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Abstract: This work presents an optimization proposal to better the computational convergence time
in convection-diffusion and driven-cavity problems by applying a simulated annealing (SA) meta-
heuristic, obtaining optimal values in relaxation factors (RF) that optimize the problem convergence
during its numerical execution. These relaxation factors are tested in numerical models to accelerate
their computational convergence in a shorter time. The experimental results show that the relaxation
factors obtained by the SA algorithm improve the computational time of the problem convergence
regardless of user experience in the initial low-quality RF proposal.

Keywords: overlaps; neighborhood structure; amorphous shapes; paper waste; resource alloca-
tion; perturbations

1. Introduction

In the present day, Computational Fluid Dynamics (CFD) is a powerful tool for analyz-
ing and understanding various physical phenomena occurring in nature and in industrial
processes, which are objects of study in various fields of research. Generally, the numer-
ical solution of fluid flow, heat transfer and mass problems require an iterative process,
mainly due to their nonlinearity. In particular, for the development of computational
simulations in mechanical engineering, it is necessary to solve a set of partial differential
equations (PDE) using numerical techniques such as finite-difference, finite-element and
finite-volume methods. These methods convert a PDE to an algebraic equation system in a
discrete domain and find an approximate solution to the original problem. For example, to
simulate fluid-flow phenomena, or heat and mass transfer issues, they are first modeled as
nonlinear problems and then solved using iterative processes [1]. These processes com-
monly require high computational resources using robust convergence criteria, allowing
them to find a solution that satisfies the problem conditions. One of the most commonly
used criteria is to verify that the difference between the current and the previous solution
is minimal. Furthermore, the rate-of-change of the dependent variable (velocity, pressure
or temperature, for example) in the iterative process can be modified using over-relaxation
if this rate is accelerated or under-relaxation if it is reduced. In particular, under-relaxation
is very useful to solve nonlinear problems since it avoids iterative process divergence.

The study of the convergence properties of discretization-based methods to solve
nonlinear problems is essential to design effective procedures to reach solution in acceptable
times. The design of efficient techniques and algorithms solving complex optimization
problems has become one of the most important engineering research fields. Moreover,
the computational costs (spatial and temporal) are critical factors that must be addressed
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when solving large size and complex problems; therefore, several related studies have
been published in the scientific literature. For example, in reference [2], the temperature
distribution in a guarded hot plate apparatus used to measure the thermal conductivity
of insulating materials was analyzed. For validating the experimental results, authors
compared both analytical and numerical solutions and reported that the time required
to reach a steady-state temperature distribution was nearly 640 min. In reference [3], a
numerical solution of heat transmission problems with phase change is proposed. The
authors compare two algorithms to solve engineering problems: one is analytical, and
the other discretizes the equations governing the problem. By using relaxation factors
empirically, they first apply subrelaxation to stabilize the algorithm convergence and
then use over-relaxation to accelerate it. To obtain a sufficient temperature history for
phenomenon interpretation, and approximate time of 48 days is necessary.

Several methods trying to reduce the convergence time to solve heat transfer problems
have been proposed in light of these facts. One of them is the multigrid acceleration tech-
nique [4], which improves the convergence rate when solving CFD simulations with large
algebraic equation systems based on a numerical mesh modification. Furthermore, in refer-
ences [5,6], the Navier-Stokes equations modeling a two-dimensional Driven-Cavity prob-
lem are solved using the SIMPLE and SIMPLE Revised methods, and the Vorticity-Stream
function approach. The computational results indicate that each method’s convergence
acceleration depends on the Reynolds numbers and the mesh size.

In reference [7], a genetic algorithm (GA) is applied to solve the water-steam flow
thermohydraulic model of a direct solar steam system. The authors implement a chattering
detector to minimize the phase changes and avoid the process divergence. This approach
reduces the computational time up to 85% with a maximum error of less than 2%. In
references [8,9], the convergence rate to solve a radiative transfer equation with several
high-order and high-resolution schemes, applying the normalized weighting-factor method
(WFM), is evaluated. In reference [8], the WFM convergence time is compared with that
obtained by a deferred correction (DC) technique. Experimental results indicate a time
reduction rate of 23.1%, 12.6% and 56.1% of WFM over DC, using three different schemes.
In reference [9], the X-factor method is compared, in terms of computer time needed
to obtain a converged solution, with the widely used deferred-correction (DC) method
for calculating a two-dimensional cavity with emitting–absorbing–scattering gray media
using the discrete ordinates method. A time reduction rate of up to 211%, 181% and
219% is obtained. This solution is relative to the solution time obtained compared to the
deferred-correction method.

In references [10,11], optimal relaxation factors in the numerical solution of CFD prob-
lems are proposed. The convergence acceleration is achieved by automatically adjusting
the relaxation factors during the code execution based on the behavior of the residuals,
using a fuzzy logic technique, orienting under-relaxation in the discretized Navier-Stokes
equations. This method is evaluated by solving natural convection problems in square
cavities. The computational efficiency of this method is verified by comparing it with
the use of constant relaxation factors. A 35% reduction in convergence time is obtained
for the natural convection phenomenon. In reference [12], three CFD models of basic
cases of natural, forced and mixed convection in closed environments are depicted. A
procedure modifying parameters such as time step, mesh size and relaxation factors are
also evaluated. The authors analyze diverse variables such as pressure, density, body
forces, momentum, turbulent kinetic energy, specific dissipation rate, turbulent viscosity
and energy. Experimental analysis indicates that it is necessary to establish correct time
steps and relaxation factors to reduce the computational time in the convergence process,
which implies advanced knowledge of the problem and modeling expertise. In general,
when relaxation factors are proposed to ensure convergence, experience of those who are
solving the problem is required, and sometimes this experience improves computational
time but not the optimal solution. The relaxation factors must be between zero and one.
A factor value nearest to zero ensures convergence but high computational time. On the
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other hand, an amount closest to one accelerates the solution convergence, but it may tend
to diverge. In these cases, the use of heuristics and metaheuristics are viable alternative
approaches to solve these problems since they use computational resources efficiently.

