
Evaluating Algorithmic Properties of Dynamic
Simulation Models by Operating Overloading

D. Juárez-Romero1*, J. M. Molina-Espinoza2 , J. R. Zamora-Moctezuma1, R.
Leder1

1Centro de Investigación en Ingeniera y Ciencias Aplicadas
Universidad Autónoma del Estado de Morelos

Av. Universidad # 1001, Col. Chamilpa,Cuernavaca, Morelos, México 62210
Tel/FAX 777-32970.84,

2ITESM-CCM, Calle del Punte 222 Col. Ejidos de Huipulco Tlalpan, 14380, México D.F.,
e-mail djuarezr7@gmail.com, jose.molina@itesm.mx

Abstract. A framework is presented to obtain selective properties of
computational models for dynamic simulation. This type of models contains
conditional clauses, cycles and arithmetic functions contained in procedures.
This framework considers this algorithmic characteristics of computational
models, it analyses expressions according to its computational graph, with a
similar principle to the techniques used for automatic differentiation of an
algorithm. Since the results of the analysis depends on the conditional clauses
selected (to limit the equations to specific working regions), a branch testing
technique is used to cover all the feasible forms of model behavior.

Three types of model analysis tools are developed: a) to verify that global
and local variables are properly assigned/referenced in a model, b) to obtain the
dependence of variables in an equation and c) to detect potential arithmetic
errors during execution. This framework is implemented with the C++
programming language. It applied to the analysis of computer models to
represent the dynamics of power generation cycles.

Keywords: Computational Model, Automatic Model Analysis, Model Testing,
Analysis by operator overloading.

1. Introduction

Numerical simulation has become an accepted mean to study the detailed behavior of
an industrial plant, to design changes in other units or systems, and to resolve plant
startup and operational problems. Our experience with the development of training
simulators based in subsystems (like feed-water, main-steam, air-gas) [1], and the
demand for new training simulators, allowed us to identify the need of producing
simulation models which can be assembled to build a given configuration [2]. A
proposal to meet this need was to build reusable computer models of operating units
(that is independent pieces of equipment which execute a specific task, for instance,
heating, pumping, splitting), whose external variables can be measured and validated.

M.A Cruz-Chávez, J.C Zavala Díaz(Eds):CICos2009, ISBN:978-607-00-1970-8,
pp. 250 - 271, 2009.

To appropriately represent the behavior of these units, their models require: to
perform in a wide range of working conditions (for instance, a drum boiler should
work under filling, emptying, heating, boiling, pressurizing and steaming mode); to be
connected under several configurations (forward-flow, reverse-flow, oscillating-
flow); to be robust under abnormal situations (like pressure-loss, or pipe rupture). As
a result, these models contain conditional clauses which limit the validity of an
equation in specific working regions. Additionally, these models contain procedures
to evaluate consistently physical properties of fluids consistently at given working
conditions. Their mathematical aspect is presented in fig.1.1.

Global variables were needed to allow that all the models have the same invoking
arguments to be ensembled and solved by a numerical solver, but compilers did not
check some errors in their use. Local variables are used to evaluate intermediate
variables used to avoid repeated calculations and enhance clarity of the code.
Advanced compiler techniques analyze the behavior of local/static variables, but
analyzing the behavior of global variables is more complicated. During the
development of this type of computer models, frequent errors in the model’s code
were found:
- Global variables were assigned both by the model and by the solution method

(this error is as dangerous as changing the control-index inside an iterative cycle),
- Local variables were referenced without a previous assigned value.

The following characteristics are useful to assess the quality of a model:
 A table of assignments and references of variables in an equation. This table
is used to verify that every intermediate variable is referenced only after it has been
assigned a value; otherwise, undefined behavior could result during execution. This
table is also used to verify that state variables are not assigned, since they are
expected to be modified only by the numerical solver.
 The value of inputs variables, that could generate arithmetic overflow,
underflow or invalid arguments of arithmetic functions, to prevent the failure of the
simulation, and to suggest ways to overcome these possible failure conditions.
 The dependence matrix that is used to detect which variables could cause
any difficulty in the iteration matrix.

As we shall see ahead, some of these requirements of the model’s code are not due
to misuse of the computer language, but such characteristics are needed to ensure the
quality of a model.

