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Abstract. This paper deals with the problem of the improvement design of 
multiproduct batch chemical plants found in chemical engineering with 
imprecise demand. The objective of the batch plant design problem is to 
minimize the investment cost and find out the number and size of parallel 
equipment units in each stage. For this purpose, it is proposed to solve the 
problem in two differents ways: The first way is by using Monte Carlo Method 
(MC), the second way is by Genetic Algorithm (GA), that takes into account 
simultaneously, the imprecise demand using Fuzzy Logics with two criteria 
maximization of the Net Present Value (NPV) and Flexibility Index (FI). The 
results (number and size of equipment, investment cost, NPV, FI, Hi, CPU 
time) obtained by the GA are better than the MC. This methodology can help 
the decision makers and constitutes very a promising framework for finding a 
set of “good solutions”. 
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1. Introduction 

In chemical engineering, precisely, in recent years, there has been an increased 
interest in the design of batch processes due to the growth of specialty chemical, food 
products, pharmaceutical and related industries aroused the current focus on the batch 
plant design problem (Cameron, 2008). Also the Process Engineering framework, 
batch processes are of growing industrial importance because of their flexibility and 
their ability to produce high added-value products in low volumes. 

In economics, demand is the desire to own something and the ability to pay for it 
(Henning et al.1988). The term demand is also defined elsewhere as a measure of 
preferences that is weighted by income, but the market demand for such products is 
usually changeable, and at the stage of conceptual design of a batch plant, it is almost 
impossible to get the precise information on the future product demand over the 
lifetime of the plant. However, decisions must be made about the plant capacity. This 
capacity should be able to balance the product demand satisfaction (Henning et 
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al.1988). In the conventional optimal design of a multiproduct batch chemical plant 
(Hasebe et al.1979), a designer specifies the production requirements for each product 
and total production time for all products (Floudas et al.2005). The number required 
of volume and size of parallel equipment units in each stage is to be determined in 
order to minimize the investment cost. 

Basically, batch plants are composed of items operating in a discontinuous way. Each 
batch then visits a fixed number of equipment items, as required by a given synthesis 
sequence (so-called production recipe) (Ponsich et al.2007). 

 
For instance, the design of a multiproduct batch chemical plant is not only to 
minimize the investment cost, but also to minimize the operation cost, to minimize the 
total production time to maximize the revenue, and to maximize the flexibility index, 
simultaneously (Aguilar Lasserre et al, 2005). 

 
On the other hand, the key point in the improvement design of batch plants under 
imprecision concerns the modeling of demand variations. The market demand for 
products resulting from the batch industry is usually changeable, and at the stage of 
conceptual design of a batch plant, it is almost impossible to obtain the precise 
information on the future product demand over the plant lifetime. Nevertheless, 
decisions must be made about on the plant capacity. This capacity should be able to 
balance the product demand satisfaction and extra-capacity in order to reduce the loss 
on the excessive investment cost or than on market share due to the varying product 
demands (Huang et al.2002). 

 
The most recent common approaches treated in the dedicated literature represent the 
demand uncertainty with a probabilistic frame by means of Gaussian distributions. 
Yet, this assumption does not seem to be always a reliable representation of the 
reality, since in practice the parameters are interdependent and do not follow 
symmetric distribution rules, which leads to very complex conditional probabilities 
computations. An alternative treatment of the imprecision is constituted by using 
fuzzy concepts by Zadeh (1975). This approach, based on the arithmetic operations on 
fuzzy numbers, differs mainly from the probabilistic models insofar as distribution 
laws are not used. It considers the imprecise nature of the information, thus 
quantifying the imprecision by means of fuzzy sets that represent the ”more or less 
possible values”. 
 
In this study, we will only consider multiproduct batch plants, which mean that all the 
possible values”. Products follow the same operating steps (Bautista, 2007), the 
structure of the variables are the equipment sizes and number of each unit operation 
that generally takes discrete values. Based on Fuzzy concepts of the demand, the 
IBPD (Improvement Batch Plant Design) is solved by two techniques: Monte Carlo 
Method (MC) and Genetic Algorithm (GA).  
 
The aim of this work is to treat the improvement of multiproduct batch plant design 
under imprecise demand using MC and GA as tools of heuristic methods. 
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The paper is organized as follows: Section 2 is devoted to the methodology and an 
overview of fuzzy set theory involved in the fuzzy framework, section 3 presents 
results and discussion. Finally the conclusions on this work are drawn. 

