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Featured Application: This research allows tracing optimized routes in corridors of long lengths
and is applied to the installation of pipelines that transport valuable liquids, which can be oil
or petroleum.

Abstract: Planning corridors for new facilities such as pipeline or transmission lines through
geographical spaces is a topographical constraint optimization problem. The corridor planning
problem requires finding an optimal route or a set of alternative paths between two locations. This
article presents a simulated-annealing-based (SA) approach applying a variable neighborhood strategy
in a continuous space to generate competitive and different alternative paths to solve the corridor
planning problem. The variable neighborhood method randomly selects two points from a variable
interval of the current solution generated by SA creating pseudo-random paths inside a corridor
and finding spatially different alternatives. The proposed approach is evaluated with three practical
problems using real topographic data from the Veracruz Basin in Mexico. The experimental results
show that this approach obtains efficient and competitive solutions with improvements above 18%
over those gotten by the compared method.

Keywords: corridor planning; simulated annealing; shortest path algorithms; spatial optimization;
variable neighborhood search; topographical constraint

1. Introduction

Corridor is an indispensable requirement to build linear installations such as pipelines, electric
transmission lines, communications ways, etc. [1,2]. The corridor planning process must consider
legal, social, political, environmental, and economic factors interfering and making the corridor design
complex [3]. However, proper corridor planning involves identifying alternative routes and selecting
the best one based on design specifications, environmental laws, and good practices [4]. The corridor
planning problem is generally addressed by one or more selection criteria such as distance, environmental
impact, and safety, and it is modeled as an optimization problem subject to several topographical
constraints [2,5].

According to [6], locating an optimal corridor is analogous to identifying the shortest or least
expensive path between two points. Traditional approaches generate a set of alternative routes using
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enumerative methods with penalty techniques or by specifying one or multiple intermediate points
where the path must pass [7–9]. The running time of these methods tends to grow exponentially,
depending on the size of the geographical study area. In addition, the generation of near-optimal
alternative routes in reasonable times using exact methods is hard since they find only one solution in
their searching process [10].

Nowadays, the creation of new corridors to provide different services through linear facilities
is growing for the emergence and expansion of urban areas. However, their construction can be
delayed due to poor planning, so generating alternative routes for evaluating and comparing candidate
solutions is crucial in the corridor planning process. The problem of making alternative routes has led
researchers to develop diverse solution methods using different problem representations and applying
several deterministic shortest-path-search algorithms such as the Dijkstra algorithm [11] and its variants.
However, generating alternative routes requires exploring the geographical study area, and exact
methods only get one route at a time. Thus, an efficient method must include mechanisms allowing the
examination of alternative routes spatially dispersed, in reasonable computing time. On the other hand,
non-deterministic approaches such as swarm and evolutionary algorithms, and the simulated annealing
can find near-optimal solutions in a reasonable time due to their exploration and exploitation skills.

This paper presents a simulated-annealing-based optimization method applying a variable-
neighborhood structure to generate and evaluate alternative corridor routes and select the best
one. The proposed algorithm starts its search process with a feasible solution obtained by a greedy
uninformed search strategy, the breadth-first-search (BFS) algorithm, which does not use some cost
function for exploring possible routes, and not necessarily find the optimal global path. Then, the
variable neighborhood mechanism randomly selects two points in the corridor for exploring alternative
routes through prohibited and guided movements. The results obtained with the simulated annealing
method are compared with the BFS algorithm, to show the effectiveness in improving the solutions
obtained by the proposed algorithm. The experimental analysis compares the variable-neighborhood
mechanism on three real problem scenarios. It suggests that the proposed mechanism explores and
improves the initial solution. Likewise, the neighborhood structure permits creating and evaluating
alternative corridor routes and selecting the best one, based on the objective value. Improvements are
reported above 18% on the greedy algorithm in the solution quality.

The main contribution of this work is the implementation of a variable-search mechanism
generating alternative routes inside a corridor. The proposed algorithm dynamically selects the best
route considering topographic information collected from three Mexican regions located in the Veracruz
Basin. It is a prominent oil and gas extraction area of excellent quality where several production fields
are currently located.

The rest of the document is structured as follows: Section 2 describes the corridor planning
problem and the optimization model of the shortest route. Section 3 depicts the simulated annealing
algorithm elements: The initial solution creation procedure and the details of the variable-neighborhood
structure. Section 4 provides details of the test scenarios, and the experimental results obtained with
the SA algorithm. Finally, Section 5 shows the conclusions and future work.

