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Abstract  

 
This paper addresses the Job Shop Scheduling Problem 

(JSSP). Basic constraints are established and it is modeled 

by a disjunctive graph. The model was mapped to Unrelated 

Parallel Machines Problem through a bipartite graph. An 

analysis of constraints is made  in both problems to perform 

a relaxation of the manufacturing problem. Conducting the 

relaxation of  JSSP, it is that any operation can be assigned 

to any machine, in addition, the precedence constraint 

between two operations longer applies. The application of 

approximated bipartite graph model is shown as a new 

alternative model to represent the JSSP problem, it may be 

an option to work with this type of problems instead of the 

disjunctive graph model. 

1. Introduction 

The Job Shop Scheduling Problem, well-known as 

JSSP has been considered as one of the most 

important problems in manufacturing and 

optimization area,  as well as the efficient resources 

management is vital in businesses. Due to its 

complexity, JSSP has been one of the most studied 

problems during the last four decades; therefore, it is 

the problem that has achieved more progress in the 

Scheduling area, and serves as reference to compare 

the techniques used in several problems classified as 

difficult, such as Traveling Salesman Problem, 

among others. In addition, it has been classified as 

NP-Hard by the Computational Complexity Theory 

[1], also, it is known as one of the most difficult 

problems to solve in this classification. The class NP-

Complete can be defined alternatively as the NP and 

NP-Hard intersection. A feature of  NP-Hard is that 

there is unknown a deterministic algorithm in 

polynomial time to solve problems within this 

classification [23]; hence, many researchers have 

been attracted trying to solve them using several 

optimization methods as Branch and Bound[11], 

Genetic Algorithms [12], Simulated Annealing [13], 

Ant Colony [3], among others. Some of these 

algorithms have been designed specifically to solve  

certain instances of the problem. 

Several approaches to solve JSSP have been 

proposed using different models. Disjunctive graphs 

model is used in most of cases [14], constraints 

satisfaction [15], and integer linear programming 

[14]. Small, medium and large instances of JSSP can 

be solved or find approximated solutions to the 

global optimum being modeled by a disjunctive 

graph using metaheuristics, which apply local search 

methods. Small instances of JSSP modeled with 

integer linear programming can be solved  using 

exact algorithms. The search methods of heuristic 

type can be very fast to find a feasible solution to an 

instance of JSSP, but unfortunately there is no 

assurance that the optimal solution was found. 

However, search methods can provide an starting 

point. Methods based in satisfiability [9, 15, 17] and 

priority rules [20] are some examples of search 

methods. The Bottleneck method [18, 19] is a special 

type of search method, it has better performance than 

others, but only for small intances. Traditionally, the 

integer linear programming, better known as ILP, and 

packages of  Binary Decision Diagrams (BDD) [10], 

are used to obtain exact solutions for many 

automation problems. The Scheduling problem has 

been addessed to any of these methods by researches. 

Formulations based on ILP are popular for 

scheduling although the schedulers based on BDD 

also offer attractive solutions. 

A deficiency of solutions based on BDD is the 

binary diagram size, which could become too big for 

large instances [21]. It is noteworthy that most of 

these methods require a feasible initial solution at the 

begining of the process [9]. 

The researching reach is to develop an algorithm 

with the Ant Colony approach, which will be 

parallelized using message passing in C language and 

the Message Passing Library (MPI), in this way it can 

be implemented in a cluster structure. The proposed 

algorithm can solve the JSSP relaxed. Efficiency and 



effectiveness can be determined using test problems 

randomly generated. The performance of the 

algorithm proposed will be tested using these 

benchmarks, which will be compared with solutions 

of local search algorithms previously tested, such as 

simulated annealing, and an exact method (Simplex). 

Tests will be realized according to stadistic area 

proposal for its complete evaluation and analysis. 

That is, the same benchmarks will be used to test the 

three algorithms above mencioned, thus, calculate 

effectiveness, efficacy and relative error of the 

algorithm proposed and make a direct comparison 

among them. 

This paper presents an alternative to represent the 

JSSP relaxed using a bipartite graph, which can be 

solved as a P-type problem, it gives a very attractive 

posibility to test exact algorithms and metaheuristics 

applied in literature to solve bipartite graphs [22], and 

realize them an effectiveness and efficacy evaluation 

for JSSP. The challenge to find a feasible solution 

rapidly is mapping a JSSP instance as an unrelated 

parallel machines problem, where problem 

constraints are relaxed in order to represent it by 

means of a bipartite graph. 

