
Relaxation of Job Shop Scheduling Problem using a Bipartite Graph

Marco Antonio Cruz-Chávez
1
, Alina Martínez-Oropeza

1
, E. Y. Ávila Melgar, Rafael Rivera López

2

1CIICAp, Universidad Autónoma del Estado de Morelos

Avenida Universidad 1001. Col. Chamilpa, C.P. 62209. Cuernavaca, Morelos.

MÉXICO

{mcruz, alinam,erikay}@uaem.mx
2Departamento de Sistemas y Computación, Instituto Tecnológico de Veracruz

Calzada Miguel Ángel de Quevedo 2779, Veracruz, México

rrivera@itver.edu.mx

Abstract

This paper addresses the Job Shop Scheduling Problem

(JSSP). Basic constraints are established and it is modeled

by a disjunctive graph. The model was mapped to Unrelated

Parallel Machines Problem through a bipartite graph. An

analysis of constraints is made in both problems to perform

a relaxation of the manufacturing problem. Conducting the

relaxation of JSSP, it is that any operation can be assigned

to any machine, in addition, the precedence constraint

between two operations longer applies. The application of

approximated bipartite graph model is shown as a new

alternative model to represent the JSSP problem, it may be

an option to work with this type of problems instead of the

disjunctive graph model.

1. Introduction

The Job Shop Scheduling Problem, well-known as

JSSP has been considered as one of the most

important problems in manufacturing and

optimization area, as well as the efficient resources

management is vital in businesses. Due to its

complexity, JSSP has been one of the most studied

problems during the last four decades; therefore, it is

the problem that has achieved more progress in the

Scheduling area, and serves as reference to compare

the techniques used in several problems classified as

difficult, such as Traveling Salesman Problem,

among others. In addition, it has been classified as

NP-Hard by the Computational Complexity Theory

[1], also, it is known as one of the most difficult

problems to solve in this classification. The class NP-

Complete can be defined alternatively as the NP and

NP-Hard intersection. A feature of NP-Hard is that

there is unknown a deterministic algorithm in

polynomial time to solve problems within this

classification [23]; hence, many researchers have

been attracted trying to solve them using several

optimization methods as Branch and Bound[11],

Genetic Algorithms [12], Simulated Annealing [13],

Ant Colony [3], among others. Some of these

algorithms have been designed specifically to solve

certain instances of the problem.

Several approaches to solve JSSP have been

proposed using different models. Disjunctive graphs

model is used in most of cases [14], constraints

satisfaction [15], and integer linear programming

[14]. Small, medium and large instances of JSSP can

be solved or find approximated solutions to the

global optimum being modeled by a disjunctive

graph using metaheuristics, which apply local search

methods. Small instances of JSSP modeled with

integer linear programming can be solved using

exact algorithms. The search methods of heuristic

type can be very fast to find a feasible solution to an

instance of JSSP, but unfortunately there is no

assurance that the optimal solution was found.

However, search methods can provide an starting

point. Methods based in satisfiability [9, 15, 17] and

priority rules [20] are some examples of search

methods. The Bottleneck method [18, 19] is a special

type of search method, it has better performance than

others, but only for small intances. Traditionally, the

integer linear programming, better known as ILP, and

packages of Binary Decision Diagrams (BDD) [10],

are used to obtain exact solutions for many

automation problems. The Scheduling problem has

been addessed to any of these methods by researches.

Formulations based on ILP are popular for

scheduling although the schedulers based on BDD

also offer attractive solutions.

A deficiency of solutions based on BDD is the

binary diagram size, which could become too big for

large instances [21]. It is noteworthy that most of

these methods require a feasible initial solution at the

begining of the process [9].

The researching reach is to develop an algorithm

with the Ant Colony approach, which will be

parallelized using message passing in C language and

the Message Passing Library (MPI), in this way it can

be implemented in a cluster structure. The proposed

algorithm can solve the JSSP relaxed. Efficiency and

effectiveness can be determined using test problems

randomly generated. The performance of the

algorithm proposed will be tested using these

benchmarks, which will be compared with solutions

of local search algorithms previously tested, such as

simulated annealing, and an exact method (Simplex).

Tests will be realized according to stadistic area

proposal for its complete evaluation and analysis.

That is, the same benchmarks will be used to test the

three algorithms above mencioned, thus, calculate

effectiveness, efficacy and relative error of the

algorithm proposed and make a direct comparison

among them.

This paper presents an alternative to represent the

JSSP relaxed using a bipartite graph, which can be

solved as a P-type problem, it gives a very attractive

posibility to test exact algorithms and metaheuristics

applied in literature to solve bipartite graphs [22], and

realize them an effectiveness and efficacy evaluation

for JSSP. The challenge to find a feasible solution

rapidly is mapping a JSSP instance as an unrelated

parallel machines problem, where problem

constraints are relaxed in order to represent it by

means of a bipartite graph.