2. Methodology 

2.1 Process description  

The case study is a multiproduct batch plant for the production of proteins taken from 
the literature by Cao et al. (2002). This example is used as a test bench since short-cut 
models describing the unit operations involved in the process. The batch plant 
involves eight stages for producing four recombinant proteins; on one hand, two 
therapeutic proteins, human insulin (A) and vaccine for hepatitis (B) and, on the other 
hand, a food grade protein, chymosin (C), and a detergent enzyme, cryophilic 
protease (D). Fig 1 shows the flowsheet of the multiproduct batch plant considered in 
this study. All the proteins are produced as cells grow in the fermenter (Fer). 

 
Fig. 1.  Multiproduct batch plant for protein production 

Vaccines and protease are considered to be intracellular: the first microfilter (Mf1) is 
used to concentrate the cell suspension, which is then sent to the homogenizer (Hom) 
for microfilter (Mf2) is used to remove the cell debris from the solution proteins. 

 
The ultrafiltration (Uf1) step is designed to concentrate the solution in order to 
minimize the extractor volume. In the liquid–liquid extractor (Ext), salt concentration 
(NaCl) is used in solution in order to minimize the extractor volume. In the liquid–
liquid extractor (Ext), salt concentration (NaCl) is used to first drive the product to a 
poly-ethylene-glycol (PEG) phase and again into an aqueous saline solution in the 
back extraction. Ultrafiltration (Uf2) is used again to concentrate the solution. The 
last stage is finally chromatography (Chr), during which selective binding is used to 
better separate the product of interest from the other proteins. 

 
Insulin and chymosin are extracellular products. Proteins are separated from the cells 
in the first microfilter (Mf1), where cells and some of the supernatant liquid remain 
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behind. To reduce the amount of valuable products lost in the retentate, extra water is 
added to the cell suspension. The homogenizer (Hom) and microfilter (Mf2) for cell 
debris removal are not used when the product is extracellular. Nevertheless, the 
ultrafilter (Uf1) is necessary to concentrate the diluted solution prior to extraction. 
 
The final step of extraction (Ext), ultrafiltration (Uf2) and chromatography (Chr) are 
common to both the extracellular and intracellular products. 

2.2. Fuzzy logics 

The emergence of electronic commerce and business-to-business applications has, in 
a recent period, considerably changed the dynamics of the supplier–customer 
relationship. Indeed, customers can change more rapidly their orders to the suppliers 
and many enterprises have to organize their production even if the demand is not 
completely known at short term. On the other hand, the increasing need for 
integration and optimization in supply chains leads to a greater sensitivity to 
perturbations due to this uncertainty. These two elements clearly show the interest of 
taking into account as soon as possible the uncertainty on the demand and to 
propagate it along the production management mechanisms. 

 
In the context of engineering design, an imprecise variable is a variable that may 
potentially assume any value within a possible range because the designer does not 
know a priori the final value that will emerge from the design process. The fuzzy set 
theory was introduced by Zadeh. (1975), to deal with problems in which a source of 
vagueness is involved. It is well recognized that fuzzy set theory offers a relevant 
framework to model imprecision. 

 
In this section, only the key concepts from the theory of fuzzy sets that will be used 
for batch plant design are presented; more detail can be found in Kaufmann et 
al.(1988). Different forms can be used to model the membership functions of fuzzy 
numbers. We have chosen to use normalized trapezoidal fuzzy numbers (TrFNs) for 
modeling product demand, which can be represented by a membership function µ(X). 

 
The proposed approach involves arithmetic operations on fuzzy numbers and 
quantifies the imprecision of the demand by means of trapezoidal fuzzy sets, as 
shown in Fig.2.We represent subjective judgments on future demand, given as 
linguistic values, such as “demand is around a certain value or interval [q2,q3] ” or 
“demand is not lower than a certain value”. For the design of the demand, we suppose 
that the products have a sure level of acceptance in market, represented by the interval 
[q2, q3]: This means that the demand has, in this interval, a certainty level α=1 that 
derives in TrFNs. On the other hand, the intervals [q1,q2] and [q3,q4] represent the 
demand “more or less possible values”. (See Fig. 2). 
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Fig. 2.  Demand modeling by fuzzy numbers, ),,,( 4321 qqqqQ =  

A fuzzy demand can be represented by a membership function µQ(x) at µ level by the 
following expression: 

[ ] [ 434112 )(,)(,1,0 qqqqqqQ +−−+−=∈∀ ααα µ ]                              (1) 
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The arithmetic calculations involve addition, subtraction and symmetric (image), 
through the extension principle of Zadeh (1975). 