This paper is divided into the following sections: 

JSSP definition, where it is explained the general 

definition of the problem, as well as the aim and 

basic constraints. In the second section, it is 

explained the JSSP model by a disjunctive graph 

giving a solution to a 3x3 instance. Third section 

approaches the bipartite graph definition and its 

features; in addition, a representation of the instance 

used is realized for JSSP by a bipartite-type graph. In 

fourth section it is explained the problem relaxation 

to be represented by a bipartite graph. Finally, 

conclusions are mentioned as well as future work. 

2. JSSP Definition 

The problem is defined as a set of machines, and a set 

of jobs,  where each job has certain number of 

operations that must be processed during a 

determined time in a given machine without 

interruptions. Each machine can process only one 

operation in an instant of time. The Classic problem 

of JSSP can be defined as a finite set J of n jobs {Jj} 1 

≤ j ≤ n, which must be processed in a finite set M of m 

machines {Mk} 1 ≤ k ≤ m. Each job is seen as a 

machines sequence where it can be processed. The 

processing of a job Jj  within a machine Mk  is known 

as Ojk. The operation Ojk requires the exclusive use of 

a machine Mk, where the processing time of each 

operation does not allow interruptions and is known 

as tjk [3].  A problem solution  for  an  instance  of   3 

x 3 is presented in Table 1. It is noteworthy that the 

set of solutions for this problem is given by (n!)
m
; 

therefore, for an instance of 3 x 3 we would have 216  

possible solutions, where, it is important to say that 

not all of them are feasible solutions, due to some of 

them violate precedence constraints. 

Table 1. JSSP solution for a problem with 3 machines, and 

3 jobs with 3 operations each one. 

 

Jobs 

Operations 

Machines (Processing Time) 

1 2 3 

1 1(1) 2(2) 3(1) 

2 1(3) 3(1) 2(3) 

3 2(2) 1(2) 3(3) 

  

The solution proposed for this problem (Table 1), can 

be represented by a Gantt Graph, which represents 

both the scheduling of operations, and the units of 

time consumed in process (makespan).  

 

 
 

Fig. 1. One of the 216 possible solutions for a problem of 3 

machines and 3 jobs. 

 

An important feature of JSSP is that, it is no necesary 

that the starting machine begins with the first job, but 

any machine can starts or ends, because the 

processing order of the jobs is a problem constraint 

[6]. 

2.1. Constraints 

To perform the jobs scheduling in a manufacturing 

workshop it is necessary to define certain constraints, 

which ensure the operations integrity, and the process 

effectiveness. Constraints considered in this problem 

are shown below. 

 

 Only a job can be processed by a machine in a 

period of time. 

 Each machine can handle at most one 

operation at a time. 



 A job must not be processed twice.  

 It does not exist constraints among operations 

of different jobs.  

 An operation assigned can not be interrupted. 

 A job is composed of i operations. 

 There is a precedence constraint between 

operations within the same job, which as 

processing times, are data known.  

 There is a resource capacity constraint, which 

is known as the operations sequence within a 

machine, and they are data known. 

 The jobs operations have the same priority 

 It is not specify neither release nor due dates. 

 

The  Scheduling of feasible jobs can be gotten 

permuting the order of the operations in each 

machine, taking care not to violate the constraints 

specified [6].   

3. Disjunctive Graph Model 

The JSSP problem can be described by a disjunctive 

graph  , where V is the set of operations 

in each job join two special nodes source and 

destination, which indicate the beginning, and the 

end of the scheduling. C is the set of conjunctive 

edges representing the operations sequence 

(precedence constraint). D is the set of disjunctive 

edges (cliques) representing the set of operation that 

must be processed in the same machine [2]. The 

processing time for each operation is defined; in 

addition, the processing time of the last job (Cmax) 

depends directly of the operations sequence within 

each machine.  

An instance representation of  3 x 3 (table 1) is 

shown in figure 2 by a disjunctive graph. 

 

 

Fig. 2. JSSP representation using an instance of 3 x 3 by a 

disjunctive graph. 

A disjunctive edge can be directed by any of its two 

endings. The direction of disjunctive edges is fixed 

when the scheduling is realized; in this way, the 

operations sequence in each machine is gotten. When 

the operations sequence is obtained, the disjunctive 

edges change into conjunctive edges (Figure 3). 

 

 
 

Fig. 3. JSSP problem solution with 3 jobs and 3 machines. 
 

The operations scheduling as mentioned above, can 

be represented by a Gantt graph. Figure 1 shown the 

final scheduling for this solution. 