This paper is divided into the following sections:

JSSP definition, where it is explained the general

definition of the problem, as well as the aim and

basic constraints. In the second section, it is

explained the JSSP model by a disjunctive graph

giving a solution to a 3x3 instance. Third section

approaches the bipartite graph definition and its

features; in addition, a representation of the instance

used is realized for JSSP by a bipartite-type graph. In

fourth section it is explained the problem relaxation

to be represented by a bipartite graph. Finally,

conclusions are mentioned as well as future work.

2. JSSP Definition

The problem is defined as a set of machines, and a set

of jobs, where each job has certain number of

operations that must be processed during a

determined time in a given machine without

interruptions. Each machine can process only one

operation in an instant of time. The Classic problem

of JSSP can be defined as a finite set J of n jobs {Jj} 1

≤ j ≤ n, which must be processed in a finite set M of m

machines {Mk} 1 ≤ k ≤ m. Each job is seen as a

machines sequence where it can be processed. The

processing of a job Jj within a machine Mk is known

as Ojk. The operation Ojk requires the exclusive use of

a machine Mk, where the processing time of each

operation does not allow interruptions and is known

as tjk [3]. A problem solution for an instance of 3

x 3 is presented in Table 1. It is noteworthy that the

set of solutions for this problem is given by (n!)
m
;

therefore, for an instance of 3 x 3 we would have 216

possible solutions, where, it is important to say that

not all of them are feasible solutions, due to some of

them violate precedence constraints.

Table 1. JSSP solution for a problem with 3 machines, and

3 jobs with 3 operations each one.

Jobs

Operations

Machines (Processing Time)

1 2 3

1 1(1) 2(2) 3(1)

2 1(3) 3(1) 2(3)

3 2(2) 1(2) 3(3)

The solution proposed for this problem (Table 1), can

be represented by a Gantt Graph, which represents

both the scheduling of operations, and the units of

time consumed in process (makespan).

Fig. 1. One of the 216 possible solutions for a problem of 3

machines and 3 jobs.

An important feature of JSSP is that, it is no necesary

that the starting machine begins with the first job, but

any machine can starts or ends, because the

processing order of the jobs is a problem constraint

[6].

2.1. Constraints

To perform the jobs scheduling in a manufacturing

workshop it is necessary to define certain constraints,

which ensure the operations integrity, and the process

effectiveness. Constraints considered in this problem

are shown below.

 Only a job can be processed by a machine in a

period of time.

 Each machine can handle at most one

operation at a time.

 A job must not be processed twice.

 It does not exist constraints among operations

of different jobs.

 An operation assigned can not be interrupted.

 A job is composed of i operations.

 There is a precedence constraint between

operations within the same job, which as

processing times, are data known.

 There is a resource capacity constraint, which

is known as the operations sequence within a

machine, and they are data known.

 The jobs operations have the same priority

 It is not specify neither release nor due dates.

The Scheduling of feasible jobs can be gotten

permuting the order of the operations in each

machine, taking care not to violate the constraints

specified [6].

3. Disjunctive Graph Model

The JSSP problem can be described by a disjunctive

graph , where V is the set of operations

in each job join two special nodes source and

destination, which indicate the beginning, and the

end of the scheduling. C is the set of conjunctive

edges representing the operations sequence

(precedence constraint). D is the set of disjunctive

edges (cliques) representing the set of operation that

must be processed in the same machine [2]. The

processing time for each operation is defined; in

addition, the processing time of the last job (Cmax)

depends directly of the operations sequence within

each machine.

An instance representation of 3 x 3 (table 1) is

shown in figure 2 by a disjunctive graph.

Fig. 2. JSSP representation using an instance of 3 x 3 by a

disjunctive graph.

A disjunctive edge can be directed by any of its two

endings. The direction of disjunctive edges is fixed

when the scheduling is realized; in this way, the

operations sequence in each machine is gotten. When

the operations sequence is obtained, the disjunctive

edges change into conjunctive edges (Figure 3).

Fig. 3. JSSP problem solution with 3 jobs and 3 machines.

The operations scheduling as mentioned above, can

be represented by a Gantt graph. Figure 1 shown the

final scheduling for this solution.

4. Bipartite Graph Model

A bipartite graph is an undirected graph with the

feature of a set of vertex V, which can be divided

into two disjoint subsets , so that each

vertex of each subset is conected by an egde; that is

to say, an edge connects an element of subset V1 and

another of V2, taking into account that there should

be no adjacencies between elements in the same

subset [5]. The basic features of a bipartite graph are

listed below.