• Addition: A(+)B= (a1,a2,a3,a4)(+)(b1,b2,b3,b4) = (a1+ b1, a2 +  b2, a3 +  b3, a4+b4)
• Subtraction: A(-)B= (a1,a2,a3,a4)(-)(b1,b2,b3,b4) = (a1 - b4, a2 - b3, a3 - b2, a4 - b1). 
Symmetric (image) of a TrFN: -(A) = (-a4, - a2, -a3, a1 ) 

2.3 Data Set 

The experimental data of IBPD was initially proposed by Montagna et al. (2000). In 
table 1, the plant, divided into sub-processes, consists of six batch stages [B (1-6)] to 
manufacture four products A, B, C, D. The table shows the values for processing 
times )(, hjiτ , size factor for the units, cost data, and the production requirement for 
each product quantifying the imprecision of the demand by using Fuzzy Logic 
representing the “more or less possible values”. 
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Table 1. Data used in the problem of batch plant design 

 
 

The problem involves 16 discrete variables to determine have been spread in the table 
2.  

Table 2. List of determination variables 

Equipement number [n] Equipement volume[m3]
n1( Fermentación (Fer)) V1( Fermentación (Fer))
n2(Microfilter1 (Mf1)) V2(Microfilter1 (Mf1))
n3(Homogenizer(Hom)) V3(Homogenizer(Hom))
n4(Microfilter2 (Mf2)) V4(Microfilter2 (Mf2))
n5(Ultrafiltration1(Uf1)) V5(Ultrafiltration1(Uf1))

n8(Chromatographic column(Chr)) V8(Chromatographic column(Chr))

n6(Extractor (Ext)) V6(Extractor (Ext))
n7(Ultrafiltration2(Uf2)) V7(Ultrafiltration2(Uf2))

 

2.3 Tools 

In the 1960s and 1970s, witnessed a tremendous development in the size and 
complexity of industrial organizations. The administrative decision-making has 
become very complex and involves large numbers of workers, materials and 
equipment. A decision is a recommendation for the best design or operation in a given 
system or process engineering, so as to minimize the costs or maximize the gains. 
Using the term "best" implies that there is a choice or set of alternative strategies of 
action to make decisions. The term “optimal” is usually used to denote the maximum 
or minimum of the objective function and the overall process of maximizing or 
minimizing is called optimization. The optimization problems are not only in the 
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design of industrial systems and services, but are also applied in the manufacturing 
and operation of these systems once they are designed. Including various methods of 
optimization, we can mention: Monte Carlo Method and Genetic Algorithm. 
2.3.1 Monte Carlo Method: Enrico Fermi was an early user of what was later called 
a Monte Carlo Method. A Monte Carlo Method uses a computer to generate a large 
number of scenarios based on probabilities for inputs. For each scenario, a specific 
value would be randomly generated for each of the unknown variables (Douglas, 
2007). Then these specific values would go into a formula to compute an output for 
that single scenario. This process usually goes on for thousands of scenarios by the 
method of inverse transformation and cumulative frequency distributions. The 
demand is the random variable of our model. In order to simulate the values of this 
variable, we have used a graphical user interface of random number generation tool. 
Through calculation we can see the whole values will take the objective function as 
net present value. Then we made several runs with different sample sizes to see what 
happened with the NPV and then calculate the average results and standard deviation 
error. 
2.3.2 Genetic Algorithm The term “genetic algorithm”, almost universally 
abbreviated now a days to GA, was first used by Holland (1975), whose book 
Adaptation in Natural and Artificial Systems was instrumental in creating what is 
now a flourishing field of research and application that goes much wider than the 
original GA. A genetic algorithm  is a search technique used in computing to find 
exact or approximate solutions to optimization and search problems. However its 
implementation in this work consists of the following steps: 
Variable Encoding. Binary system was chosen for encoding as it simplifies the 
genetic operators, crossover, and mutation. Encoding system can always be translated 
in a binary encoding system. However, the encoding of the solutions was carried out 
by dividing the chromosome, i.e. a complete set of coded variables, into two parts. 
The first one deals with the items volumes, which are continuous in the initial 
formulation. Nevertheless, they were discretized here with a 50 unit range, while their 
upper and lower bounds were preserved. The second part of the chromosome handles 
the number of equipment items per stage: the value of these discrete variables is 
coded directly in the chromosome (Holland, 1975). Fig. 3 shows an illustration of the 
encoding method for a small size example. In this example, we can see that the 
encoding procedure is adapted to the variable nature: The item size variables are 
coded according to a binary, like a technique, while the item number per stage are 
copied just as they are worth in the chromosome (for instance, if nj=2, the 
corresponding locus will contain information “2”). The encoding procedure is adapted 
to the double nature of the variables: since continuous and integer variables have to 
coexist in the same chromosome, this latter is partitioned into two zones. As shown in 
Fig.3, the first zone encodes the continuous variables, i.e. the item sizes of each 
processing stage, as reduced variables (between 0 and 1, using the lower and upper 
bounds) and according to a binary – like technique that is not detailed here. On the 
other hand, the integer variables, representing the item number for each stage, are 
copied directly in the chromosome without any change: For instance, the plant 
illustrated in Fig.3 has 2 items for stage 1, 1 item for stage 2, and 3 items for stage 3: 
This corresponds to the integer numbers encoded at the end of the chromosome: 2, 1, 
3. 
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Fig. 3. Illustration of the encoding method for a small size example 