To the best of our knowledge, no proposals have been found that optimize the con-
vergence time for convection-diffusion and driven-cavity problems with computational
heuristics. The closest study found in the existing literature was that using fuzzy logic.
It is clear that with the use of heuristics it is no longer necessary to have experience in
proposing good relaxation factors empirically.

The works presented in this introduction are the only works that are close to the
research presented in this one.

In this paper, a simulated annealing-based approach to optimize relaxation factors
and improve computational convergence in solving Convection-Diffusion and Driven-
Cavity problems is described. These relaxation factors are used as input data to apply
under-relaxation in the numerical methods solving Convection-Diffusion and Driven-
Cavity problems. Experimental results show that the computational convergence time
is improved by up to 70% compared with tests carried out with the relaxation factors
applied without first optimizing them with simulated annealing. The present work only
focuses on the study to increase the convergence of Convection-Diffusion and Driven-
Cavity problems. This work aims to present a heuristic goal to improve the convergence
time in convection-diffusion and driven-cavity problems without having the experience
of empirically proposing good relaxation factors. The main contribution is the adaptation
of the heuristic goal of the simulated annealing (SA) algorithm to find relaxation factors
in convection-diffusion and driven-cavity problems, so as to improve the convergence of
these problems. No similar method to the one proposed in this work has been found in the
literature.

The rest of this paper is organized as follows: Section 2 describes the physical and
mathematical models of the two problems addressed in this work. Section 3 presents
the proposed methodology to find the optimized relaxation factors helping solve these
problems with a reduction in the computational convergence time. Section 4 shows the
experimental results in which it is verified that the use of a simulated-annealing-based
approach obtains relaxation factors reducing the computational convergence time in the
problem convergence. Finally, Section 5 shows the conclusions derived from this work.

2. Paper Case Studies Definition

Two fluid-dynamics problems are evaluated: The Convection-Diffusion and the Driver-
Cavity problems. In the first one, the temperature is the dependent variable, and since the
velocities are considered constant, only one relaxation factor is utilized. In the second one,
the variables are the velocities and the pressure, so in this case, three relaxation factors are
needed.

2.1. The Convection-Diffusion Problem

This section shows an example to determine the temperature variation in a transient
state, T(x, y, t), in a two-dimensional domain, with constant properties: ρ = 2702 kg/m3,
Cp = 903 J/kg◦C, and λ = 237 W/m◦C. It is considered that (1) the variable is transported
by heat convection and conduction, and that through the dimensional medium, there is
no heat generation, and (2) the velocity components (u,v) are constant at any point in the
physical domain with: u = 2 m/s and v = 2 m/s. The medium is geometrically square
with a length of one meter H = 1 m, subject to boundary conditions, as shown in Figure 1.
For the diffusion convection problem, only the heat equation is solved.
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Figure 1. Heat convection-conduction problem (physical model) [13].

The mathematical model for case 1 presents the general convection-diffusion equation
for the variable of interest ∅ in the Cartesian system (Equation (1)). In this case, the variable
of interest is the temperature (T) (Equation (2)). By using the finite volume technique, the
discretization of the proposed mathematical problem is carried out, which is presented in
(Equation (3)) as the discrete equation in grouped coefficient notation [13].

∂(ρ∅)

∂t
+

∂(ρu∅)

∂x
+

∂(ρw∅)

∂y
=

∂

∂x

(
Γ

∂∅
∂x

)
+

∂

∂y

(
Γ

∂∅
∂y

)
+ S (1)

∂(ρT)
∂t

+
∂(ρuT)

∂x
+

∂(ρvT)
∂y

=
∂

∂x

(
λ

Cp

∂T
∂x

)
+

∂

∂y

(
λ

Cp

∂T
∂y

)
+ S (2)

aPTP = aETE + aW TW + aNTN + aSTS + b (3)

where S = 0, aE = De A(|Pee|) + max[−Fe, 0], aW = Dw A(|Pew|) + max[Fw, 0], aN =
Dn A(|Pen|) + max[−Fn, 0], aS = Ds A(|Pes|) + max[Fs, 0], aP = aE + aW + aN + aS + a0
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p = ρ0
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∆x∗∆y

∆t , and b = a0
pT0

p . The function A(|Pee|) is a function depending on the
numerical scheme that is being used, in this case power law, where De, Dw, Dn, Ds are
diffusive flows in the interface of the control volume; Fe, Fw, Fn, Fs are convective flows;
aE, aW , aN , aS are the coefficients of the discretized equation and b is the source term. The
power law scheme uses an exponential approximation, which improves the accuracy of the
method at a lower computational cost [13].

2.2. The Driven-Cavity Problem

The physical model of the hydrodynamic problem with its boundary conditions is
shown in Figure 2. It is a laminar and incompressible flow regime in a square cavity. The
fluid has µ = 1.817 × 10.5 kg/(m s), and ρ = 1.2047 kg/m3. The cavity size is Hx = Hy = 1 m,
and its upper wall moves with a uniform velocity U0 = 1.508 × 10−3 m/s, corresponding
to a Reynolds number of 400. The Driven-Cavity Problem is commonly used as a test case
because of its nonlinearity property. It can present instability when looking for a numerical
solution, and to reach convergence requires extensive modeling experience.
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Figure 2. Hydrodynamic problem, Driven-Cavity (physical model) [13].