2. Problem Statement

This section describes the corridor planning problem in general, and the related works proposed
to address this problem. Finally, the optimization model used to find the shortest path on which this
work is based is shown as well.

2.1. Problem Description

Research in the construction of linear facilities such as pipelines, transmission lines, and
communication routes is essential to define the land corridor where they will be placed. A corridor is a
geographic area between two points joined using several intermediate points, providing the necessary
space for guaranteeing the right conditions for the construction and use of the facilities. In particular, the
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corridor-width depends on local regulations, according to the installation type. The corridor planning
problem can be modeled as an optimization problem subject to topographical constraints [1,5,12].
Corridors are usually addressed by one or more selection criteria such as distance, environmental
impact, safety, etc. The design of a topographical network representing the study region is part of the
corridor planning process. Once this network is defined, a corridor between two points is selected from
all possible paths.

The corridor planning process considers numerous factors affecting the project proposal [3,12].
In general, an initial corridor route is first determined and then refined using the design criteria [13].
In the first phase, the parties involved in the project must approve the proposed route according to the
input data used in the spatial analysis [14]. This route can be modeled using a geographic information
system (GIS) to assign the impact costs in the study area. GIS provides several algorithms to find the
shortest path, but what is required in this work is to find multiple optimized routes within a corridor
near the shortest route which is the global optimum. Therefore, a route refinement is necessary, where
other competitive and near-optimal but spatially different solutions are considered [14]. The shortest
path can be obtained by penalizing the distance of each step taken when crossing the region. However,
a real problem may have obstacles complicating the movements in certain directions. Therefore, it is
crucial to exploit the knowledge of the study region through spatial exploration and analysis [15], to
classify the factors being part of the route selection criteria. Some of them are the ground elevation, soil
type, vegetation type, and the presence of water bodies, roads, and archaeological zones. Other factors
that should be considered are those disturbing humans and wild animals. Once the constraints have
been defined using these factors, a feasible route can be found.

2.2. Existing Methodologies to Generate Alternate Routes

Several techniques to evaluate the number of alternate routes and solve the corridor planning
problem have been described in the existing literature. The iterative penalty method [7] assigns penalty
parameters to graph arcs once they are selected to be part of a candidate solution. This method is
initially proposed for road design, but it has also been used for routing hazardous materials [16],
among other applications. In [8], the gateway shortest path (GSP) method based on a constrained
shortest path problem is introduced. The Global Positioning System (GPS) generates the shortest route
between two points without passing through points known as gateways. GPS allows the identification
of different acceptable alternative paths with less computational effort concerning penalty methods.
The k-shortest-path algorithm [17] and the near-shortest path method [18] are two methods generating
a set of lower-cost paths based on small variations of their initial solution.

Furthermore, the k-differentiated-path (kDP) algorithm proposed in [19] uses a minimax approach
to find k-differentiated-shortest paths that are relatively different from one another, but not necessarily
disjoint. On the other hand, the p-dispersion algorithm in [20] first creates a broad set of candidate routes,
and then it selects a subset of them using a dispersion model, maximizing the minimum difference
between any pair of selected routes. In [21], the authors locate corridors as a collection of adjacent
polygons based on a quantitative criterion measuring the corridor length. This method selects one
corridor to cross the polygons using the Dijkstra algorithm. In contrast, in [9], the authors use multiple
gateways to generate more complex paths. This approach is similar to the GPS method, except for
allowing that the route uses more than one gateway. Other proposed strategies use parallel computing to
run their procedures, such as the kth-shortest path and the near-shortest path method [22,23]. The main
disadvantage of these methods is that the needed time to reach an optimal solution grows exponentially
as the problem size increases [24].

An alternative to deal with these problems is applying some non-deterministic heuristic capable of
generating near-optimal solutions in a reasonable computation time. In [25–29], the authors use genetic
algorithms (GAs) to optimize two and three-dimensional highway alignments. These approaches only
differ in the objective function elements, such as right-of-way cost, travel-time cost, earthwork cost,
structure cost, and socioeconomic cost. This formulation is also used by [30,31] to solve the rail transit



Appl. Sci. 2020, 10, 6190 4 of 17

alignment problem. In [32], a parallel GA to solve the intercity railway alignment problem is used.
In [6], a multi-objective GA, named MOGADOR, for solving the general corridor alignment problem
is applied, and the authors in [33,34] also use a multi-objective GA to solve the highway alignment
problem. On the other hand, scarce application of other heuristics for the corridor planning problem
has been described in the existing literature, such as the tabu search for alignment of forest roads [35]
and simulated annealing [36], particle swarm optimization [37], and ant colony optimization [38] for
the highway alignment problem.