Section 2 presents a computer framework to analyze this type of models. In
Section 3, three types of selective analyzers are presented using this framework: a) to
evaluate assignment and reference of variables, b) to evaluate states and structure of
the equations, and c) to evaluate measurements of reliability and efficiency; also some
results obtained by applying this type of analysis to process units are presented.
Finally, some conclusions are drawn from our experience with this framework.

 Evaluating Algorithmic Properties of Dynamic Simulation Models 251

1.1. Mathematical Model Description

The model equations representing the behavior of a process unit can be grouped in
mathematical form as:

v = a(p, u, x, y) Intermediate equations (1)

rd = A(y)
dt

dy(t)
– f(t, p, u, v, x,y)

Differential equations

ra = g(p, u, v, x, y) Algebraic equations

Where the mathematical type of variables is:

t  time. p unit parameters, which do not vary with time. u(t)  input variables
v(t)  intermediate variables, which are used to store the value of some
computations.
x(t)  algebraic state variables, which do not have accumulation, but change with
time.
y(t)  differential state variables.ra  algebraic residuals.,rd  differential
residuals.

a, f, g, are real valued functions.,A(y) is a nonsingular real matrix.

1.1.1. Mathematical Model Solution
Given: t, u, x* (starting value), and y0 (initial value) , v intermediate variables are

evaluated (eqn. 1.1), and the balance equations, expressed as residuals (eqns. 1.2,1.3)
are solved iteratively, as a coupled set of differential-algebraic equations for, x(t), and
y(t). The procedural form (explicit) of intermediate equations allows in mediate
calculation, while the declarative form (implicit) of the balance equations allows
flexibility in its working conditions.

1.1.2. Naming of Procedures of a Model
Every process unit is composed by a set of procedures with predefined names:

Scale() Defines geometry and capacity parameters, p
Starts(Time) Sets initial values, x*, and starting conditions, y0.
Behave(Time,

EeR[])
Evaluates the intermediate variables, constraints, and

evaluates the vector of residuals ra, rd as final variables
ata given time.

Operate (Time) Modifies manipulated (external) variables, u.
Signal(Time) Evaluate measured variables, z

 Functions naming delimits which part of the source code to analyze. The analysis
is carried only in the Behave(double t, double EeR[])procedure and the

 252 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

functions called by it. Other procedures to evaluate physical properties can also be
coded by the user

1.1.3. Naming of Variables of a Model
The names of variables are used not only to clarify the purpose of the variable but
also to identify the type of a variable required in the algorithmic analysis. The
variables allowed are of basic type (integer, and floating point) or arrays. States,
externals, inputs and signal variables are communicated in the model as global
variables. Global variables names are composed by 8 characters (Variables which are
only used in the model are local, their names do not have the first four characters.
Example:

Liquid temperature of a drum coming from port 01.
Dm––––––––––––The Unit name, (i.e. Dm Drum).
 01 ––––––––– The port through which this variable is connected: two integers
 Tm –––––– The general property, (i.e. Tm Temperature)
 L––––– The specific condition of the property,(i.e. L liquid)
 A––– The mathematical type: A Algebraic state variables D

Derivative (cf fig 1.1)

2. Model Analysis Using the Computational Graph

Automatic model analysis can be carried out by the computational graph of the
model. Iri [3] defined the computational graph as an acyclic graph of which a node
corresponds to a basic operation, an input variable or a constant, and of which an arc
corresponds to an operation. A compiler usually translates the sequence of arithmetic
operations and procedure-calls of elementary functions into an internal representation,
which is approximated by a composition of elementary arithmetic operations
(monadic or dyadic), and possibly some functions (in one or two variables) that
contains the selected branches and the loop unrolled as necessary. Then, the value of
each entry depends only on the input variables or previously computed values. Given
a set of input values for independent variables, intermediate variables are computed
by elementary arithmetic operation or intrinsic functions, following the computational
graph, to arrive to the final values.

Since the computational graph captures the precise sequence of operations and
arguments implemented by a particular algorithm or function, it is possible to use this
graph for a given analysis. Then for a set of specified values of all the variables in a
model, the analysis (,)l mx x of the variable with respect tom lx x is evaluated as:

(,)
, ,

(,) (,) (,)
l m

l m i k k jp P x x
i j k p

x x x x x x




     (2)

Where, P is the set of feasible paths going from vertex lx to vertex mx , p is one

of these paths, and i, j,k are nodes in this path. The elementary analysis of unary or

 Evaluating Algorithmic Properties of Dynamic Simulation Models 253

binary operations, and the concatenation (chaining) of operations is denoted by  .
These operations are evaluated by overloading these operators. The summation is
executed following the computational graph which accumulates the properties of the
analysis.