Creation of the initial population. The procedure of creating the initial population 
corresponds to random sampling of each decision variable within its specific range of 
variation. This strategy guarantees a population varied enough to explore large zones 
of the search space. 
Survival. For a given survival rate, the selection process is achieved via a classical 
biased roulette wheel. The selection is performed and each selected individual is 
included into the new population. 
Crossover Operation. To complete the new population, a classical one-point 
crossover is performed on pairs of individuals randomly chosen in the current 
population. 
Mutation Operation. After selection and crossover, mutation is then applied on the 
resulting population, with a fixed mutation rate. The number of individuals on which 
the mutation procedure is carried out is equal to the integer part of the value of the 
population size multiplied by the mutation rate. These individuals are chosen 
randomly among the population and then the procedure is applied. 
Elitism. The elitism consists in keeping the best individual from the current 
population to the next one.  

2.4. Assumptions 

The model formulation for IBPD’s problem adopted in this section is proposed by 
Karimi et al.(1989). It considers not only treatment in batch stages, which usually 
appears in all types of formulation, but also represents semi-continuous units that are 
part of the whole process (pumps, heat exchangers, etc). A semi-continuous unit is 
defined as a continuous unit alternating idle times and normal activity periods. 
Besides, this formulation takes into account mid-term intermediate storage tanks. 
They are just used to divide the whole process into sub-processes in order to store an 
amount of materials corresponding to the difference of each sub-process productivity. 
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This representation mode confers on the plant better flexibility for numerical 
resolution: It prevents the whole production process from being paralyzed by one 
limiting stage. So, a batch plant is finally represented as a series of batch stages (B), 
semi-continuous stages (SC) and storage tanks (T).The model is based on the 
following assumptions: 
(i) Devices used in the same production line can not be used again by the same 
product. 
(ii) Production is achieved through a series of single product campaigns. 
(iii) Units of the same batch or semi-continuous stage have the same type and size. 
(iv) All intermediate tank sizes are finite. 
(v) If a storage tank exists between two stages, the operation mode is “Finite 
Intermediate storage”. If not, the “Zero-Wait” policy is adopted. 
(vi) There is no limitation for utility. 
(vii) The cleaning time of the batch items is included in the processing time. 
(viii) The size of the items is continuous bounded variables. 

2.5 Model Formulation 

The model considers the synthesis of (I) products treated in (J) batch stages and (K) 
semi-continuous stages. Each batch stage consists of (mj) out-of-phase parallel items 
of the same size (Vj). Each semi-continuous stage consists of (nk) out-of-phase parallel 
items with the same processing rate (Rk) (i.e. treatment capacity, measured in volume 
unit per time unit). The item sizes (continuous variables) and equipment numbers per 
stage (discrete variables) are bounded. The (S-1) storage tanks, with size (Vs

*), divide 
the whole process into (S) sub-processes. 