 Subsets V1 and V2 are disjoint and not

empty

 Each edge of A joins a vertex of V1 with one

of V2

 There are no edges joining two elements of

V1; similarly to V2.

Taking into account the features mentioned above,

JSSP problem was represented by a bipartite-type

graph (Figure 4), it was realized because it already

exist linear programming algorithms that solve

bipartite graphs, such as Simplex method.

Fig. 4. Representation of JSSP by a bipartite-type

graph.

According to this representation (Figure 4), is said to

be a bipartite-type graph, due to the prevailing

precedence constraint represented between operations

of each job. For this representation, it is necessary to

relax the problem constraints in order to represent a

genuine bipartite graph, and in this way, trying to

solve it by linear programming algorithms.

5. JSSP Relaxation

To realize the relaxation of JSSP, each constraint was

analyzed, concluding that some of basic constrints

can be implicitly taken, so that, not necessarily have

to be represented graphically; therefore, in general,

the bipartite graph representation for an instance of

JSSP is as follow (Figure 5).

Fig. 5. Representation of JSSP relaxed by a bipartite

graph for an instance of 3 x 3

Taking into account this representation where

the relaxation was realized, a mapping to unrelated

parallel machines problem (UPMP) is obtained.

According to literature, the UPMP problem can be

defined as a set of n independet jobs that need to be

schedule in m unrelated parallel machines, so that,

the objetive function that minimize the total

completion time of all jobs is accomplished;

therefore, it must be considered that a machine can

not process more than a job at a period time, and jobs

assigned can not be interrupted.

The difference between UPMP and JSSP is that

in UPMP, a job can be processed in any machine and

any position. The processing time Pij of a job j within

a machine i is a function of the machine where it was

assigned, this is a fundamental feature of the problem

being unrelated machines, the processing time of a

same job varies from one machine to another one,

due to its resources and capacities could be different.

According to this definition, for an instance used

for JSSP, it would have an undirected bipartite graph

(Figure 6), where each job can be processed in any

machine; therefore, it would relax the precedence

constraint and it could be represented only the

resource capacity constraint.

Fig. 6. Undirected bipartite graph for an instance of 3 x 3

applied to unrelated parallel machines problem.

In the bipartite graph shown above, it is used kPij to

identify where each job will be processed. Where k

is the position in machine i where job j will be

processed. Therefore, in case of an undirected graph,

the job can be assigned to any machine in any

position

.To represent the solution used in JSSP as a bipartite

graph, it is necessary to pass from the undirected

graph (Figure 6) to a directed graph, that is to say,

each job must be assigned to any machine in any

position, taking into account both the problem

constraints and the bipartite graph features, so that, a

solution representation would be as follows (Figure

7).

Fig. 7. Directed Bipartite Graph for an instance of 3 x 3,

each job will be assigned to any machine in k-eth position.

Taking this solution for the instance proposed

and according to processing times showed in Table 1,

it would get the scheduling as follows (Figure 8)

using a Gantt chart.

Fig. 8. An instance of 3 x 3 scheduled to the unrelated

parallel machines problem.

6. Conclusion

The Job Shop Scheduling Problem (JSSP) is one of

the most studied problems within Optimization area,

which has attracted the attention of many researchers

around the world due to its difficulty, and its

classification as an intractable problem.

During the last years, researchers have focused

on the use of hybrid algorithms, and heuristics trying

to solve this problem.

Different models have been used to represent the

problem, such as disjunctive graph model. A JSSP

relaxation was realized in this paper, wherewith the

mapping of the unrelated parallel machines problem

was achieved by means of a bipartite graph.

7. Future Work

Develop an algorithm capable to solve a bipartite

graph without relaxation for JSSP. Comparing results

of the algorithm mentioned before against an

algorithm based on disjunctive graph model and

another of linear programming.

8. References

1 Garey M., Johnson, D. S. and SEIT, R.: The Complexity of

Flow Shop and Job Shop Scheduling, in Mathematics of
Operation Research, Vol. 1, No. 2. 1976. pp. 117-129.

2 Yamada Takeshi and Nakano Ryohei. Genetic Algorithms

for Job-Shop Scheduling Problems. Proceedings of Modern
Heuristic for Decision Support, pp. 67-81, UNICOM

Seminar, London 1997.

3 Yamada Takeshi and Nakano Ryohei. Chapter 7: Job-Shop
Scheduling. Genetic Algorithms in Engineering Systems. IEE

Control Engineering Series 55. The Institution of Electrical

Engineers. ISBN: 0 85296 902 3. pp. 134-160. 1997
4 Papadimitrious Christos H and Steiglitz Kenneth.

Combinatorial Optimization. Algorithms and Complexity.