To illustrate how the results of model analysis are propagated along the
computational graph, two examples are presented; the first one shows the analysis of
the computational graph

Example 2.1. Computational graph. Consider the equations for an induction engine
[4]:

K
S 1

K K


 

 
  

(3)

2

3 2 1

V
K / S K *S K 

 

4 5 6if S K then *(K K *S)      .

7 E M
dK
dt

   

0 7K ,..., K are parameters. S = Slip (which measures the distance from nominal

speed, K0), , E M  =electrical and mechanical torque, V = voltage. If 4S K the
evaluation of the slip is given by the following intermediate variables:

2
1

2 3

3 2

4 2 3

5 4 1

E 1 5

v = V
v = K /S
v = K *S
v = v +v
v = v + K

 = v /v

(4)

Observations regarding this evaluation:

- If 4() ,S K the value of E is “corrected”, but the associated formulation is
obscure, since the same identifier is reevaluated.

- For a given values of the parameters the derivative d
dt
 depends essentially on

MV, 

 254 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

- If is expected that S 0 is better to code eqn. (2.1) as
2

E
3 2 1

V S
K (K *S K)*S

 
 

,

which is more stable.
Figure (2.1) describes the evaluation graph of eqn. (2.1). The dotted line shows that

exist two paths from ES to  . If 4S K then exists three paths from ES to  .

Fig. 1. Evaluation graph od eqn 3.

Example 2.2 Operator overloading. This example shows how operator overloading
can be used in the analysis of a computer model.

Consider the expressions described in figure 2, which describes the variation of
area A, passing through a non return flow valve dAdt, according to the pressure drop,
P. In this figure: auxm = (P - Pmin)*A; auxs = auxm*k0;
auxe = auxs – da/dt.

 /* evaluation of differential residual for valves area */
 if (P < PMin) {

 VcR[0] = - dAdt + KC*P - PMin)*A; /* closing */
 } else {

 VcR[0] = - dAdt + KO*(P - PMin)*(1 - A);/* opening */
 }
Code 2.2 Expression which describe the opening of a non return valve
These instructions are evaluated simultaneously according to the standard

arithmetic, and with the selective algebra for the analysis. The computational graph of
VcR[0] is presented in fig 2, for the standard and the selective algebra. When P <
PMin, the area of flow decreases according with VcR[0] = - dA/dt + KC *
(P - PMin)*A. In this figure it is depicted how every operator is used to
increment the number of references (e.g. abbreviated as A.r++), and the number of
assignments (R[0].a++) in the ‘=’ operator.

 Evaluating Algorithmic Properties of Dynamic Simulation Models 255

Fig. 2. Variation of area A, passing through a non return flow valve dAdt

2.1. Implementation of Automatic Model Analysis

To analyze a model, the computational graph is followed, this graph contains the
sequence of instructions taken by the compiler to evaluate model outputs. The
implementation was carried out by operator overloading. Operator overloading
allows to change the arithmetic operators such as: +, *, and arithmetic functions like:
sin(), cos(), into operations and functions for the selective analysis [5,6].

Thus, to analyze a model by operator overloading, it is necessary to:
 Specify the selective algebra for the analysis.
 Design a set of classes supporting this algebra of unary and binary

operations through the overloaded arithmetic operators and elementary
functions, and the relationship with other classes.

 Specify the expected behavior for global and local variables, when the
execution is completed.

The composed analysis is evaluated automatically calling these functions in the
order determined by the computational graph. Then the diagnoses of the analyzed
terms required to compute the final result are assembled. To relate diagnoses with the
variables, a list of variables of the different type of variables were build by a lexical
analyzer.

This type of analysis produces values of properties of what is actually computed.
If we want to cover all the feasible forms of behavior, a branch testing is needed. The
elements of branch testing are [7]:

 256 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

 A branch analyzer to produce a branch condition. The predicates of every
conditional clause in a model are replaced by a logical flag. Every time the model is
called with a set of flags, which produces a branch condition for every branch.
 A tester to run the program against a sequence of test cases. The model tester
calls the model several times, every time with different set of test inputs. In every set
of test inputs, it is expected that the model presents a different form of behavior.
 Probes to analyze the condition of a branch when it is traversed. Probes were
implemented as a set of classes supporting the algebra for the analysis through the
overloaded arithmetic operators and elementary functions.
 A report generator to produce a table of local and global variables, with their
properties evaluated during the analysis at different branch conditions.
 An oracle, to determine correctness of the program’s output for some input. The
evaluated model properties are compared with the asserted properties for every
variable by decision tables. Unexpected behavior are reported as diagnoses.