In fluid dynamics problems, velocity components and a pressure gradient are involved.
The equations governing the hydrodynamic phenomenon are the mass and momentum
conservation equations (Equations (4)–(6) with Fx = Fy = 0) to couple the pressure vari-
able’s determination to resolve the hydrodynamic equations. In [13,14], they proposed
the SIMPLE algorithm to solve the two-dimensional case for a Newtonian and incom-
pressible fluid in a laminar regime. The resulting equations, adapted from the general
convection-diffusion equation (Equation (1)), are the mass equation (Equation (4)), the
Momentum equation u (Equation (5)), and the Momentum equation v (Equation (6)),
where ρ is the density of the medium, u and v are the speed components, t is the time
and µ is the dynamic viscosity. By using the finite volume technique, the discretiza-
tion of the proposed mathematical model is performed, and the result is represented
in Equation (7) as the discrete equation in grouped coefficient notation [13,14], where
aE = ρedu

e ∆y, aW = ρwdu
w∆y, aN = ρndv

n∆x, aS = ρsdv
s ∆x, aP = aE + aW + aN + aS + a0
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Using the finite volume technique, the discretization of the proposed mathematical
model is as follows:

aPP′P = aEP′E + aW P′W + aN P′N + aSP′S + b′ (7)

To solve the Driven-Cavity hydrodynamic problem, in this work the SIMPLE algo-
rithm presented in [14] is used.
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3. Methodology to Find Relaxation Factors with Simulated Annealing

An optimization problem is one whose goal is to find a solution s ∈ S with a minimum
cost value f(s) ∈ R, where S is a finite set of candidate solutions and f is the objective
function f :S→ R, which assigns a value representing the quality of each s. In particular,
s * is the optimum global, if f (s *) ≤ f (s), ∀s ∈ S. For this work, each s is built utilizing
the proposed values for the relaxation factors, and f (s) represents the convergence time
obtained for s. Then, to determine more appropriate relaxation factor values to reach
minimal convergence time in solving fluid-dynamics problems, a simulated annealing (SA)
algorithm is used, since it is an effective metaheuristic to find a near-optimal solution to
complex optimization problems in a reasonable time.

3.1. Simulated Annealing to Accelerate Convergence Time

The SA algorithm is one of the most widely used metaheuristics to solve complex
optimization problems [15,16]. It is inspired by the metal annealing process used in industry,
where the material properties are altered, until they reach an optimal state, by controlling
the temperature [17,18]. The annealing process begins with heating the material to a high
temperature and then cooling it slowly, maintaining a constant temperature at each stage
for a specific time, thereby achieving the material’s best physical configuration. The SA
algorithm uses the procedure proposed by Metropolis [19] to simulate the cooling process
and carry out local searches and, to escape local optimums, allows some worse movements.
Table 1 shows the analogy between metallurgy concepts, combinatorial optimization and
the heat transfer problem raised in this work.

Table 1. Analogy between the simulated annealing process in metallurgy and simulated annealing in
combinatorial optimization.

Metallurgy Combinatorial Optimization Heat Transfer Problem

Configuration Feasible solution
The heat transfer problem solution

complies with the constraint
satisfaction model

Energy configuration Solution cost Convergence time in the solution of
the heat transfer problem

Minimum energy Minimum value obtained
with the objective function

Minimum convergence time (tconv)
based on the discrete equation of

grouped coefficients and proposed
relaxation factors. Equation (6)

Fundamental
configuration Optimal solution Relaxation factors that obtain the

minimum value of tconv

Temperature Control parameter TSA Control parameter TSA

Thermodynamic
equilibrium

Markov chain length MCL, in
each Metropolis cycle (Met i),

with i = 1 to MCL

Neighborhood size defining the
number of neighboring solutions.

Temperature decrement Control coefficient α Control coefficient decrementing
TSA

Final temperature Stopping criterion Stopping criterion, the minimum
value reaching TSA

Metastable state Optimal local
Local optimal solution obtained

using relaxation factors to optimize
tconv.

Steady state Global optimal solution
Global optimal solution obtained

using relaxation factors to optimize
tconv.
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3.2. Cost Function to Optimize Relaxation Factors

If relaxation factors are incorporated in the discretized Equations (3) and (7), the
following equation is obtained:

s = aRF
P ∅P − [aE∅E + aW∅W + aN∅N + aS∅S] + bRF (8)

The goal is to minimize the convergence time of Equation (8). The adequate configura-
tion of relaxation factors values, by increasing or decreasing them, generates the solution
in a reduced time. For each iteration of the Metropolis cycle (Met i, with i = 1 to MCL) in
the SA algorithm, a candidate solution s is obtained using equation (8) with the relaxation
factors (RF) from a neighborhood structure described below. When solving the problem,
there is a convergence time tconv, defined as follows:

tconv = f (s,RF) (9)

The objective function minimizing the convergence time is as follows:

min tconv = min f (s,RF) (10)

3.3. Strategy to Optimize Relaxation Factors

The SA algorithm helps find the best configuration for different relaxation factors
minimizing the problem of convergence times. In the first problem, a relaxation factor
is sought for temperature, while in another three relaxation factors are needed, one for
pressure and the remaining for each velocity component, u and v. By having the best
relaxation factor values, it is possible to accelerate the convergence time to solve the
convection-diffusion and driven-cavity problems.