 
Following the above mentioned notation, IBPD’s problem can be formulated to 
minimize the investment cost for all items, maximizing the net present value and 
maximizing the flexibility index: 

 
The investment cost (Cost), written as an exponential function of the unit size, is 
formulated in terms of the optimization variables, which represent the plant 
configuration: 

 
 

∑∑∑
===

++=
S

s

s
ss

K

k

k
kkk

J

j

j
jjj VcRbnVamCostMin

111
)()()()( γβα

        (3) 
 

 
Where aj and αj, bk and βk, Cs and γs are classical cost coefficients. A complete 
nomenclature is available in the Appendix. Eq. (3) shows that there is no fixed cost 
coefficient for any item. This may be unrealistic and will not tend towards 
minimization of the equipment number per stage. Nevertheless, this information was 
kept unchanged in order to compare our results with those found in the literature 
(Chunfeng et al.1996). 
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Instead of the investment cost recommended the economic criterion represents the 
NPV. This approach allows evaluating the impact of the plant over some years, taking 
into account the calculation of the net cash flow in terms of the present value of the 
money. 

 

∑
= +

+
+

+−−−
+−−=

n

p
nn

pppp

i
f

i
AaADV

fCostNPVMax
1 )1()1(

)1)((
)(           (4) 

 
Eq.(4) underlines the fact that the objective function accounts not only for the 
investment cost, but also for the incomes from the sells (Vp), the operation costs (Dp) 
and depreciation (Ap) computed on n given time periods. Discount rates (r), taxes (a), 
and working capital (f) are also involved to update the money value. It is worth noting 
that since sales and operation costs depend on the uncertain demand parameter. 

 
However, the Flexibility Index (FI) is formulated as the ratio between the new total 
production and initial demand: 
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This problem is subjected to three kinds of constraints: 

 
(i) Variable bounding: 

{ } maxmin,..,1 VVVjj j ≤≤∈∀            (6) 

{ } maxmin,..,1 RRRkk k ≤≤∈∀                (7) 
 

Volume  of the items of each batch stage j and treatment capacity  of each 
semi-continuous stage k. However, these variables are not continuous anymore and 
were discretized with an interval of 50 units between two possible values. This 
working mode was adopted in a view of realism. Indeed, since equipment 
manufacturers propose the items following defined size ranges, the design of 
operation unit equipments does not require a level of accuracy such as real number. 
Note however that the initial bounds on these size variables were kept unchanged, 
being for batch and semi-continuous, respectively: and  , and . 

jV kR

minV maxV minR maxR
 

Item number  in batch stage j and item number  in semi-continuous stage k. 

These variables cannot exceed 3 items per stage (
jm kn

3,1 ≤≥ kj nm ). 
(ii) Time constraint: the total production time for all products must be lower than a 
given time horizon H  : 
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Where   is the demand for product i. iQ
(iii) Constraint on productivities: the global productivity for product i (of the whole 
process) is equal to the lowest local productivity (of each sub-process s). 
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These local productivities are calculated from the following equations:  
(a) Local productivities for product i  in sub-process s: 

{ } { } L
is

is

T
BodlocisSsIi =∈∀∈∀ Pr,..,1,,..,1       (10) 

(b) Limiting cycle time for product i  in sub-process s: 
{ } { } [ ]itij

L
is TMaxTSsIi Θ=∈∀∈∀ ,,..1,,..1                     (11) 

Where Js and Ks are, respectively, the sets of batch and semi-continuous stages in 
sub-process s. 
(c) Cycle time for product I  in batch stage j: 
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Where k and k+1 represent the semi-continuous stages before and after batch stage j. 
(d) Processing time of product i in batch stage j: 

{ } { } { } dij
isijijij BgppSsJjIi +=∈∀∈∀∈∀ 0,..,1,..,1,,..,1

      (13) 
(e) Operating time for product i  in semi-continuous stage : k
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(f) Batch size of product i  in sub-process : s
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(g) Finally, the size of intermediate storage tanks is estimated as the greatest size 
difference between the batches treated in two successive sub-processes: 
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3. Results and discussion 

The results obtained by Monte Carlo Method, running the model 30 runs of 100000 
iterations is given in Table 3, although  Fig .5 shows equipment structure according to 
this result. 

