
The use of parallel extensions libraries for
scientific and engineering calculations

Gennadiy Burlak1, José Alberto Hernández Aguilar2, René Santaolaya
Salgado3, Moisés González Garćıa3

1Centro de Investigación en Ingenieŕıa y Ciencias Aplicadas, 2Facultad de Ciencias,
Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor. Mexico.

3Departamento de Ciencias Computacionales, Centro Nacional de Investigación y
Desarrollo Tecnológico CENIDET, Cuernavaca, Mor., México

gburlak@uaem.mx

Abstract. We studied the use of the library Microsoft Parallel Exten-
sions to .NET Framework 3.5 for parallel calculations. We have developed
a hierarchy of nesting classes having complicated internal structure and
have made the bench tests (with graphic user interface (GUI)) not only
for simple static cases but also for complex dynamic types. Our tests
have shown high speedup of the library. The use of other libraries al-
lowing calculations in parallel for various cross-platform applications is
discussed also.

1 Introduction

Dual cores PCs have gradually become the standard in Universities. Quad core
PCs are also getting closer, and PCs with greater number of CPUs/cores are also
available. Modern scientific problems require large amounts of computational
tasks which are well time consuming. Sometimes parallel/ distributed computing
of such problems is of critical importance [1], [2]. Nowadays developers have
access to PCs with several CPUs/cores; so there is a great task to use the whole
computing power of such PCs in order to load all the cores to work effectively
in parallel.

Recently was published the Parallel Extensions to .NET Framework 3.5 Com-
munity Technology Preview (CTP) that provides a managed programming model
for data parallelism, task parallelism, and coordination on parallel hardware uni-
fied. Parallel Extensions makes it easier for developers to write programs that
scale to take advantage of parallel hardware by providing improved performance
as the numbers of cores and processors. Parallel Extensions provides library
based support for introducing concurrency into applications written with .NET
languages, including e.g. C#. In this release various samples of the library were
used for time consuming problems calculating sequentially and in parallel was
done (solve nqueen puzzle, sorting example, simple matrix multiplication, etc).

M.A Cruz-Chávez, J.C Zavala Díaz(Eds):CICos2009, ISBN:978-607-00-1970-8,
pp. 280 - 287, 2009.

2 Gennadiy Burlak, Alberto Hernandez Aguilar, Santaolaya Salgado, et al.

However in the samples mainly was used a data with simple numeric static struc-
ture. For instance, the product of random double matrixes with large size was
sequentially and in parallel processed. For such configurations it was demon-
strated that performance of in parallel calculations gives an essential speedup
of calculations. However in engineering calculations frequently one meets more
advanced problems in which it is necessary to use the dynamic data with com-
plicated internal structure. Typical example is calculations with complex num-
bers, Fast Fourier transformations, various numeric transformations with com-
plex matrixes and vectors. Such structures normally must serve as dynamically
distributed objects rather than being static ones. For such situations in parallel
calculations are of great practical importance. It is well known that among the
popular programming languages only FORTRAN and PYTHON have in-built
complex data type. In languages as C++ and C# such types have to be created
by programmers.

However in languages C ++ and C# we meet other much more important
feature: possibility to overload of the standard mathematical operators: addition,
subtraction, multiplication and division that allows to extend considerably the
meaning of such operators. The operator overloading allows constructing much
more advanced numeric (and not only numeric) classes, such as a complex vec-
tors and matrices having quite complicate behavior. However speedup of such
structures in parallel mode still has been poorly considered, though it is a logical
extension of previous investigation in this area.

In this Report we discuss the computations in parallel for C# that allows
distributing the appropriate tasks effectively at all cores available in the system.
We will take a very brief look at what is provided by Microsoft’s in Microsoft
Parallel Extensions to .NET Framework 3.5. The main aim is to discuss how
to implement parallelism for dynamic hierarchies of classes with advanced inter-
nal structure. We developed and applied such hierarchy of the nesting classes
(complex matrixes and complex vectors) as working structures at in parallel
calculations and have performed the bench tests. Also we have compared our
results with parallel computations for other library.

2 The structure of classes and working examples.

Fig.1 shows the structure of our nested classes for complex numbers, vectors
and matrixes. One can see that structural complexity of such objects is much
deeper with respect to a simple double type. For evaluation of real meaning of
the MS parallel library it is important to investigate the speedup of calculation
in parallel for such advanced structures.