The methodology steps for reducing the convergence time utilizing the SA algorithm
are the follows:

1. Use Equation (10) as a cost function to conduct the SA iterative process.
2. Apply small perturbations in the relaxation factors for obtaining neighbor solutions

of s.
3. Mesh size relaxation: coarse mesh sizes are tested for partial results. For example, if

the appropriate mesh size for this problem obtained by a mesh independence analysis
is 61 × 61, its value is relaxed with coarse mesh values of 11 × 11 and 41 × 41.

4. Residual value relaxation: larger residual values are evaluated for partial results. For
example, if the appropriate residual value to achieve problem convergence is ε = 1 ×
10−10, its value is relaxed to a larger value of ε = 1 × 10−3.

5. At the end of the SA execution, the optimized relaxation factors are obtained. These
factors are compared with the appropriate values to evaluate the reduction of the
computational convergence time.

3.4. Neighborhood Structure

The theory of the SA algorithm shows that, for it to work correctly, any solution must
be reached from any other through a series of valid disturbances or movements [20,21]. The
neighbourhood of a candidate solution s, named N(s), is the set of possible new solutions
generated by applying small perturbation in s. For this work, the perturbations are applied
to the relaxation factors to reduce convergence time and to reach a problem solution. An
important decision in the SA algorithm is the neighborhood structure definition, i.e., the
way to establish a new solution (a type of disturbance). The SA theoretical results show
that it is enough to demand that any solution can be reached from another solution through
a series of valid movements called perturbations, or movements [21,22]. For this work,
the neighborhood structure does not perform disturbances since it chooses a decreased or
increased value of ±0.02 (value obtained through a sensitivity analysis of this parameter
based on the value of the valid interval of 0 < RF < 1.). The 0.02 tuned value allows a
fast SA convergence without being trapped in a low-quality optimal local solution. For
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example, if the value is decreased from 0.02 to 0.002, the SA is slower to find an optimal
time of convergence, according to the RF found with SA for the convection-diffusion
and driven-cavity problems analyzed in this work. If more than one relaxation factor is
disturbed, one of them is first selected at random, and then it is updated, leaving the rest
unchanged.

3.5. Simulated Annealing Algorithm

Algorithm 1 presents the implementation of the SA-based approach to finding a
near-optimal configuration of the relaxation factors to solve convection-diffusion and
driven-cavity problems. At first, the algorithm diversifies the search by accepting better or
worse solutions interchangeably, but, as the iterative process progresses, it is increasingly
challenging to accept worse solutions, due to the SA acceptance criterion.

Algorithm 1. The SA-based algorithm to solve convection-diffusion and driven-cavity problems.

1. Select an initial control parameter T0 > 0
2. TSA = T0
3. α = Cooling velocity
4. MCL = Neighborhood size
5. Tf = Stop criterion value
6. s = Initial solution (RF)
f (s,RF) = Solution cost
N(s,RF) = Neighborhood function
7. repeat // External cycle
8. repeat // Internal cycle
9. select s’ ∈ N(s,RF)
s’ = Solution with new relaxation factors
10. δ = f (s’,RF) − f (s,RF)
11. if δ < 0 then s = s’
12. else
13. Generate randomly u ∈ U
14. if u < e−δ/TSA then s = s’
15. end if
16. until reaching MCL
17. TSA = α (TSA)
18. until TSA ≤ Tf

First, the initialization steps are carried out in lines 1–6. The value of the control
parameter T0 must ensure a high probability of accepting worse movements initially.
This value is obtained by identifying the best value positively influencing the solution
quality [23]. TSA is the variable controlling the SA external cycle, α is the coefficient used
to adjust TSA in each iteration, Tf represents the stop criterion value and s is the initial
candidate solution. Furthermore, the Markov Chain Length (MCL) is used to control the SA
internal cycle, allowing a stable state to be reached for each TSA value. The neighborhood
size is MCL = NF × CN, where NF is the number of relaxation factors and CN is the
number of factor changes. In this work, two changes are used: increasing and decreasing a
relaxation factor.

The SA external cycle is implemented in lines 7–18. It includes the internal cycle and
the decrease of TSA until it reaches the stop value. The SA internal cycle is shown in lines
8–16, which is controlled by the MCL value. First, a neighbor solution s’ is computed
according to the neighborhood structure, its cost value f (s’,RF) is calculated, and the
difference between the current solution cost value is obtained. Lines 11–15 define the
acceptance criterion for a new solution. If s’ improves the solution cost, it replaces s.
Otherwise, an s’ is accepted as the current solution using Boltzmann’s probability function.
This acceptance criterion allows for the escape from one optimum local, which makes SA
more efficient. It is important to emphasize that with acceptance probability having high
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TSA values, most of the neighboring solutions are accepted, and for low TSA values, worse
movements are rejected.

4. Computational Results

This computational study was carried out on a computer with Intel Core i7-3612QM
2.10 GHz CPUs and 8 GB RAM, using a 64-bits Windows 7 SO, and Visual C++ 2010.

The results could not be compared with previous works because no techniques were
found proposing to improve convergence for convection-diffusion and driven-cavity prob-
lems. The closest approach found in the existing literature to improve these problems’
convergence were techniques using Reynolds numbers and mesh size. In our case, the
convergence acceleration depends only on finding the optimal RF.

4.1. CASE 1: Convection-Diffusion Problem

Figure 3 shows the mesh independence analysis for the problem convergence, where
it is observed that after the 101 × 101 mesh, qualitative differences are minimal. This case
can be verified qualitatively in [13], where is shown the exact solution of the problem.

Figure 3. Temperature profile for CASE 1: Convection-diffusion problem.