Table 3.  Best design of batch plant by MC 

V1 V2 V3 V4 V5 V6 V7 V8
10000.000 10000.000 10000.000 8692.625 9924.000 10000.000 899.877 6269.000

n1 n2 n3 n4 n5 n6 n7 n8
3 3 3 3 3 3 3 2

Volume [m3]

Equipment number [n]

%Std.Dev(FI)
Cost

Max(NPV)
%Std.Dev(NPV)

Max(FI)

1000000[$]
15%

1.00000085

Hi
CPU time

15%
1500000[$]

6000(h)
20000*(s)

*CPU time was calculated for MC method on Microsoft Windows XP Professional Intel(R)D CPU 2.80 
GHz., 2.99 GB of RAM. 

 

 
Fig. 4.  Equipment Structure according to the Table 3 

However, the Genetic Algorithm parameters are displayed in Table 4.The reference 
values were taken from (Berard, 2000). 

Table 4.  Genetic algorithm parameters 

Population size 200 
Generation number 1000 
Survival rate 0.50 
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Mutation rate 0.40 
Elitism 1 

 
 The results inspiring from this technique are treated in Table 5, and in Fig. 6, we can 
see the equipments structure according to the results. 

Table 5.  The Best design of batch plant by GA 

V1 V2 V3 V4 V5 V6 V7 V8
8043.200 9965.900 9675.300 6554.170 7539.280 9888.000 455.170 4212.000

n1 n2 n3 n4 n5 n6 n7 n8
3 1 1 1 1 1 1 1

Hi 5491.123159(h)
CPU time 15*(s)

%Std.Dev(FI) 5%
Cost 695000[$]

%Std.Dev(NPV) 5%
Max(FI) 2.08176419

Max(NPV) 1400000[$]

Volume [m3]

Equipment number [n]

 
*CPU time was calculated for this method on Microsoft Windows XP Professional Intel(R) D CPU 2.80 
GHz., 2.99 GB of RAM. 

 
Fig. 5.  Equipment Structure according to Table 5 

The Monte Carlo Method results where the demand is modeled by a Fuzzy Logic are 
shown in Table 3, and Fig.5 shows the structure of equipment including the number 
(n) and size (V). 
Table 3 shows an acceptable level of NPV showing the feasible process with respect 
to the economic aspect due to the rapid depreciation of equipment over five years of 
study. Also this configuration offers a set of discrete equipment sizes and well 
balanced from the fourth stage. The risk of this configuration is just ending at 6000h 
with risk of failing to fulfill the future demand coming from fluctuation of the market. 
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The typical results obtained by Genetic Algorithm after thirty  runs guarantees the 
stochastic nature of the algorithm with demand modeled by a Fuzzy Logic, 
maximizing NPV and FI are shown in Table 5, and in Fig.6 had been indicated the 
structure of equipment. Also this configuration shows an excellent NPV with respect 
to the economical feasibility and indicates great flexibility in the process to fulfill 
future demand.   

 
Table 5 shows a better NPV ($1,400,000) from the configuration obtained by GA 
optimization with respect to the MC. Also this process shows great flexibility 
(FI=2.08), taking into account, that the customers need the product each 6000h, the 
configuration created by Table 5 has 5491.12h as a total production time. This helps 
fulfill the increase future demand coming from fluctuation of the market. Also this 
configuration shows a very small Std. Dev (error): In addition, GA’s results are faster 
convergence (CPU=15s), and GA’s yield highly satisfactory could be touch to the 
global optimum. 

 
However, the configuration showing by Monte Carlo Method (Table 3 and Fig.5 ) is 
expensive and the NPV obtained is very small, also The error is also high, and the 
time of the process calculation is slow(CPU=20000s~6h). 

 
Finally, the best design of multi-product batch chemical process with the best Net 
Present Value (NPV) and best Flexibility Index is shown in Fig.7, and the results of 
the optimization variables are presented in Table 6. 