2.3. Mathematical Model

The corridor planning problem is concerning finding the shortest path joining two specific nodes
in an undirected weighted graph [6]. The mathematical model of the corridor routes is described by
relations (1)–(5). The topographical network (rectangular mesh or grid) representing the study area is
encoded using a graph (N, A), where N = {u1, . . . , un} is the set of n nodes, and A = {(u1, v1), . . . , (um,
vm)} is the set of m edges connecting the nodes. A node represents the center of a cell in the rectangular
mesh (matrix of visited nodes), and each edge is associated with a viability cost (penalty) cp

u,v ∈ R of
passing from node u to node v in the graph. Furthermore, each edge has associated an elevation value
cDEM

u,v , based on a digital elevation model (DEM). In this model, s and t are the source and destination
nodes connected by the corridor, respectively, and a binary variable xuv is used to indicate if the edge
(u,v) is or not part of the route.

minz(x) = min
∑

(u,v)∈A

xu,v

l=Nl∑
l=1

plu,v + cDEM
u,v

, u , v (1)

s.t. ∑
(u,v)∈A

xuv −
∑

(v,u)∈A

xvu =


1 if u = s

−1 if u = t

0 if u , s, t

(2)

xu,v = {0, 1},∀(u, v) ∈ A (3)

(u, v) ∈ corridor,∀(u, v) ∈ A (4)

cDEM
u,v ≤ emax (5)

The goal, shown in Equation (1), is to find the lowest cost route from s to t, accomplishing the
constraints expressed in (2)–(5). In this work, the route cost is a combination of the viability costs of
the edges (u,v) belonging to the proposed route and the elevation of the visited nodes in the corridor.
The route between nodes s = 0 and t = k is a finite sequence of nodes n = {u0, · · · , uk}. The accumulated
costs matrix represents the feasibility of passing between two nodes, using a feasibility scale of 1 to 10,
where 1 represents the lowest penalty cost, i.e., there exists a priority to pass on the path, while value 10
means that it is prohibited. For creating this matrix, a feasibility cost p (penalty) for each topographic
l (layer) is assigned according to its relevance. The values of the Nl layers involved in the corridor
design are added and weighted in Equation (1). Equation (6) shows the weighting operation of a raster
cell cp

uv in the accumulated cost matrix. Elevation on the ground is also penalized with higher values
of cDEM

uv in Equation (1). Constraints (2) guarantees that s and t are only used as the initial and final
node in the route, respectively, as well as no cycles are in the solution, fulfilling the constraints (3).
Furthermore, constraints (4) indicates that edge (u, v) must be located within the corridor. The corridor
is given in units of length and has as its midpoint the shortest route found by an exact algorithm such
as the Dijkstra algorithm. Finally, constraint (5) establishes that emax is the maximum elevation allowed
on the ground.

cp
u,v =

l=Nl∑
l=1

plu,v (6)
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The optimization model presented in (1) to (5) is used to find cost-optimized routes located in
the corridor generated by the shortest route. These optimized routes are obtained by the simulated
annealing algorithm, which creates neighboring routes to the shortest route.

3. Simulated Annealing Approach for the Corridor Planning Problem

The shortest and least expensive routes between two geographical locations can be obtained
applying exact methods, and a GIS facilitates their computation, as well as the spatial analysis and the
management of geographic information by using robust data models [39–41]. Since a GIS commonly
uses Dijkstra-based algorithms, the corridor width is not considered in their calculations, and alternative
routes to the best one cannot be obtained [42]. The corridor width can be conceptualized in different
ways based on the map scale, but one additional mechanism is needed to generate more than one route.
In this case, heuristics are applied to reach near-optimal solutions in a reasonable time, since they are
reliable and straightforward strategies for solving complex problems.

