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Abstract 

 
In this work, fatigue crack propagation life of a new 

microalloyed steel plate under the influence of constant 

load ratio was simulated by using artificial neural 

network (ANN). Numerous methodologies such as 

cycle by cycle prediction, prediction by correlation and 

finite element methods have been proposed for 

simulating fatigue life [1]. 

 

In this work, a simulation methodology has been 

used to estimate the crack growth rate and the Paris 

Law parameters (C and m) under constant amplitude 

fatigue loading by applying artificial neural network 

(ANN). The applied ANNs showed great potential for 

simulating the experimental fatigue crack growth 

complex data set. In this case especially by 

interpolation within the trial tested range.  

 

Keywords: Fatigue crack growth rate; Artificial 

Neural Network; Constant amplitude loading 

 

1. Introduction 
 
 In recent years neural networks have been 

successfully applied to a range of disciplines such as 

image processing and condition monitoring. Until now, 

there have been few studies which have addressed the 

application of ANNs to modeling the fatigue crack 

growth propagation in materials particularly in 

microalloyed steels [2]. ANNs are well known to be 

reliable to deal with large complex sets of data, which 

could serve as a powerful simulating computational 

method intended for prediction purposes too. 

 

 Most structural components generally contain 

defects like cracks either as a result of manufacturing, 

or localized damage in field operating loading 

conditions and in some cases by corrosion effects. The 

cracks may grow with time owing to fatigue 

principally, and will generally grow progressively 

faster. The residual strength of the structure, which is 

the failure strength as a function of crack size, 

decreases with increasing crack size. After a time the 

residual strength becomes so low that the structure may 

fail in service. So it is important to attempt to provide 

quantitative answers to the following questions: What 

is the residual strength as a function of crack size? 

What crack size can be tolerated under service 

loading? How long does it take for a crack to grow 

from a certain initial size, to the maximum permissible 

crack size? What is the service life of a structure when 

a crack-like flaw with a certain size is assumed to 

exist? Fatigue theories and fracture mechanics 

concepts can be applied to give an answer of these 

questions. Thus, the crack growth studies and life 

estimation procedures under fatigue, is essential to 

extend the safe service cycle of contemporary 

structures and components [3, 4]. 

 

Fatigue research has been one of the prime 

materials themes for almost 150 years and it has not 

lost any of its importance. Being a long well 

established discipline competes with some novel fields 

such as nanotechnology and bioscience. Unfortunately, 

only attracts public interest in the event of a 

spectacular structural failure. However, fatigue 

research has remained as fascinating as ever, 

principally, due to the increasing importance of new 

materials proposing novelty challenges. With today’s 

improved experimental facilities and computational 

means, long-standing issues can be dealt with in a 

more conclusive manner than so far [5]. 

 



Large structures like bridges, ships, oil rigs, 

and pipelines are made of microalloyed steels plates 

that could contain subcritical cracks as already 

mentioned. To assess the safe life of the structure we 

need to know how long (number of stress cycles to 

failure) the structure can last before one of these cracks 

grows to a length at which it propagates 

catastrophically (critical size). In the laboratory 

experimental data on fatigue crack propagation are 

obtained by cyclically loading specimens containing a 

suitable controlled length sharp crack. A cyclic stress 

range is described by σ = σmax – σmin, and a cyclic 

stress intensity factor range (∆K) due to the existing 

sharp crack can be defined by equation 1. 

 

∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 = ∆𝜎√𝜋𝑎          (1) 

 

From this equation, the initial sharp crack is 

denoted by “a”, and ∆K increases with time at constant 

tensile σ application as well as the initial crack length 

grows. It is known that the crack growth length per 

cycle (da/dN) increases with ∆K. In the steady-state the 

da/dN is described by the Paris law represented by 

equation 2. 

 
𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚      (2) 

 

C and m in equation 2 are material constants. 

If the initial crack length is given, and the cyclic 

loading pattern is well defined, the critical crack length 

at which the crack becomes unstable and propagates 

catastrophically leading to failure, can be known from 

the experimental fatigue data [6]. 

 

 The neural network used in the present study 

is the multilayer perceptron network using the back-

propagation algorithm. This network is a popular 

network for supervised training and reasonably 

computationally efficient for a range of applications. 

 

2. Experimental Procedure 
 

This research was carried out on a new 

microalloyed steel plate. The chemical composition 

and mechanical properties are shown in Tables 1 and 2 

respectively. The fatigue crack growth tests were 

performed using a single V-notch compact tension 

(CT) specimen with a 10 mm thickness Figure 1. The 

specimens were made in both directions to the rolling 

axis (L-T and T-L planes), but only the T-L direction 

crack growth experimental data [7] was used for the 

fatigue simulation. Fig. 1 illustrates the geometry and 

dimensions of the compact tension samples used in the 

experiments. A servo-hydraulic dynamic testing 

machine (MTS) having a load capacity of 50KN was 

used for the present research. An initial fatigue 

preckrack of 1.3 mm denoted by ai was introduced 

under mode I loading condition, and subsequently 

subjected to constant load amplitude fatigue with a 

load ratio (R) of 0.6 for all tested samples. All fatigue 

tests were carried out at a frequency of 5 Hz with a 

sinusoidal wave form under room temperature 

conditions. Crack lengths were measured using a 

compliance method with a COD extensometer and 

were also monitored using a travel optical microscope 

with a 10X magnification. The stress intensity factors 

at every instant ahead of the crack tip were calculated 

by using equations 3 and 4 [8]. 