In order to make bench tests of in parallel calculations we used MS VS
C# 2008 Express Edition, see Fig.2. To handle advanced calculations we had
to extend essentially the code of a testing program. The elaboration consists
in the following. i) The program was added part of code that allow working
with dynamic objects, and ii) the graphic user interface (GUI) has been created.
The latter allow selecting the type of test, and also a desired dimension of the

 The Use of Parallel Extensions Libraries 281

Alina
Rectángulo

The use of parallel libraries in scientific and engineering calculations. 3

Fig. 1. Logic diagram and structures of nested classes used in our calculations.

complex matrixes. Details of our calculations and GUI are depicted in Fig.3. We
have performed the bench tests of library mainly for one of must frequently used
in parallel libraries the cycle operator Parallel.For. We did it not only for static
numeric data, but also for complex dynamic structures. Results of this work are
shown in Fig. 3 and summarized in Table 1.

The following technique was used to create the parallel loops over iteration
spaces. For example, let’s parallelize the loop, where the iteration range is based
on doubles (for further references see [3])

for(int i = 0; i<1000; i ++)
{
Process(i);
}

The CTP Parallel.For(,,) only contains overloads For where the iteration
variable. As an example, the previously shown loop could be rewritten as:

Parallel.For(0, 1000, i => //using a lambda expression
{

double d = i / 1000.0;
Process(d);

});

The pseudocode for multiplication of dynamic complex matrices by means of
sequential processing and parallel processing is shown below:

 282 G. Burlak, J.A. Hernández, R. Santaolaya, M. González

Alina
Rectángulo

4 Gennadiy Burlak, Alberto Hernandez Aguilar, Santaolaya Salgado, et al.

Double ParallelMultiplicationOfComplexMatrix(N)

Imaginary number I;
Integer MATRIX_SIZE = N

#Construction of dynamic matrices
MatrixComplex m1a = MatrizComplex(MATRIZ_SIZE)
MatrixComplex m2a = MatrizComplex(MATRIZ_SIZE)
MatrixComplex m1 = MatrizComplex(MATRIZ_SIZE)
MatrixComplex m2 = MatrizComplex(MATRIZ_SIZE)

Fill Matrices with random Numbers
for i=0 to (MATRIZ_SIZE-1) with increments of 1
for j=0 to (MATRIZ_SIZE-1) with increments of 1

m1a[i, j] = m1[i, j] = generate_rnd_number() + I * generate_rnd_number()
m2a[i, j] = m2[i, j] = generate_rnd_number() + I * generate_rnd_number()

Sequential product
Timer.start()
m3 = ProductSequential(m1a, m2a)
Timer.stop()
SequentialTime = Timer.getdifference()

m3 =null

Parallel product (Lambda operator =>)
Timer.start()
=> m3 = m1 * m2
Timer.stop()
ParallelTime = Timer.getdifference()

Ratio calculation
ratio = SequentialTime/ParallelTime
return ratio
End ParallelMultiplicationOfComplexMatrix

Getting the full workload of multicore processors can be tricky because, in or-
der for a program to make use of more than one core, it must divide its workload
in such a way that it does not take more effort than the gains achieved by adding
more cores. Most programming languages were written assuming just one pro-
cessor would be working through the code sequentially, line by line [5]. Above
example shows that is really easy to add parallel processing using functional
programming and C# extensions.

 The Use of Parallel Extensions Libraries 283

Alina
Rectángulo

The use of parallel libraries in scientific and engineering calculations. 5

Fig. 2. In parallel calculations were tested in MS VS C# 2008 Express Edition.

CTP library is quite powerful, easy to use, and provides a lot of different
features, which allow solving the different tasks of parallel computations. It pro-
vides much more than just a single Parallel.For(). However, there are some issues,
which may require other solution for following reasons:

1. The parallel computations extension is targeted for .NET framework 3.5.
Recently the .NET Framework 4 Beta 1 is available for download [4]. However,
some applications may still want to support earlier .NET framework versions, like
2.0, for example that makes difficult for them to use this extension. The parallel
computations extension is not yet included into the standard .NET framework
installation, and requires components that could not be installed on a target
system.

2. The parallel computations extension provided by Microsoft is aimed to
run on Windows systems. However sometimes it is necessary to develop the
cross platform applications that also has to run on Linux, e.g. under the Mono
environment. In this situation one will be left without the paralleling support.

Therefore further we give attention to the bench tests of parallel CTP library
and the parallel library AFORGE [6]. In the latter the use of the dynamic module
AFORGE.DLL is required only. This library represents a particular interest as
it allows in parallel calculation not only in Windows, but also on cross-platform
situations, for example in system Mono Linux. In this Report the following data
types were used to in parallel bench tests:

1) static array double [,];

 284 G. Burlak, J.A. Hernández, R. Santaolaya, M. González

Alina
Rectángulo

Fig. 3. Simple graphic user interface and our bench tests for in parallel calculations.