The simulated annealing (SA) algorithm is a heuristic technique finding near-optimal solutions
for combinatorial problems with large solution spaces [43]. SA is based on a thermal treatment for
solids, named annealing, where one material is exposed to high temperatures to the melting point
and is cooled gradually to a cooling point. Annealing allows the molecules to organize themselves to
reach minimal potential energy, thereby achieving higher resistance. The SA algorithm is used to solve
complex optimization problems such as the traveling salesman problem [44], the automatic design of
integrated circuits, and the noise suppression in digital images [45], as well as in image compression [46],
among other problems. SA implements an iterative local search guided through a stochastic process
with a given probability [47]. First, SA starts with an initial candidate solution s, and a high-temperature
T. With an iterative structure, SA disturbs s until T reaches a value less than the stop criterion. During
this process, in each iteration, a new candidate solution s’ is selected from the neighborhood of the
current solution. These solutions are compared, and the best one is chosen as the new current solution.
In some cases, a not improved solution is accepted to escape a local optimum and to continue searching
for better solutions. The probability of taking not improved solutions depends on the T parameter,
which decreases in each algorithm iteration using a control coefficient β. Since T starts with a high
value, random changes are allowed. However, as the temperature is lowered slowly, the number of
accepted changes decreases until the procedure reaches a stationary state. SA adopts different stochastic
methods to determine the acceptance probability of a new solution but commonly uses the algorithm
proposed by [48], where the energy change in a cooling process of a physical system is simulated.
Thermodynamics laws state that at a temperature T, the probability of energy rise of magnitude ∆E is
determined by the expression P(∆E) = e−∆E/kT, where k is the Boltzmann constant.

It is clear that when SA perturbs only one solution in each stage of its iterative process, it promotes
the solution space exploitation. Furthermore, by the use of its acceptance criteria, the solution space
exploration is encouraged. Although other heuristics, such as swarm and evolutionary algorithms,
have demonstrated to reach near-optimal solutions for diverse optimization problems, they consume
more computational resources than that used by SA. These algorithms disturb a set of candidate
solutions in each step of their iterative process, and this implies the evaluation of several solutions,
unlike SA, evaluating only one candidate solution.

The SA algorithm applied in this paper to locate corridors explores alternative routes between the
origin and destination node on each iteration, until the best one is found. The objective function considers
both the minimum distance and the feasibility costs of passing on the study region. For improving the
search procedure, diverse neighborhood structures are used, allowing found approximate solutions,
adjusted to the complexity and nature of the problem [49]. Algorithm 1, shows the procedure to locate
a near-optimal corridor. In this algorithm, si is the initial solution, m is the counter increasing until
reaching the Markov chain length (Lmarkov) defining the Metropolis cycle. Ptam is the size of a partial
route where a random segment is altered, and sopt is the optimal solution found by the algorithm. T0 is
the control parameter in SA, Tf is the stopping criterion, and βis the control coefficient.
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Algorithm 1. The SA algorithm to solve the corridor planning problem.

Data: corridor, ptam, T0, Tf, Lmarkov, β
Result: sopt

1 do
2 si ← random solution
3 while si not in corridor
4 s← si
5 while T0 ≤ Tf do
6 for m← {1, . . . , Lmarkov} do
7 do
8 s’← perturbation(s, ptam)
9 ptam ← modify(ptam)
10 while s’ not in corridor
11 ∆E← f (s’)–f (s)
12 if ∆E < 0 then
13 s← s’
14 else
15 P(∆E)← e−∆E/kT
16 α← Randomly selected value in (0,1]
17 if α ≤ P(∆E) then
18 s← s’
19 endif
20 endif
21 end for
22 T0 ← βT0
23 end while
24 sopt ← s

In this algorithm, lines 1–3 point out that a randomly created solution is accepted as the initial
solution if it is inside the corridor. The SA external cycle is shown in lines 5–23. In particular, lines
6–21 represent the Metropolis cycle: First, lines 7–10 describe the creation of an alternative solution,
in which all nodes must be inside the corridor. If a segment of the path has some node outside the
corridor, it is modified with the variable Ptam (lines 8–9), until the entire route is within the corridor.
Then, line 11 computes the difference in energy cost. Finally, the acceptance criteria is shown in lines
12–20. Line 22 indicates the updated criterion for the temperature control parameter. At the end of the
external cycle, the best solution is returned as the algorithm solution.