 
Fig. 1 presents the geometry and dimensions of compact 
tension samples (length units are in mm). 

 

𝐾 =
𝑃𝑄

𝐵𝑊1/2 ∙ 𝑓(
𝑎

𝑤
)     (3) 
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𝑎

𝑤
) =

−13.32(
𝑎

𝑤
)2+14.72(

𝑎

𝑤
)3−5.6(

𝑎

𝑤
)4

(1−(
𝑎

𝑤
)3/2

     (4) 

 

Element Composition (%) 

C 0.0319 

Si 0.2355 

Mn 1.031 

P 0.003 

S 0.0026 

Cr 0.4243 

Mo 0.1674 

Ni 1.300 

Al 0.0520 

Co 0.0043 

Cu 0.0106 

Table 1 Shows the chemical composition of microalloyed 
steel. 
 
Direction σy 

MPa 

σUTS 

MPa 

%Def δ E 
GPa 

T-L 502  663 14.59 7.30 170.50 

L-T 501 681 14.13 7.07 163.35 



Table 2 shows the mechanical properties of microalloyed 
steel obtained from uniaxial tension test. 
 

3. Design of an ANN Model for Crack 

Growth Rate Simulation 
 

Different types of ANNs exist but the present 

research focuses exclusively the multilayer perceptron 

neural network using the back-propagation algorithm. 

This network has been chosen because it is one of the 

commonly network used for predictions of a numerous 

different phenomena’s also because the back-

propagation training algorithm is widely used, easily 

trained, relatively easy to implement and 

computationally efficient [2]. 

 

Figures 2 and 3 shows the schematic 

representation of the multilayer perceptron neural 

networks architecture having input, output and hidden 

layers used in this research to simulate the crack 

growth rate and the Paris parameters respectively. 

 
Fig. 2 represents schematic representation of the multilayer 
perceptron network for simulating the crack growth rate. 
 

 

Fig. 3 represents schematic representation of the multilayer 
perceptron network for simulating Paris Law parameters C 
and m. 
 

The networks have k inputs, m hidden units 

and n output units. The neurons or units of the network 

are connected by weights w. For instance, the bias 

neurons for modelling purposes are generally 

represented as a weight from input which is 

permanently set to 1. The output of a hidden unit is 

determined by forming a weighted linear combination 

of all the input values and adding the appropriate bias. 

The activation of a hidden neuron is obtained by 

transforming the linear sum of units which send output 

to hidden unit using a nonlinear activation function 

which in the present work is the sigmoid function [8]. 

 

The neural network was developed using 

freeware graphic interface software in java 

programming language and all tests were performed on 

a personal computer. 

 

The experimental data used to train the 

network was obtained from the experimental procedure 

described above for crack propagation under constant 

amplitude fatigue loading of experimental 

microalloyed steel. The network is configured for an 

input vector within the range 0-1 so that all crack 

propagation experimental values were normalized 

within the vector range. 

 

To determine the number of hidden layers and 

hidden units were selected empirically and taken in 

order to give the neural network a diamond shape. 

 

During training the network output Vcalculated 

may differ from the desired output Vreal as specified in 

the training pattern presented to the network. A 

measure of the efficiency of the network is 

instantaneous sum-squared difference (error) between 

Vreal and Vcalculated for the set of presented training 

patterns, (equation 5) [3]: 

 

𝐸𝑟𝑟 =
1

2
∑(𝑉𝑟𝑒𝑎𝑙 − 𝑉𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)

2     (5) 

 

The two crack growth parameters selected for 

predicting the crack growth rate were N as input and a 

as output values. In the case which predicts the Paris 

law parameters ∆K, R, and Kmax as inputs and da/dN as 

output values 

 

4. Experimental and Simulated Results 
 

The experimental values of crack length versus number 

of cycles in the T-L direction to the rolling axis for a 

load ratio R of 0.6 is presented in figure 4. 



 
Fig. 4 presents experimental values of the crack growth in 
T-L direction to the rolling axis. 
 

The simulated results of crack length versus 

number of cycles and comparison with the 

experimental data are presented in the next figures. 

 
Fig. 5 presents experimental values compared with 
simulated values at 5,000, 10,000, 30,000 and 60,000 
iterations. 