Table 2 shows the convection-diffusion problem analysis where the RFs that help
to converge the solution more efficiently are varied. It is observed that the best results
are obtained when the value of both parameters is the highest (RF and ∆t). Convergence
analysis is observed in time when the parameters that help to converge the solution more
efficiently to an adequate ∆t of time are changed.

Table 3 shows the tuned values of the SA control parameters for the Convection-
Diffusion problem.
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Table 2. RF and ∆t variation and errors obtained with a 101 × 101 mesh.

RF
(Relaxation Factor) ∆t Time

(s) Iterations Maximum
Error

0.5 0.1 2.615 377 9.1 × 10−11

0.9 0.1 0.685 80 9.6 × 10−11

0.4 1 3.22 526 9.9 × 10−11

0.5 1 2.338 363 8.73 × 10−11

0.9 1 0.597 71 7.6 × 10−11

0.4 10 3.181 523 9.9 × 10−11

0.5 10 2.304 362 8.2 × 10−11

0.9 10 0.526 70 7.8 × 10−11

Table 3. Simulated annealing (SA) parameter values for the convection-diffusion problem.

Parameter Value

T0 2.00
Tf 0.01

MCL 2.00
α 0.965

Figure 4 shows the sensitivity analysis for Table 3 values. The acceptance probability
concerning the number of SA iterations for the convection-diffusion problem, and one
uniform distribution of the worse solutions through the algorithm execution at equal
iteration intervals, are shown. It is observed that in the 90–100 probability interval, the
number of worse solutions is small, unlike for the 0–10 range, where the number of these
solutions is high. In Figure 4, each red point represents a solution generated by the
Convection-diffusion problem in each SA iteration. The time it takes for SA to run is
approximately 14 min, applying a mesh and relaxed to the Convection-diffusion problem.
The convergence time of the convection-diffusion problem (Equation (10)) is evaluated as
the SA cost function.

Figure 4. Sensibility analysis for SA parameters.

These values indicate that the number of worse solutions accepted during the entire
execution of SA is minimal compared to the number of better solution accepted. When SA
begins to iterate the probability of accepting worse solutions, it decreases until reaching
the convergence in iteration 105 where the acceptance rate of worse solutions is not more
than 10%. Then, at the end of the SA execution, this process stabilizes the search of
solutions improving the current solution. It is essential to accept some worse solutions
at the beginning of the SA algorithm so that the search process escapes from optimum
locals and allows finding better solutions at the end of its execution. With SA’s behavior
presented in Figure 3, the quality of the tuned parameters shown in Table 3 is verified.
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Since SA is a stochastic method, it is necessary to analyze results with a minimum
of 30 executions for each problem, and for each of the relaxed factors. Table 4 shows the
convection-diffusion problem results, with a 41 × 41 mesh and a residual value of ε = 1 ×
10−5. The optimized relaxation factor for the temperature (RFT) and the convergence time
(tconv) are also displayed. The range obtained is for 30 executions of tconv is 0.025 s, with
0.01, 0.026 and 0.019 s as minimum, maximum and average times, respectively. The mode
and the standard deviation are 0.018 and 0.00435 s. With these results, it is clear that the
convergence time of the 30 tests does not reach any high values, having good behavior
according to the standard deviation.

Table 4. Executions performed by SA for a 41 × 41 mesh and a residual value of ε = 1 × 10−5, for the
convection-diffusion problem.

No. RFT tconv No. RFT tconv

1 0.967 0.013 16 0.928 0.016
2 0.990 0.010 17 0.921 0.016
3 0.975 0.011 18 0.925 0.017
4 0.976 0.012 19 0.930 0.015
5 0.971 0.013 20 0.870 0.022
6 0.880 0.020 21 0.854 0.024
7 0.889 0.019 22 0.860 0.023
8 0.876 0.020 23 0.831 0.026
9 0.897 0.018 24 0.858 0.023

10 0.900 0.018 25 0.859 0.023
11 0.831 0.025 26 0.844 0.025
12 0.880 0.021 27 0.849 0.024
13 0.908 0.018 28 0.910 0.019
14 0.903 0.019 29 0.913 0.018
15 0.910 0.017 30 0.920 0.017

Figure 5 shows the tconv behavior concerning RFT shown in Table 3. With a least-
squares approximation, it is observed that there exists an inversely proportional relation-
ship, i.e., if RFT increases, tconv decreases. But many points enclosed by red circles show
that with a small decrease in RFT, tconv tends to increase, which indicates that a directly pro-
portional trend is not followed. It is important to clarify that Figure 5 shows the relaxation
factors optimized by the SA algorithm in the 0.83–0.99 interval. The behavior in a range
inferior to 0.83 may be different. For example with an RFT = 0.01, the convergence time in
the convection-diffusion problem is 169.13 s, which shows that there is no linear regression
behavior in the data.

Figure 5. Behavior of the convergence time tconv of the Convection-Diffusion problem depending on
the relaxation factor.
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Table 5 shows the convection-diffusion problem’s tconv results with the RFT values
found by the SA algorithm. Three tests are carried out for different mesh sizes and a
relaxed residual value of ε = 1 × 10−5. The best values found are compared with the RFT
without optimizing. It is observed that for each mesh size, tconv is improved by more than
60% using the RFT found by SA, reaching above 90% with a 41 × 41 mesh. By comparing
the worst time found by SA (Table 3), which is 0.026 s, in Table 5 is it shown that for a
41 × 1 mesh, tconv continues to improve above 80%. This indicates that any SA solution is
efficient in reducing the tconv of the convection-diffusion problem. The RF value without
optimizing presented in Table 5 is the initial value that SA uses in f (s,RF) of Equation (10).
This value is taken to demonstrate that SA can optimize RF to reduce the convergence
time of the convection-diffusion problem because an RF was not found in the literature
to make a comparison with the results obtained in this work. Table 5 shows that SA can
achieve very good RF values that improve the problem’s convergence time, starting from a
very bad RF value. The literature indicates that SA efficiently optimizes its cost function,
regardless of the initial solution’s quality.