SA can distribute optimized routes along the corridor, which is only possible with other algorithms
if they modify their search procedure. The SA algorithm can generate alternate routes close to the
shortest one in the corridor with optimized costs when solving the optimization model presented in
relations (1)–(5). Since the SA algorithm generates local optimal solutions, it can find one or more
optimal global solutions, where some can be the same found by deterministic procedures such as the
Dijkstra procedure, since the problem may have more than one global optimal solution. The SA-based
algorithm proposed in this work seeks the optimal global route and finds a variety of optimized local
optimal routes meeting the restriction of being inside the corridor. The use of SA is a simpler alternative
to find optimized routes within a corridor, independently of the shortest route, which gives a choice of
alternative optimized routes for a pipeline installation if the shorter one is challenging to use in the
corridor for various unforeseen reasons.

The corridor planning problem solved in this work is encoded in a rectangular mesh of n rows
and m columns, where each node connects with eight neighboring nodes with constant distance. The
search space is determined based on the number of nodes in the network, z = n x m, such as it is 8z [50].
However, the mesh contour conditions should be considered to determine the total number of feasible
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routes connecting the origin and destination nodes. If reverse walks are restricted, the search domain
is reduced to 8 × 7z [51].

The initial solution used by the SA algorithm is created using the cumulative penalty costs matrix,
where indices correspond with the point coordinates. The rectangular mesh is generated using the
universal transversal Mercator (UTM) system. A greedy uninformed search procedure is used to create
the initial solution encoded by two integer-valued vectors containing the coordinates of the nodes
being part of the route. Figure 1 shows a candidate solution representing a path between (0,0) and
(5,5) points.
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The mechanism to find neighboring solutions builds pseudo-random paths between two points
selected at random in the current solution. The search for alternatives routes uses a matrix of visited
nodes to avoid using those that have been part of previous solutions. This procedure applies the
following steps:

1. Randomly select a point r1 from s.
2. Randomly select a second point r2 from s. The distance between r1 and r2 cannot exceed a

maximum distance previously defined.
3. Copy the points of s in locations 0 to r1 − 1 in s’.
4. Generate a pseudo-random path in s’ between nodes r1 and r2, through an informed search, giving

priority to the least visited cells.
5. Update the values of the cells that have been visited in the path pseudo-random between nodes r1

and r2.
6. Copy the second part of s from locations r2 + 1 up to n − 1 in s’.

Two conditions must be considered to avoid repeated movements, considered as tabu movements
in the pseudo-random paths. The first one verifies if a common point exists between s and the generated
pseudo-random path. If this point exists, s’ is created by merging s with the pseudo-random path using
this common point (Figure 2). The second condition is applied if the paths are not sharing a common
point. To merge the two nodes closest to the r2 point having the least distance between them are
searched for to be connected through the A* heuristic [52] (Figure 3).

The matrix of visited nodes (u,v) allows extending the exploration to refine the initial trajectory
through the physical restrictions existing during the search. Figure 4, shows this matrix, as well as the
current solution and the pseudo-random path generated between points r1 and r2 in green and cyan
colors, respectively.

Since these paths are not sharing a common point, the second criterion is applied to create an
alternative solution. First, the nearest points to r2 are identified, and a path between them is generated
using the A* algorithm. Figure 5 shows the resulting alternative solution s’, where (2,2) in the current
solution and (2,4) in the pseudo-random path are the nearest points to r2.

Figure 6 shows an example of a corridor in green color with limits in purple color. The shortest
route P is shown in red color and the route P1 obtained by the SA algorithm is shown in blue color.
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This route is feasible since it is contained in the corridor, complying with the mathematical model’s
constraint (4). The route P2 (in orange color) is infeasible since part of it is outside the corridor, and the
perturbation solution (s, ptam) function is used to repair it.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18 
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Once the stop condition of the algorithm is reached, the best solution’s values are mapped to the
UTM coordinates, and the corridor is displayed on the map using a GIS tool.

4. Experimental Results and Discussion

This section describes the platform used for the development of this work. First, a description
of the test problems used for experimentation is presented. Next, the control parameters of the SA
algorithm are shown. Finally, the experimental results are shown and the results obtained are depicted
by visualizing the routes through a GIS tool.