ISBN 0-486-40258-4. pp. 163 – 166. New York. 1982.
5 Rosen Kenneth H. Discrete Mathematics and its

Applications. Fifth Edition. Ed. Mc. Graw Hill. International

Edition 2003. pp. 549.
6 Van Laarhoven Peter J. M., Aarts Emile H. L. and Lenstra

Jan Karen. Job Shop Scheduling by Simulated Annealing.

Operation Research, Vol. 40, No. 1. Published by
INFORMS. 0030-364X/92/4001-0113. pp. 113-125. 1992.

7 Morikawa, K., Furuhashi, T. y Uchikawa, Y. Single

Populated GA and its Application to Job Shop Scheduling.
Proceedings of the 1992 International Conference on

Industrial Electronics, Control, Instrumentation and

Automation. Vol. 1-3, 1992, ch. 286_vl.003, pp. 1014-1019.
8 Peña Víctor y Zumelzu Lillo. Estado del Arte del Job Shop

Scheduling Problem. Disponible on-line:

http://www.alumnos.inf.utfsm.cl/~vpena/ramos/ili295/ia-

jobshop.pdf. 2006.

9 Frausto-Solis J. and Cruz-Chávez M. A., A Reduced

Codification for the Logical Representation of Job Shop
Scheduling Problems, Lecture Notes in Computer Science,

Springer Verlag Pub., Berlin Heidelberg, ISSN: 0302-9743,

Vol. 3046 (4), pp. 553 - 562, 2004.
10 Ogrenci-Memik Seda and Fallah Farzan. Accelerated SAT-

based scheduling of control/data flow graphs Computer

Design: VLSI in Computers and Processors, pp395–400,
Proc IEEE, 16-18 Sept. 2002.

11 Carlier, J. And Pinson, E.: An algorithm for Solving the Job-

Shop Problem, in Management Sciences, Vol. 35, No.2.
1989. 164-176.

12 Zalzala,P.J. and Flemming: Genetic Algorithms in

Engineering Systems, in A.M.S. Inst. of Electrical Engineers
1997.

13 Yamada, T. And Nakano, R.: Job-Shop Scheduling by

Simulated Annealing Combined with Deterministic Local

Search, In Metaheuristics Int. Conference, Colorado, USA,

(1995) 344-349.

14 Conway, R.W., Maxwell, W.L and Miller, L.W.: Theory of
Scheduling. Addison-Wesley, Reading, Massachusetts 1967.

15 Smith, S.F. and Cheng, C.C.: Slack-Based Heuristics for

Constraint Satisfaction Scheduling, in Proc. Of the 11th
National Conf. on Artificial Intelligence, Washington, D.C.,

(1993) 139-145.

16 Cruz-Chávez M. A., Rivera-López R., A Local Search
Algorithm for a SAT Representation of Scheduling

Problems, Lecture Notes in Computer Science, Springer-
Verlag Pub., Berlin Heidelberg, ISSN: 0302-9743, Vol.4707,

No. 3, pp. 697-709, 2007.

17 Crawford, J.M. and Baker, A.B.: Experimental Results on the
Application of Satisfiability Algorithms to Scheduling

Problems, in Proc. Of the 12th National Conf. on Artificial

Intelligence, Austin, TX, (1994) 1092-1098.
18 Adams, E., Balas, E. and Zawack, D.: The shifting

Bottleneck Procedure for Job Shop Scheduling, in

Management Science, Vol. 34, No. 3. 1988. 391-401
19 Schutten, M.J.: Practical Job Shop Scheduling, in Annals of

Operations Research, Vol. 83, (1988) 161-177.

20 Yoshida T. and Touzaki, H., A Study on Association amount
Dispatching Rules in Manufacturing Scheduling Problems,

IEEE, 0-7803-5670, 1999.

21 Campailla Alexis, Chaki Sagar, Clarke Edmund, Jha Somesh
and Veith Helmut. Efficient Filtering in Publish-Subscribe

Systems udisng Binary Decision Diagrams. 23th

International Conference on Software Engineering
(ICSE’01). ISBN. 0-7695-1050-7. Canada. 2001

22 Cruz-Chávez M.A., Juárez-Pérez F., Ávila-Melgar E. Y.,

Martínez-Oropeza A., Simulated Annealing Algorithm for
the Weighted Unrelated Parallel Machines Problem,

Electronics, Robotics and Automotive Mechanics

Conference, CERMA2009, IEEE-Computer Society, ISBN
978-0-7695-3799-3, pp 94-99, September 22 - 25, México,

2009.

23 Pinedo M., Scheduling Theory, Algorithms, and Systems,
Third Edition. Springer Science-Business Media, LLC.

ISBN: 978-0-387-78934-7, e-ISBN: 978-0-387-78935-4.