Table 5. Comparison of convergence times obtained from the convection-diffusion problem, applying
RFs obtained with SA vs. RF not optimized, with different mesh sizes and a relaxed residual value of
ε = 1 × 10−5.

Mesh Without
Optimizing RFT

tconv SA RFT tconv % Improvement

11 × 11 0.2 0.003 0.66 0.001 67
41 × 41 0.2 0.137 0.99 0.010 93
61 × 61 0.2 0.258 0.78 0.027 81

The best three RFT values found by the SA algorithm are taken from Table 4, and
are evaluated with an unrelaxed 61 × 61 mesh and one unrelaxed residual value of
ε = 1 × 10−10. The results are compared with the RFT without optimizing and they are
shown in Table 6, where it is observed that for the first test using the RFT found by SA, there
is a 60% improvement in tconv, while in the remaining two cases there is an improvement
of more than 70%.

Table 6. Comparison of convergence times obtained from the convection-diffusion problem, applying
the RFs obtained with SA vs. RF not optimized with residual value of ε = 1 × 10−10.

Mesh Without
Optimizing RFT

tconv SA RFT tconv % Improvement

61 × 61 0.4 0.208 0.66 0.084 60
61 × 61 0.4 0.208 0.88 0.034 83
61 × 61 0.4 0.208 0.78 0.054 74

The average time of the SA algorithm to get the optimal RFT with the residual value
of ε = 1 × 10−5 and relaxed 41 × 41 mesh is 0.1135 s. As is shown in Table 6, this time is
higher than the tconv obtained using the optimized RF and the unrelaxed residual value of ε
= 1 × 10−10 and the unrelaxed 61 × 61 mesh, but it is less than the tconv used with the RFT
without optimizing. For example, when applying the optimized RFT of 0.66, the solution
converges in 0.085 s. If the average time used to obtain this RFT is added, the total time
applied to solve the problem is 0.1985 s. This result continues to be less than the times
obtained when using the RFT without optimizing presented in Table 6.

4.2. CASE 2: Driven-Cavity Hydrodynamic Problem

Figure 6 presents the mesh independence study. It can be observed that it is possible
to work with a 61 × 61 mesh since its changes are not significant. A larger mesh naturally
implies a higher computational cost.
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Figure 6. Velocity distribution for different mesh sizes; (a) spatial mesh for u. (b) spatial mesh for v.

Table 7 shows the Driven-cavity hydrodynamic problem analysis, where the RFs help
to a more efficient solution convergence. It is observed that there is no clear behavior in the
results showing the best values (RF) giving a better convergence. The convergence analysis
is observed in time where the parameters that help to converge the solution more efficiently
to an adequate ∆t of time are changed. The obtained errors in the problem convergence are
also shown.

Table 7. Relaxation factors (RF) and ∆t variation and errors obtained with a 61 × 61 mesh.

RF
∆t tconv

Maximal Error Found to Each Variable

RFu RFv RFp u v p

0.8 0.8 0.2 0.1 4378.92 9.99× 10−11 9.65× 10−11 3.10× 10−15

0.6 0.4 0.2 0.1 1029.28 6.68× 10−11 9.99× 10−11 2.53× 10−13

0.5 0.5 0.1 0.1 864.81 9.68× 10−11 9.85× 10−11 2.02× 10−12

0.1 0.1 0.9 0.1 5020.11 9.99× 10−11 9.66× 10−11 3.10× 10−14

0.1 0.1 0.1 0.1 4289.98 9.99× 10−11 9.55× 10−11 2.41× 10−15

0.8 0.8 0.2 0.4 177.34 9.98× 10−11 9.89× 10−11 1.51× 10−11

0.6 0.4 0.2 0.4 317.04 6.71× 10−11 9.99× 10−11 6.40× 10−12

0.5 0.5 0.1 0.4 592.36 4.96× 10−11 5.01× 10−11 9.99× 10−11

0.1 0.1 0.9 0.4 1389.47 9.96× 10−11 9.65× 10−11 4.35× 10−14

0.1 0.1 0.1 0.4 1256.79 9.91× 10−11 9.72× 10−11 4.38× 10−12

0.8 0.8 0.2 0.5 134.89 9.99× 10−11 9.95× 10−11 4.34× 10−11

0.6 0.4 0.2 0.5 258.83 6.7× 10−11 9.99× 10−11 1.07× 10−11

0.5 0.5 0.1 0.5 701.96 2.06× 10−11 2.21× 10−11 9.99× 10−11

0.1 0.1 0.9 0.5 1098.42 9.9× 10−11 9.6× 10−11 6.5× 10−14

0.1 0.1 0.1 0.5 1256.05 9.99× 10−11 9.76× 10−11 7.67× 10−12

Table 8 shows the tuned values of the SA control parameters for the Driven-Cavity
problem.

Table 8. Tuned values of the SA parameters for the driven-cavity problem.