 The Use of Parallel Extensions Libraries 285

Alina
Rectángulo

The use of parallel libraries in scientific and engineering calculations. 7

2) dynamic array double [,];
3) static array TcompD [,];
4) dynamic array TcompD [,];
5) dynamic class TCompMatrix and TCompVector with the operators over-

loading;
The speedup factor K is defined as K = T paral/T seq, where T paral is

average time of in parallel calculation, while T seq is the calculating average
time in a sequentially regime. Table 1 summarizes our calculations. A computer
with Windows XP SR.3, Intel Core2 duo CPU processor (two processors), and
frequency of 2.0 GHz was used.

3 Results and Discussion

Table 1. The speedup factor K of calculations in parallel

Type of data CTP, 200x200 Aforge, 200x200 CTP, 400x400, Aforge, 400x400

static matrixes: double[,] 1.94 1.72 1.98 1.98
dynamic matrixes: double[,] 2.04 1.75 2.03 1.80
complex static TcompD[,] 1.72 1.74 1.72 1.82
complex dynamic TcompD[,] 1.67 1.76 1.70 1.75
Multiplication objects TCompMatrix() 1.67 1.76 1.70 1.75
Mult. TCompMatrix() and TCompVector() 2.36 2.24 2.38 2.27

We observe that performance in parallel computations is 0.75, from mean
number of speedup factor K from Table 1, which is evaluated in a simple way,
1.75-1=0.75, which exceds the sequential calculations. The speedup of Aforge
library is comparable with CTP library at least for Parallel.For operator.For
completeness it is worth noting one interesting project that was developed in
Parallel Language Research Project, see [7]. Besides we have to refer to other
more classical direction of Message Passing Interface (MPI). MPI.NET is a high-
performance, easy-to-use implementation of the Message Passing Interface (MPI)
for Microsoft’s .NET environment, for further references see [8].

Now almost all new servers and computers are running processors with mul-
tiple cores, and the software-design community is trying to figure out the best
way of making use of this new architecture. Now is possible to use state of the art
models and parallel computing programming languages like Chapel [9] or X10
[10], but if we analyze the sucessful of programming languajes like Java or C#
in last decade, they felt familiar so it was easy to adopt them. According to [11]
People with legacy code need tools that have strong attention to the languages
they have written and give them an incremental approach to add parallelism. If
languages like X10 and Chapel do turn out to be popular, their advancements
will be integrated into more popular languages.

 286 G. Burlak, J.A. Hernández, R. Santaolaya, M. González

Alina
Rectángulo

Alina
Rectángulo

Alina
Rectángulo

8 Gennadiy Burlak, Alberto Hernandez Aguilar, Santaolaya Salgado, et al.

4 Conclusions

We studied the use of the library Microsoft Parallel Extensions CTP to .NET
Framework 3.5 for calculations in parallel. In order to make the test deeper we
developed dynamic hierarchies of classes having complicated internal structures
that were applied as working example of advanced objects. Our testing program
with graphic user interface (GUI) has allowed us to concentrate various bench
tests. In result we have found that for advanced data the performance in parallel
at least on 70%-80% and even more can exceed the sequential calculations. We
believe using extensions like the proposed in this paper are the best approach to
include parallel processing into new developments.

References

1. Are Magnus Bruaset, Aslak Tveito, Numerical Solution of Partial Differential
Equations on Parallel Computers (Lecture Notes in Computational Science and
Engineering), Springer, 2006.

2. Wenhua Yu, Raj Mittra, Tao Su, e.a., Parallel Finite-Difference Time-Domain
Method, Artech House Publishers, 2006.

3. Eric Eilebrecht’s blog, http://blogs.msdn.com/ericeil/archive/2009/04/23/clr-4-0-
threadpool-improvements-part-1.aspx

4. Visual Studio 2010 and .NET Framework 4 Beta 1, http://msdn.microsoft.com/es-
mx/netframework/dd582936(en-us).aspx

5. GNC.com: Does parallel processing require new languages?,
http://www.gcn.com/Blogs/Tech-Blog/2009/06/New-parallel-processing-
languages.aspx.

6. AForge.NET, http://www.aforgenet.com.
7. Parallel Language Research Project, http://www.parallelcsharp.com.
8. MPI.NET: High-Performance C# Library for Message Passing,

http://www.osl.iu.edu/research/mpi.net;http://www.osl.iu.edu/research/mpi.net/software.
9. Chapel: The Cascade High-Productivity Language, http://chapel.cray.com/

10. X10: The New Concurrent Programming Language for Multicore and Petascale
Computing, http://x10-lang.org/

11. Reinders, James. Intel Threading Building Blocks Outfitting C++ for Multi-core
Processor Parallelism. Publisher O’Reilly Media, 2007.

 The Use of Parallel Extensions Libraries 287

Alina
Rectángulo