4.1. Test Problems

Three realistic scenarios with different dimensions are tested in the proposed approach.
The geographic information is provided by the National Institute of Statistics and Geography of
Mexico (INEGI). INEGI organizes the information of Mexico according to map scales. The digital
elevation model (DEM) and topography are used to generate the cumulative cost matrix. Figure 7
shows the organization in topographic charts of the Mexican regions at two scales (1:250,000 and
1:50,000). The 1:50,000 map scale is considered to calculate the distance of the nodes sequence p, in
kilometers (km), as follows:

dist(s, t) =
p.50
1000

(7)

For formulating the three test problems, the topographic charts shown in Table 1 are used. From
these topographic charts, the maximum elevation in the area comprising the first two scenarios is 80 m
above sea level, so in the present work, the half of this value (40 m) is taken as the emax value. For the
third scenario, 1/20 of the maximum elevation (5610 m above sea level) is used, so emax is set as 280.5.
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Table 1. Topographic charts that correspond to each problem.

Problem Dimension Topographic Charts

586 × 732 E14B49

585 × 1467 E14B59 Y E14B79

5341 × 6727 E14B41-49, E14B51-59, E14B61-69, E14B71-79 Y E14B81-89

Figure 8 shows the names of the topographic charts of the Mexican territory used in this
experimental study, which corresponds to the geographic information for the year 2015. The first test
problem is a small network of 586 × 732 nodes covering the Mexican port of Veracruz. The second one
consists of a medium-sized network of 585 × 1467 nodes, including the Joachín and Naranjos cities,
both in Veracruz state, México. Finally, the third problem is an extensive network of 5341 × 6727 nodes
comprising part of the Mexican states of Morelos, Guerrero, Puebla, and Veracruz.Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18 
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The topographic restrictions used for the test problems are based on a classification defined by the
feasibility penalties of the different topographic layers.

Table 2 shows the penalties used in the first two test problems and Table 3 shows those used in
the third one.



Appl. Sci. 2020, 10, 6190 11 of 17

Table 2. Penalization of the topographic layers of problems 1 and 2.

Layer Penalty Layer Penalty

Aqueduct 5 Ducts 5
Road track 6 Urban areas 8

Streets 5 Buildings 8
Bridges 10 Green areas 2

Water channel 8 Communication Inst. 7
Sub. its T. electric 9 Water bodies 8

Roads 5 Port Inst. 9
Railways 9 Ins. industrial 10

Roads 7 Communication lines 9
Airport 10 Water ponds 8

Cemeteries 8 Locations 6
Growing areas 1 Sports Inst. 9

Table 3. Penalization of the topographic layers of problem 3.

Layer Penalty Layer Penalty

Aqueduct 7 Villages 9
Railroad 9 Communication paths 10
Streets 8 Sports Inst. 7

Sub. its T. electric 8 Aviation runway 9
Cemetery 9 Miscellaneous Inst. 5

Green areas 1 Locations 8
Ducts 1 Industrial Inst. 10

Water bodies 8 Bridges 7
Buildings 9 Growing areas 1

4.2. Parameters of the Simulated Annealing Algorithm

Due to the stochastic nature of the SA algorithm, 30 independent runs are performed on the three
test scenarios to obtain experimental results. The values of the algorithm control parameters are shown
in Table 4.

Table 4. Tuned values of the algorithm control parameters.

Parameter Value

T0 0.9
Tf 0.0001
β 0.98

Lmarkov 10

The convergence test applying the tuned values of the control parameters for problem one is
shown in Figure 9. Once the control parameters are tuned with the best results, the experiments for the
three previously described instances are carried out.



Appl. Sci. 2020, 10, 6190 12 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18 

Table 4. Tuned values of the algorithm control parameters. 

Parameter Value 

T0 0.9 

Tf 0.0001 

β 0.98 

Lmarkov 10 

The convergence test applying the tuned values of the control parameters for problem one is 

shown in Figure 9. Once the control parameters are tuned with the best results, the experiments for 

the three previously described instances are carried out. 

 

Figure 9. Solution cost (distance) depending on the temperature. 

4.3. Experimental Results 

The experimental evaluation of the SA algorithm is carried out on a computer with Intel Xeon 

X5675/3.07GHz CPUs and 24 GB RAM. The algorithm is implemented using the C++ language and is 

compiled with GCC 4.9.4 on Linux 2.6-EL5. The results obtained by the SA algorithm on each test 

instance are described using several tables in the following paragraphs. They indicate the best 

solution value found, the mean value, and the standard deviation (SD) of these executions. In this 

work, a greedy BFS is chosen, which does not use a cost function to explore possible routes. This 

solution is used as the SA initial solution, and the comparison is carried out with the BFS strategy to 

show the quality of solutions obtained by SA within a corridor. BFS only generates a single solution, 

unlike the SA algorithm, which can produce multiple optimized local solutions that do not violate 

the restriction of leaving the corridor. When starting the search procedure with a solution that is not 

the global optimum obtained by a greedy BFS, it generates alternate routes within the corridor. 