Parameter Value

T0 2.00
Tf 0.01

MCL 6.00
α 0.95

Table 9 shows the thirty executions of the SA algorithm with an 11 × 11 mesh and
a residual value of ε = 1 × 10−5. The optimized RFs and the convergence time obtained
from the Driven-Cavity problem are displayed. The range obtained in the tests concerning
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the tconv is 0.016 s, with 0.023, 0.039 and 0.032 s as minimum, maximum, and average
times. The mode and standard deviation are 0.035 and 0.00438 s. It is observed that the
convergence times of the 30 executions for the driven-cavity problem do not reach any
high values and have good behavior according to the standard deviation.

Table 9. Executions performed by SA for an 11 × 11 mesh and a residual value of ε = 1× 10−5, for
the driven-cavity problem.

No. RFu RFv RFp tconv No. RFu RFv RFp tconv

1 0.91 0.72 0.24 0.028 16 0.97 0.85 0.27 0.023
2 0.64 0.62 0.22 0.037 17 0.84 0.52 0.23 0.035
3 0.89 0.88 0.43 0.034 18 0.95 0.72 0.23 0.028
4 0.99 0.55 0.46 0.038 19 0.69 0.89 0.22 0.032
5 0.78 0.80 0.44 0.036 20 0.61 0.89 0.21 0.036
6 0.92 0.64 0.61 0.035 21 0.93 0.99 0.54 0.030
7 0.62 0.60 0.22 0.036 22 0.91 0.95 0.55 0.024
8 0.82 0.54 0.32 0.035 23 0.85 0.83 0.56 0.035
9 0.97 0.99 0.53 0.029 24 0.90 0.95 0.28 0.027

10 0.99 0.93 0.55 0.031 25 0.86 0.40 0.41 0.037
11 0.65 0.51 0.19 0.039 26 0.88 0.90 0.28 0.026
12 0.85 0.75 0.17 0.030 27 0.94 0.50 0.37 0.032
13 0.86 0.72 0.17 0.031 28 0.92 0.48 0.38 0.034
14 0.68 0.78 0.23 0.035 29 0.81 0.73 0.25 0.027
15 0.93 0.79 0.24 0.026 30 0.99 0.55 0.34 0.030

Figure 7 shows the tconv behavior concerning the three RF presented in Table 9. The
convergence time (tconv × 10−3) is shown as a label for each coordinate (RFu, RFv and
FRp). It is observed that the tconv presents a slight tendency to decrease when the relaxation
factors increase, but this behavior is not entirely proportional as it happens in the first
problem. The best tconv appears as a red circle, and a blue circle represents the worst tconv.
There are high convergence times with large values in the relaxation factors, and it is
observed that the convergence value (yellow circle) that is most repeated (the mode value)
is where the relaxation factors have small values and where some have large values. These
values indicate that proportionality behavior for this problem cannot be inferred.

Figure 7. Behavior of tconv of the Driven-Cavity problem depending on RFs for an 11 × 11 mesh
and a residual value of ε = 1× 10−5.

Table 10 shows the tconv values with the relaxation factors found by SA. Three tests are
carried out for different mesh sizes and a relaxed residual value of ε = 1 × 10−5. The best
values found by SA are compared with the RF without optimizing. It is observed that for
each mesh size, tconv is improved by more than 70% using the RFs found by SA, reaching
above 85% with a 61 × 61 mesh. By comparing the worst time of 0.039 s found by SA, in
Table 10 is observed that for an 11 × 11 mesh, tconv improves above 65%. These results
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are very similar to those reached with the first case study, and demonstrate that the SA
algorithm is an effective approach to reduce the convergence time for this class of problems.
The RF values without optimizing presented in Table 10 is the initial value that SA uses
in f (s,RF) of Equation (10). This value is taken to demonstrate that SA can optimize RF to
reduce the convergence time of the driven-cavity problems because an RF was not found in
the literature to make a comparison with the results obtained in this work. Table 10 shows
that SA can achieve very good RF values that improve the problem’s convergence time,
starting from a very bad RF value. The literature indicates that SA efficiently optimizes its
cost function, regardless of the initial solution’s quality.

Table 10. Comparison of the convergence times obtained from the driven-cavity problem, applying
the relaxation factors obtained with SA vs. RF not optimized, with different mesh sizes and a relaxed
residual value of ε = 1 × 10−5.

Mesh
Without Optimizing SA

% Improvement
RFu RFv RFp tconv RFu RFv RFp tconv

11 × 11 0.2 0.2 0.1 0.113 0.82 0.87 0.27 0.023 80
41 × 41 0.2 0.2 0.1 2.981 0.43 0.84 0.51 0.694 76
61 × 61 0.2 0.2 0.1 12.006 0.87 0.58 0.42 1.629 86

Figure 8 presents the behavior of each internal cycle of the SA algorithm concerning
the tconv value of the Driven-Cavity problem. For each cycle (Met) with a constant TSA
value, a fixed number of solutions are evaluated. It is observed that as the temperature
of each cycle is low, the tconv is reduced. When SA reaches its cooling point, the shortest
tconv is achieved. For example, a tconv between 470 to 500 s is required by the Met-1 cycle,
but between 150 to 200 s by the Met-7 cycle. These values verify that when applying the
SA algorithm, it reduced convergence time of the problem, and although short times were
evaluated, it is important to remember that the SA tests were carried out for relaxed values
of the problem (mesh size and residual value).

Figure 8. Convergence time of the Driven-Cavity problem with SA.

Figure 9 graphically shows the results obtained in Table 8, for the different mesh
sizes with the proposed RFs and those obtained with the SA algorithm. tconv is compared
concerning the number of iterations required to solve the Driven-Cavity problem. It
is observed that when comparing the different mesh sizes and relaxation factors, the
computational time needed to solve the problem varies. When the RFs found by SA are



Mathematics 2021, 9, 748 16 of 19

used, the tconv is improved, decreasing the number of iterations required to obtain a solution
for each mesh size. The behavior is opposite when using the RFs values without optimizing,
since tconv increases considerably, and the number of iterations used, with an unrelaxed
61 × 61 mesh.

