95–109. [CrossRef]
11. Quinn, M.J. Designing Efficient Algorithms for Parallel Computers; McGrawHill Education: New York, NY, USA,

1987.
12. Goldman, A.; Trystram, D. An Efficient Parallel Algorithm for Solving the Knapsack Problem on Hypercubes.

J. Parallel Distrib. Comput. 2004, 64, 1213–1222. [CrossRef]
13. Trienekens, H.W.J.M.; de Bruin, A. Towards a Taxonomy of Parallel Branch and Bound Algorithms,

Report EUR-CS-92-01; Erasmus University Rotterdam, Department of Computer Science: Rotterdam,
The Netherlands, 1992.

14. Li, K.; Liu, J.; Wan, L.; Yin, S.; Li, K. A cost-optimal parallel algorithm for the 0-1 knapsack problem and its
performance on multicore CPU and GPU implementations. Parallel Comput. 2015, 43, 27–42. [CrossRef]

15. Melab, N.; Gmys, J.; Mezmaz, M.; Tuyttens, D. Multi-core versus many-core computing for many-task Branch
and Bound applied to big optimization problems. J. Future Gener. Comput. Syst. 2018, 82, 472–481. [CrossRef]

16. Ismail, M.; el-raoof, O.; El-Wahed, W. A parallel Branch and Bound Algorithm for Solving Large Scale Integer
Programming Problems. Appl. Math. Inf. Sci. 2014, 8, 1691–1698. [CrossRef]

17. Mathews, G.B. En la partición de números. Actas Lond. Math. Soc. 1897, 1, 486–490.
18. Dantzig, G.B. Discrete-Variable Extremum Problems. Oper. Res. 1957, 5, 266–277. [CrossRef]
19. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman:

San Francisco, CA, USA, 1979.
20. Martello, S.; Pisinger, D.; Toth, P. New trends in exact algorithms for the 0-1 knapsack problem, European.

J. Oper. Res. 2000, 123, 325–332. [CrossRef]
21. Zavala-Díaz, J.C.; Ruis-Vanoye, J.A.; Díaz-Parra, O.; Hernández-Aguilar, J.A. A solution to the Strongly

Correlated 0-1 Knapsack Problem by Binary Branch and Bound Algorithm. In Proceedings of the Fifth
International Joint Conference on Computational Science and Optimization (CSO 2012), Harbin, China,
23–26 June 2012; pp. 237–241.

22. Zavala-Díaz, J.C.Y.; Khachaturov, V. Integer Programming, the Tree of Cubes Method, its Parallel Algorithm and
Applications, Contexts in the Investigation of the Social and Administrative Sciences; Universidad Autónoma de
Morelos: Cuernavaca, Mexico, 2006; pp. 77–102.

http://dx.doi.org/10.1016/S0377-2217(01)00179-5
http://dx.doi.org/10.1016/j.cor.2004.03.002
http://dx.doi.org/10.1016/j.asoc.2015.11.045
http://dx.doi.org/10.1287/opre.42.6.1042
http://dx.doi.org/10.1002/cpe.4019
http://dx.doi.org/10.1002/cpe.4954
http://dx.doi.org/10.1016/j.procs.2017.05.207
http://dx.doi.org/10.1002/cpe.3848
http://dx.doi.org/10.1016/j.future.2015.10.009
http://dx.doi.org/10.1016/j.jpdc.2002.10.001
http://dx.doi.org/10.1016/j.parco.2015.01.004
http://dx.doi.org/10.1016/j.future.2016.12.039
http://dx.doi.org/10.12785/amis/080425
http://dx.doi.org/10.1287/opre.5.2.266
http://dx.doi.org/10.1016/S0377-2217(99)00260-X

Appl. Sci. 2019, 9, 5368 18 of 18

23. Aparicio, G.; Salmerón, J.M.G.; Casado, L.G.; Asenjo, R.; Hendrix, E.M.T. Parallel algorithms for computing
the smallest binary tree size in unit simplex refinement. J. Parallel Distrib. Comput. 2018, 112, 166–178.
[CrossRef]

24. Zavala-Díaz, J.C. Optimización con Cómputo Paralelo in Teoría y Aplicaciones; Zavala-Díaz, J.C., Ed.;
AM editores-UAEM: Mexico City, Mexico, 2013.

25. Cormen, T.; Lerserson, C. Rivest Introduction to Algorithms; McGraw-Hill: New York, NY, USA, 2000.
26. Zhou, Y.; Chen, X.; Zhou, G. An improved monkey algorithm for a 0-1 knapsack problem. Appl. Soft Comput.

2016, 38, 817–830. [CrossRef]
27. Pospichal, P.; Schwarz, J.; Jaros, J.Y. Parallel genetic algorithm solving 0/1 knapsack problem running on the

GPU. In Proceedings of the 16th International conference on soft computing, MENDEL 2010, Brno, Czech
Republic, 23–25 June 2010; pp. 64–70.

28. Rizk-Allah, R.M.; Hassanien, A.E. New binary bat algorithm for solving 0-1 knapsack problem. Complex Intell.
Syst. 2018, 4, 31–53. [CrossRef]

29. Archibald, B.; Maier, P.; McCreesh, C.; Stewart, R.; Trinder, P. Replicable parallel branch and bound search.
J. Parallel Distrib. Comput. 2018, 113, 92–114. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jpdc.2017.05.016
http://dx.doi.org/10.1016/j.asoc.2015.10.043
http://dx.doi.org/10.1007/s40747-017-0050-z
http://dx.doi.org/10.1016/j.jpdc.2017.10.010
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Foundation
	Problem Formulation
	Related Works

	Proposed Model
	Considerations for the Elaboration of the Parallel Algorithm
	Multi-BB Parallel Model
	Multi-BB Algorithm for a Multicore Cluster

	Computational Experimentation
	Results of the Sequential Algorithm
	Application of the Multi-BB Parallel Algorithm
	Solution of the Weakly Correlated Instance of Series 6 (with n = 800)
	Solution of Weakly Correlated Instances without a Sequential Solution

	Conclusions
	References