Otherwise, if SA is initialized with a globally optimal solution, what happens is that the paths found 

by SA are very similar to each other and do not extend in the corridor, limiting the search space of 

the algorithm. SA seeks alternative routes with great diversity, which can be adjusted to the corridor's 

width. 

The corridor distances obtained by both the BFS strategy and the SA algorithms are shown. The 

results depicted in Tables 5 to 8 show the optimization that SA does with the initial solution obtained 

by the greedy-BFS strategy, and it is observed in the best solution found and in the average value 

obtained by SA. The objective of the comparison presented in these tables and Figures 10 and 11 is to 

have a quality measure and diversity that the routes obtained by SA have throughout the length and 

width of the corridor. Naturally, if we compare the quality of these routes with an algorithm getting 

the optimal global path, these would be of lower quality or some would be close to the global 

Figure 9. Solution cost (distance) depending on the temperature.

4.3. Experimental Results

The experimental evaluation of the SA algorithm is carried out on a computer with Intel Xeon
X5675/3.07GHz CPUs and 24 GB RAM. The algorithm is implemented using the C++ language and is
compiled with GCC 4.9.4 on Linux 2.6-EL5. The results obtained by the SA algorithm on each test
instance are described using several tables in the following paragraphs. They indicate the best solution
value found, the mean value, and the standard deviation (SD) of these executions. In this work, a
greedy BFS is chosen, which does not use a cost function to explore possible routes. This solution is
used as the SA initial solution, and the comparison is carried out with the BFS strategy to show the
quality of solutions obtained by SA within a corridor. BFS only generates a single solution, unlike the
SA algorithm, which can produce multiple optimized local solutions that do not violate the restriction
of leaving the corridor. When starting the search procedure with a solution that is not the global
optimum obtained by a greedy BFS, it generates alternate routes within the corridor. Otherwise, if SA
is initialized with a globally optimal solution, what happens is that the paths found by SA are very
similar to each other and do not extend in the corridor, limiting the search space of the algorithm. SA
seeks alternative routes with great diversity, which can be adjusted to the corridor’s width.

The corridor distances obtained by both the BFS strategy and the SA algorithms are shown.
The results depicted in Table 5, Table 6, Table 7, Table 8 show the optimization that SA does with the
initial solution obtained by the greedy-BFS strategy, and it is observed in the best solution found and
in the average value obtained by SA. The objective of the comparison presented in these tables and
Figures 10 and 11 is to have a quality measure and diversity that the routes obtained by SA have
throughout the length and width of the corridor. Naturally, if we compare the quality of these routes
with an algorithm getting the optimal global path, these would be of lower quality or some would be
close to the global optimum, but it would not have a diversity of routes in the corridor, which is the
objective of this work, i.e., quality and diversity.

The pseudo-random paths are created using 10%, 30%, 50%, and 70% of the maximum length of the
initial solution. The number of alternative routes generated by each execution is 452, using the values
of the parameters shown in Table 4. The corridor redesign may require the generation of alternative
routes to evaluate further solutions, which can be reached by modifying the algorithm parameters.

Table 5 shows the results obtained using random pseudo-paths with a maximum length of 10% of
the total length of the initial solution. The distances obtained by the compared algorithms greedy–BFS
vs. SA in the first problem are 35.75 and 21.15, for problem two are 76.4 and 49.4, and for problem
three are 416.75 and 301.4.
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Table 5. Cost of the best solution with a neighborhood size of 10% of the solution s.

Problem Greedy-BFS SA Average SD

586 × 732 715 423 428.70 4.26
585 × 1467 1528 988 998.76 6.50

5341 × 6727 8335 6028 6840.60 584.55

Table 6 shows the results obtained using pseudo-random paths with a maximum length of 30% of
the total length of the initial solution. The distances obtained by the compared algorithms are 35.75
and 24.4, 76.4 and 55.65, and 416.75 and 301.6 for the problems one, two, and three, respectively.

Table 6. Cost of the best solution with a neighborhood size of 30% of the solution s.