Since computational models are designed to run on a finite machine over finite
input sets, it is possible to prove the correctness of any program by testing it over its
whole input domain. Also, since every model represents only a process unit with only
physical streams as external variables (with a discrete or continuous domain), the
number of evaluations is modest.

Once the model has been successfully produced, it runs for simulation with basic
variables of the C language, without the burden of operator overloading, so it can be
efficiently executed.

2.2. Step by Step Model Testing

To analyze a model using the computational graph, by operator overloading, the
following stages should be carried out by the user (see fig 2.3):

1) Codify the model with the name of identifiers as described in fig 1.2. Variable
naming is used to determine the type of variable, its purpose and how to analyze it.

2) Apply Model Analysis with the model-name as argument.
The following tasks are executed by a batch file:
2.1 Model Instrumentation: Performs a lexical analysis on the source program to

produce tokens, parsing the tokens to translate declarations of types into declaration
of types required for the analysis (active or non-active variables). Thus an internal
form of the model, compatible with ANSI C, is generated. In this internal form:

- Local and global declarations of types are translated in declarations of types
(active or non-active variables) required for the analysis according with variable
naming,

- Variables of procedure calls are translated in compatible abstract types.
- Branch predicates are substituted by logical flag which triggers the branching
- Sequential statements are tagged.
- An executable program is built to test the model.
This parser also a) builds a table of local and global variables, and b) constructs a
model tester

2.2 Model binding with its model tester and their classes (which define the selective
algebra) to produce an executable.

 Evaluating Algorithmic Properties of Dynamic Simulation Models 257

2.3Model Execution. The model is invoked several times with a different set of test
inputs. A report is produced with the model output. This report presents a table of the
local and global variables with their properties evaluated during the analysis at
different branches.

2.4 Model diagnosing. Comparing the model properties obtained during the
execution with the asserted behavior for every variable, a linked list is used to store
and to display the diagnoses.

 3. Correct the Model. The diagnoses (faults and warnings) generated by the
analyzer serve the model-developer to correct the code. A model is considered
acceptable if no severe errors are detected.

Figure 3 Sequences in the Analysis

2.4 Supporting tools

The classes for the state & structure analyzer were designed with Rational Rose [8.
The code analyzer Codewizard [9]was used to review the implementation of classes.
To build the lexical analyzers for model instrumentation we used the lexical analyzer
Pclex [10].

The next section details the characteristics of three types of analyzers to evaluate
properties of models of process units.

3. Characteristics of Model Analyzers

This section details the characteristics of analyzers developed.

Classes for
the Analysis

Comparison
Results vs.
Assertions

Linker
Run
Test

Cases
Pre-procesor

Assertions for
the Analysis

Instrumented
Source code+

CVV

Executable Table of
Local and Global

variables Model
Diagnoses

User’s
model

Results

Model
Tester

 258 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

3.1. Assignment & Reference Properties

The purpose of the analysis of Assignment and Reference is to detect the
inappropriate use of variables. Reassignment of a variable obscures the code, which
sometimes is due to careless code re-editing. Lauesen and Younessi [11] mention the
following properties for visible quality in software: A variable should be assigned
before it is used. A variable should have only one purpose in a procedure. A variable
that is referenced (i.e. that appears in the RHS of an equation) without an assigned
value can produce an undefined model behavior. Gani and Toneva [12] indicate that
explicitly computed variables require an adequate precedence ordering to avoid
referencing a variable without an assigned value.

Attributes of a variable that is a class of this type: Its value, Number of
assignments (Assg), Number of references (Ref), List of line number(s) where a
value was assigned.

Algebra for Assignment & Reference. A global variable has an initial value at
the beginning of the execution. A local variable does not have an initial value. For
this analyzer we define the algebra displayed in Example 3.1.