 
Fig.6.  Best Design of Multi-product Batch Chemical Process by Genetic Algorithm 

Table 6.  Results of optimization variables from the best solution by Genetic Algorithm 

Equipment items Number[n] Volume[m3] 
Fermenter (Fer) 3 8043.200 
First Micro Filter (Mf1) 1 9965.900 
Homogenizer (Hom) 1 9675.300 
Second Micro Filter (Mf2) 1 6554.170 
First Ultra Filter (Uf1) 1 7539.280 
Liquid Extractor (Ext) 1 9888.000 
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Second Ultra Filter (Uf2) 1 455.170 
Chromatographic Column (Chr) 1 4212.000 

4. Conclusions 

The problem of improvement design of processes with production in multi-product 
batch involves the specification of the desired quantity of each product and the total 
production time available. Market demand for such products within the batch 
production systems is generally variable, and particularly in the design stage of the 
process, it is almost impossible to obtain accurate information on future demand to 
produce. Therefore, was presented an alternative treatment of the imprecision of the 
demand by using a Fuzzy Logic.  

 
Another significant advantage is that a Genetic Algorithm was adapted to solve 
Improvement Batch Plant Design problems with high accuracy and faster. 
According to the above investigation, we recommend to the decision maker the 
configuration mentioned in Figure 5 and Table 6, because it gives us a good NPV, 
with a low cost investment for the purchase of equipment, taking a major advantage to 
fulfill the possibility if there is an increased demand in the future. 

 
Furthermore, the results provided by the Genetic Algorithm performance are better 
with respect to Monte Carlo Method (error=15%), as the Genetic Algorithm 
(error=5%) is based on a strong mathematical model algorithm (Meta-heuristics 
algorithm) with a well known structured objective function and constraints, and the 
computing time is less than that of MC. This demonstrates the effectiveness of GA in 
solving the complicated improvement batch plant design problem. In this framework, 
the Genetic Algorithm gave us the sample efficiency and justifies its factibility use for 
solving non-linear mathematical models with uncertain parameters. Another 
advantage of GA is that it is simple in structure and is convenient for implementation, 
with no more complicated mathematical calculation than such simple operators as 
encoding, decoding, testing constraints, and computing values of objective. 

 
Finally, this framework provides an interesting decision making approach to improve 
design multi-product batch plants under conflicting goals. 
 
 

Nomenclature 

a : Tax rate (0). 
AP : Depreciation (M$/year). 
Bis : Batch size for product i in batch stage  s (kg). 
dij : Power coefficient for processing time of product i in batch stage  j. 
Dik :Duty factor for product i in semi-continuous stage  k (L/kg). 
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DP : Operation cost (M$/year). 
CP : Unit price of production cost ($/kg). 
Co : Unit price of operation cost ($/kg). 
CE : Operating cost factors. 
f : Working capital (M$). 
gij :  Coefficient for processing time of product i in batch stage  j. 
k : Index for semi-continuous stages. 
K : Total number of semi-continuous stages. 
Ks :Total number of semi-continuous stages in sub-process s. 
mj : Number of parallel out-of-phase items in batch stage j. 
M :Number of stages. 
n : Number of periods. 
nk : Number of parallel out-of-phase items in semi-continuous stage k. 
pij : Processing time of product i in batch stage j (h). 
pij

0 :  Constant for calculation of processing time of product i in batch stage  j( h). 
P : Number of products to be produced. 
prodi : Global productivity for product i (kg/h). 
prodlocis : Local productivity for product i in sub-process  s (kg/h). 
Qi :Demand for product i. 
Rk : Processing rate for semi-continuous satge k (L/h). 
Rk

max : Maximum feasible processing rate for semi-continuous stage k (L/h). 
Rk

min : Minimum feasible processing rate for semi-continuous stage  k (L/h). 
S : Total number of sub-processes. 
Sij : Size factor of product i in batch stage  j (L/kg). 
Sis : Size factor of product i in intermediate storage tanks (L/kg). 
Tij : Cycling time of product i in batch stage  j(h). 
Tis

L : Limiting cycling time of product i in sub-process  s(h). 
Vj : Size of batch stage j (L). 
Vj

max : Maximum feasible size of batch stage  j (L). 
Vj

min : Minimum feasible size of batch stage j (L). 
Vp : Revenue (M$/year). 
Vs : Size of intermediate storage tank (L). 
 
Greek letters 

jα : Cost factor for batch stage j. 
kβ : Power cost coefficient for semi-continuous stage  k. 

sγ : Power cost coefficient for intermediate storage. 

ikΘ : Operating time of product i in semi-continuous stage k. 
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