Figure 9. Comparison of tconv with respect to the number of iterations for the solution of the Driven-
Cavity problem with different relaxation factors (those proposed and those found with SA).

Table 11 presents the results of the Driven-Cavity problem using the RFs optimized by
the SA algorithm. These factors are used without relaxing the mesh size and the residual
value, and the results are compared with those obtained in the problem applying RFs
without optimizing. The optimized RFs offer a significant improvement in convergence,
since the computation time is reduced by up to 70% compared to those proposed without
optimizing. Even with a very relaxed mesh, such as the 11 × 11 mesh for the SA tests
(Table 9), it is observed that very good convergence times are obtained for the Driven-
Cavity problem (Table 11) when the RFs shown in Table 9 are used without the relaxed
mesh size and residual value.

Table 11. Comparison of convergence times obtained from the Driven-Cavity problem, applying the
relaxation factors obtained with SA vs. RF not optimized, with mesh and residual unrelaxed values.

Mesh
Without Optimizing SA

% Improvement
Ru RFv RFp tconv RFu RFv RFp tconv

61 × 61 0.2 0.2 0.1 528.54 0.82 0.87 0.27 90.08 82
61 × 61 0.2 0.2 0.1 528.54 0.43 0.84 0.51 103.635 80
61 × 61 0.2 0.2 0.1 528.54 0.87 0.58 0.42 96.535 81

The average time of the SA algorithm to obtain the three optimal RFs with a residual
value of ε = 1 × 10−5 and a relaxed 11 × 11 mesh is 0.2916 s. As seen in Table 11, this time
is less than the tconv obtained using the unrelaxed parameters residual of ε = 1 × 10−10

and a 61 × 61 mesh. This allows optimization of RFs, improving the convergence time
of the problem in very short times. For example, when applying the optimized RFs (0.43,
0.84, 0.51), the solution converges at 103.635 s, and the total time to solve the problem is
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103.9266 s. This result is less than those obtained with the RF values without optimizing
presented in Table 11.

Figures 10 and 11, show the results obtained for the Driven-Cavity problem’s velocity
components concerning the reference [23]. The results shown are obtained based on the
relaxation factors optimized by the SA algorithm. The continuous line represents the
present work results, and the points in red are those obtained by reference [23]. It is
observed that the behavior by the velocities within the problem is very similar. Here u
and v are velocities in x and y respectively. The variables because they are in an iterative
process represent estimated values, so to denote this the symbol * is added (u*, v*, x*, y*).

Figure 10. Velocity components within the cavity.

Figure 11. Velocity components within the cavity.

5. Conclusions

It is concluded that the proposed methodology using the SA algorithm is an effective
alternative to find the optimized relaxation factors helping to reduce the computational
convergence time of the two studied problems, the Convection-Diffusion and the Driven-
Cavity problems, since each of the 30 executions of SA present excellent results for each one.
This implies that with a single execution of the SA algorithm, well-optimized relaxation
factors can be found, reducing the computational convergence time in these problems. The
Convection-Diffusion problem results show that the convergence time is improved to more
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than 60% using the relaxation factors found by SA, compared with the results obtained
using RF without optimizing.

For the Driven-Cavity problem, using the best configuration of the three relaxation
factors found by the SA algorithm, the computational time improvement is up to 80%
compared with the factors without optimizing. With heuristics, it is possible to find suitable
factors without the need for expertise, whereas an empirical approach requires expertise
on the part of the investigator.

The convergence times in both problems do not show proportional behavior clearly.
What they do show is that when a small increase or decrease is made in a relaxation factor,
the convergence time can increase or decrease and, in the Driven-Cavity problem that uses
three relaxation factors, this conclusion becomes more visible. This convergence behavior
based on relaxation factors confirms what is presented in the literature. Therefore, it can
be affirmed that the SA algorithm is an effective technique to reduce the computational
convergence time of problems involving CFD studies.

It also observed that with a relaxed 11 × 11 mesh, improved relaxation factors are
still obtained to solve the Driven-Cavity problem, and result in reduced computational
convergence times than those without relaxing any parameters. This allows SA to find
optimized relaxation factors in very short times.

According to the time required by the SA algorithm to obtain the optimized relaxation
factors for each of the Convection-Diffusion and Driven-Cavity problems, SA use is a
very attractive approach. This is better observed in the Driven-Cavity problem, since the
reduction in convergence time added to the time that SA needs to obtain the optimized
relaxation factors, allows a very good reduction in convergence time to find the solution.

The present work’s contribution is to implement a technique to find the optimal
RF to improve the convergence of the convection-diffusion and driven-cavity problems.
Other authors do not do this and focus more on working with mesh sizes and of Reynolds
numbers, or use an under-relaxation scheme with fuzzy logic.

6. Future Work

To reduce the time in which the optimized relaxation factors of the Driven-Cavity
problem are obtained, work will be done to parallelize the SA algorithm using paralleliza-
tion independent of SA, generating multiple executions of SA in parallel as applied in [24],
or performing a parallelization of the metropolis cycle as applied in [25]. Either of the two
parallelization techniques used will allow a reduction in SA execution time of over 80%,
when using 10 central processing units for the execution of the SA algorithm designed
to work in parallel. These techniques can be implemented in SA for any type of problem
transparently, regardless of whether they are nonlinear or linear problems, with special
characteristics such as discrete or continuous optimization.
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