4. Bipartite Graph Model 

A bipartite graph is an undirected graph with the 

feature of a set of vertex V, which can be divided  

into two disjoint subsets , so that each 

vertex of each subset is conected by an egde; that is 

to say, an edge connects an element of subset V1 and 

another of  V2,  taking into account that there should 

be no adjacencies between elements in the same 

subset [5]. The basic features of a bipartite graph are 

listed below. 

 Subsets V1 and V2  are disjoint and not 

empty 

 Each edge of A joins a vertex of V1 with one 

of V2 

 There are no edges joining two elements of 

V1; similarly to V2. 

Taking into account the features mentioned above, 

JSSP problem was represented by a bipartite-type 

graph (Figure 4), it was realized because it already 

exist linear programming algorithms that solve 

bipartite graphs, such as Simplex method. 

  

 
Fig. 4. Representation of JSSP by a bipartite-type 

graph. 



According to this representation (Figure 4), is said to 

be a bipartite-type graph, due to the prevailing 

precedence constraint represented between operations 

of each job. For this representation, it is necessary to 

relax the problem constraints in order to represent a 

genuine bipartite graph, and in this way, trying to 

solve it by linear programming algorithms. 

5.  JSSP Relaxation 

To realize the relaxation of JSSP, each constraint was 

analyzed, concluding that some of basic constrints 

can be implicitly taken, so that, not necessarily have 

to be represented graphically; therefore, in general, 

the bipartite graph representation for an instance of 

JSSP is as follow (Figure 5). 

 

 

Fig. 5.  Representation of  JSSP relaxed by a bipartite 

graph for an instance of  3 x 3 

Taking into account this representation where 

the relaxation was realized, a mapping to unrelated 

parallel machines problem (UPMP) is obtained. 

According to literature, the UPMP problem can be 

defined as a set of n independet jobs that need to be 

schedule in m unrelated parallel machines, so that, 

the objetive function that minimize the total 

completion time of all jobs is accomplished; 

therefore, it must be considered that a machine can 

not process more than a job at a period time, and jobs 

assigned can not be interrupted. 

The difference between UPMP and JSSP is that 

in UPMP, a job can be processed in any machine and 

any position. The processing time Pij of a job j within 

a machine i  is a function of the machine where it was 

assigned, this is a fundamental feature of the problem 

being unrelated machines, the processing time of a 

same job  varies from one machine to another one, 

due to its resources and capacities could be different. 

According to this definition, for an instance used 

for JSSP, it would have an undirected bipartite graph 

(Figure 6), where each job can be processed in any 

machine; therefore, it would relax the precedence 

constraint and it could be represented only the 

resource capacity constraint. 

 

 
 

Fig. 6. Undirected bipartite graph for an instance of 3 x 3 

applied to unrelated parallel machines problem. 

 

In the bipartite graph shown above, it is used kPij  to 

identify where each job will be processed. Where k  

is the position in machine i where job j will be 

processed. Therefore,  in case of an undirected graph, 

the job can be assigned to any machine in any 

position 

.To represent the solution used in JSSP as a bipartite 

graph, it is necessary to pass from the undirected 

graph (Figure 6) to a directed graph, that is to say, 

each job must be assigned to any machine in any 

position, taking into account both the problem 

constraints and the bipartite graph features, so that, a 

solution representation would be as follows (Figure 

7). 

 

 
Fig. 7. Directed Bipartite Graph for an instance of 3 x 3, 

each job will be assigned to any machine in k-eth position. 

 

Taking this solution for the instance proposed 

and according to processing times showed in Table 1, 

it would get the scheduling as follows (Figure 8) 

using a Gantt chart. 

 
 

Fig. 8. An instance of 3 x 3 scheduled to the unrelated 

parallel machines problem. 



6. Conclusion 

The Job Shop Scheduling Problem (JSSP) is one of 

the most studied problems within Optimization area, 

which has attracted the attention of many researchers 

around the world due to its difficulty, and its 

classification as an intractable problem. 

During the last years, researchers have focused 

on the use of hybrid algorithms, and heuristics trying 

to solve this problem. 

Different models have been used to represent the 

problem, such as disjunctive graph model. A JSSP 

relaxation was realized in this paper, wherewith the 

mapping of the unrelated parallel machines problem 

was achieved by means of a bipartite graph. 

7. Future Work 

Develop an algorithm capable to solve a bipartite 

graph without relaxation for JSSP. Comparing results 

of the algorithm mentioned before against an 

algorithm based on disjunctive graph model and 

another of linear programming.  
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