Problem Greedy-BFS SA Average SD

586 × 732 715 484 496.13 4.71
585 × 1467 1528 1113 1136.8 16.34

5341 × 6727 8335 6032 7146.9 416.75

Table 7 shows the results obtained using pseudo-random paths with a maximum length of 50% of
the total length. The distances obtained by the compared methods are 35.75 and 26.5, 76.4 and 59.2,
and 416.75 for problems one, two, and three, respectively.

Table 7. Cost of the best solution with a neighborhood size of 50% of the solution s.

Problem Greedy-BFS SA Average SD

586 × 732 715 530 537.83 4.93
585 × 1467 1528 1184 1202.13 7.85

5341 × 6727 8335 5968 7212.7 584.55

Finally, Table 8 shows the results obtained using pseudo-random paths with a maximum length
of 70% of the total length. The distances obtained by the compared algorithms are 35.75 and 27.25, 76.4
and 61.05, and 416.75 and 306.2 for problems one, two, and three, respectively.

Table 8. Cost of the best solution with a neighborhood size of 70% of the solution s.

Problem Greedy-BFS SA Average SD

586 × 732 715 545 554.23 3.4
585 × 1467 1528 1221 1235.13 6.34

5341 × 6727 8335 6004 7179.9 611.6

Figure 10 shows the behavior of the objective function concerning the size of the neighborhood
structure: Figure 10a is for problem one, and Figure 10b is for problem 2.

Figure 11 shows a graphical representation of the corridors obtained by the SA algorithm for
problems one (Figure 11a) and two (Figure 11b). For verifying that the solutions found by the SA
algorithm are feasible, it is necessary to visualize them using a GIS. The 10% neighborhood structure
allows finding better solutions with alternative routes (red routes) than the initial solution (pink routes).
The neighborhood structure using 30% and 50% of the initial solution finds good solutions (green and
yellow routes). Finally, the neighborhood structure using 70% of the initial solution allows refining the
initial trajectory very finely (purple routes).

Figure 11 shows the routes found inside the corridor with different neighborhood structures.
These routes do not follow the same path indicating that the configuration of alternate routes obtained
by SA presents a good diversity of independent paths since most of the routes found coincide only in
some sections, and additionally, SA allows a good quality of the local optimal solutions.
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The average time required for the SA algorithm to find its best solutions are 5.38, 13.3, and 520.76
s for problems one, two, and three, respectively.

5. Conclusions and Future Work

The corridor planning problem can be addressed as an optimization problem with topological
restrictions. This paper presents the SA algorithm’s implementation using a variable neighborhood
mechanism to generate different alternative routes and select the best one for this problem. By using a
guided pseudo-random search approach, the variable neighborhood structure explores alternative
routes improving the initial solution.
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The experimental results demonstrate that implementing the proposed mechanism in SA generates
alternative routes with quality and diversity. Likewise, the results obtained by the SA algorithm
significantly exceeds 18% over those gotten by the greedy method, this only indicates for comparative
purposes that SA obtains optimized routes, but it is not verified that SA gets the best solution. Moreover,
the implementation of the proposed neighborhood mechanism outweighs the greedy algorithm in
solving large-size problems. Applying a variable neighborhood mechanism in SA allows generating
diversity in routes, which is important if it is necessary to choose other alternative paths that respect a
corridor’s limits. With the results obtained in this work, the objective of finding routes with quality
and diversity is met. The SA algorithm solves three practical problems using real topographic data.
However, it can be used in a variety of problems finding the shortest route between two points on
realistic scenarios.

Future work can be proposed to develop a method fitting the curves of the impact zone (strip) of
the corridor to narrow the search. In this way, it is allowed to explore different alternate routes relatively
close to the initial solution without getting too far away. For improving the computation time used to
generate an initial solution, it is proposed to implement the techniques used in the MOGADOR method
and look for other random mechanisms generating a feasible initial solution in the shortest possible
time. The problem needs to be addressed as a multi-objective optimization problem. In addition, it is
possible to parallelize the method by its vector nature and the optimization algorithm.

Something very important for future work is to work on problems by dynamically varying
the values of the layers so that the costs of the links change depending on the set of selected links,
adapting a greedy uninformed search strategy, the breadth-first-search (BFS) algorithm with the same
neighborhood structure procedures used in this work to find multiple solutions and focus on finding
multiple global optimal paths.

Finally, many real problems have GIS information in different formats and scales that could make
the spatial analysis complicated. However, it is possible to convert the different data models to a raster
format, adapt the different scales to perform complex spatial analysis, and exploit the geographic
information available in diverse private and public sources.
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