 
Fig. 6presents experimental values compared with 
simulated values at 5,000 iterations. 

 
Fig. 7presents experimental values compared with 
simulated values at 10,000 iterations. 

 
Fig. 8presents experimental values compared with 
simulated values at 30,000 iterations. 

 
Fig. 9presents experimental values compared with 
simulated values at 60,000 iterations. 
 
 The experimental values of crack growth rate 

versus ∆K values are in the T-L direction to the rolling 

axis for a load ratio R of 0.6 is presented in figure 10. 

Fig. 10presents experimental values of Paris Law Curve in 
T-L direction. 
 

The simulated results of crack growth rate 

versus ∆K values and comparison with the 

experimental data are presented in the next figures. 
 



Fig. 11presents experimental values compared with 
simulated values at 5,000, 10,000, 30,000 and 60,000 
iterations. 

 
Fig. 12presents experimental values compared with 
simulated values at 5,000 iterations. 

 
Fig. 13presents experimental values compared with 
simulated values at 10,000 iterations. 

 
Fig. 14presents experimental values compared with 
simulated values at 30,000 iterations. 

 
Fig. 15presents experimental values compared with 
simulated values at 60,000 iterations. 
 

5. Simulations by the ANN model 
 

The network training was implemented out of 

2 sets of experimental data leaving one set for the 

validation process. The adopted multi-layer perceptron 

neural network models were used to predict the crack 

growth rate and the Paris Law parameters for both the 

cases. The number of hidden units, error and number of 

iterations were chosen empirically and are presented in 

the next tables 

 

Iterations Hidden u. Hidden L. Error 

5,000 12 3 0.183592 
10,000 12 3 0.195318 
30,000 12 3 0.017877 

60,000 12 3 0.017001 

Table 3 shows hidden neurons, hidden layer for the crack 
growth rate case and the validation by means of the 
instantaneous sum-squared difference. 
 

Iterations Hidden u. Hidden L. Error 

5,000 24 3 0.116063 

10,000 24 3 0.011053 

30,000 24 3 0.009493 

60,000 24 3 0.005106 

Table 4 shows hidden neurons, hidden layer for the Paris 
Law parameters case and the validation by means of the 
instantaneous sum-squared difference. 
 

 
Fig. 16 shows graphical representation of the solution 
convergence in terms of process iterations 
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The simulated crack growth rate results have 

been presented in figures 5-9 respectively along with 

experimental findings for comparison. It is observed 

that the simulated crack a-N points follow the 

experimental ones quite well at 30,000 and 60,000 

iterations; however the simulated crack a-N at 5,000 

and 10,000 iterations reflects the typical accurate 

behavior of the crack growth rate phenomena as 

reported in literature. 

 

In the case of Paris Law Parameters the results 

have been plotted in figures 11-15 respectively along 

with experimental results for comparison. It is 

observed that the simulated Paris Law behavior is well 

reflected by the simulation process presenting a more 

accurate prediction at 30,000 and 60,000 iterations. 

 

A quantitative comparison between the 

experimental and simulated results for both crack 

growth rate and Paris Law parameters are presented in 

the next tables. 

 

Iterations Initial crack 

length (mm) 

Final crack 

length (mm) 

Experimental 4.831 11.411 

5,000 4.831 10.768 

10,000 4.831 10.824 

30,000 4.831 11.068 

60,000 4.831 11.032 

Table 5 presents the quantitative comparison between 
experimental and simulated values for crack growth rate 
prediction. 
 

Iterations da/dN (m) C m 

Exp. 5.5x10
-8

∆K
3.965

 5.5x10
-8

 3.965 

5,000 7.0x10
-8

∆K
4.095

 7.0x10
-8

 4.095 

10,000 6.4x10
-8

∆K
4.068

 6.4x10
-8

 4.068 

30,000 6.3x10
-8

∆K
4.087

 6.3x10
-8

 4.087 

60,000 6.2x10
-8

∆K
4.091

 6.2x10
-8

 4.091 

Table 6 presents the quantitative comparison between 
experimental and simulated values for Paris Law 
parameters prediction. 
 

6. Conclusions 
 

In this research, fatigue crack growth rate and 

Paris Law parameters of microalloyed experimental 

steel under the influence of constant load amplitude 

with a ratio R of 0.6 of T-L direction to the rolling axis 

was simulated by using artificial neural network 

(ANN). A data base consisting of 2 sets of 

experimental data for each of the above features was 

used to train the neural network architecture. It was 

later applied to simulate the crack growth rate and the 

Paris Law parameters for a set of experimental results. 

 

The simulated results were found to be in 

good agreement with the experimental discoveries. It 

has been demonstrated that neural networks are an 

important engineering computational tool due to the 

ability of learning key characteristics that are implicit 

in some phenomena’s (in this case exponential 

growth); then the neural network make use of them in 

problem prediction, where the estimate has a variable 

behavior but with asimilar behavior pattern over time. 
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