Table 1. Assumed Algebra for Arithmetic for assignment analysis

Model’s code Evaluation of assignment & reference
Assignment Reference

 Start up of global variables
double AGlo, BGlo,
CGlo, Dglo;
double EGlo[2],

FGlo[2];

AGlo.Assg = 0 AGlo.Ref = 0

 BGlo.Assg = 0 BGlo.Ref = 0
 CGlo.Assg = 0 CGlo.Ref = 0
 DGlo.Assg = 0 DGlo.Ref = 0
 EGlo[0].Assg = 0 EGlo[0].Ref=0
 EGlo[1].Assg = 0 EGlo[1].Ref=0
 FGlo[0].Assg = 0 FGlo[0].Ref=0
 FGlo[1].Assg = 0 FGlo[1].Ref=0
int Behave(double

tiem, double
EeR[2])

When procedure is Behave is invoked

{
 double gLoc,

hLoc;
gLoc.Assg = 0 gLoc.Ref= 0

 hLoc.Assg = 0 hLoc.Ref = 0
 LHS RHS
 CGlo = AGlo +

BGlo;
CGlo.Assg++ AGlo.Ref++

BGlo.Ref++
 gLoc = 2.*BGlo; gLoc.Assg++ BGlo.Ref++
 if(Bglo > 10){

 BGlo.Ref++

 DGlo = gLoc; DGlo.Assg++ gLoc.Ref++

 Evaluating Algorithmic Properties of Dynamic Simulation Models 259

 } else {
 DGlo = hLoc; DGlo.Assg++ hLoc.Ref++
 }
 for(I = 0; i>2;

i++){

 EGlo[i] =
FGlo[i]*BGlo;

EGlo[i].Assg++ FGlo[i].Ref++

 } BGlo.Ref++
 EeR[0] =

pow(DGlo, gLoc)
EeR[0].Assg++ DGlo.Ref++

gLoc.Ref++
 return(0);
}

We observe in example 3.1 that since local variable hLoc does not have an initial

assigned value, it could produce an assignment error when it is referenced in the
second branch of the conditional expression, and propagate the error to the evaluation
of EeR[0].

Assertions: Local Variables. A local variable should have an assigned value before
it is referenced. A local variable can be recomputed only after it has been referenced
at least once. The vector of residuals should be assigned exactly once. The other
global variables that belong to a model should not be assigned, but they should be
referenced in the model at least once.

Input Tests: A set of logical flags that trigger the conditional branches.
Use of Computational Resources. For m conditional clauses computation

requirements grow as 2m function evaluations, since the clauses are considered as
independent.

Results: List of assignments and references of local and global variables at a given
line number.

3.2. State & Structure Properties

The purpose of the analysis of states and structure is to obtain the dependence matrix.
This matrix has the residuals in the rows and the independent variables in the
columns. A nonzero element appears in position [i, j] of this matrix if a residual
i depends on variable j. This matrix is useful to isolate errors, and to evaluate
economically partial derivatives numerically [13]. It is also useful to detect sets of
equations whose variables do not interact, thus they can be executed independently
for parallel processing [14]. Since Shannon proved that the minimum set is limited by
the maximum number of variables in an equation [15], the saving of computing effort
in the numerical evaluation of partial derivatives is substantial in large systems of
equations. The structural analysis displays the global variables used in an expression.

Attributes of a variable that is a class of this type: Its value, an integer value to
identify the variable, a list of identifiers of global variables used to evaluate it (Dep).

 260 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

Algebra for Structure. The preprocessor assigns a tag to every variable to identify
it. For this analyzer, the algebra shown in example 3.2 is assumed:

Table 2. Assumed Algebra for structural analysis

double AGlo, BGlo, CGlo, DGlo;
double EGlo[2], FGlo[2];

Results of State & Structure
Start up

 AGlo.Dep = {},…,etc.
EGlo[1].Dep = { }
EGlo[2].Dep = { },…,etc.

int Behave(double tiem,

double EeR[2])
{

When procedure Behave is
invoked

 double gLoc, hLoc; Dependence
 CGlo = AGlo + BGlo; CGlo.Dep = {AGlo, BGlo}
 gLoc = 2.*BGlo; gLoc.Dep = {BGlo}
 if(Bglo > 10){
 DGlo = gLoc; DGlo.Dep = {BGlo}
 } else {
 DGlo = hLoc; DGlo.Dep = {}
 }
 for(I = 0; i<2; i++){
 EGlo[i] = FGlo[i]*BGlo;

EGlo[i].Dep = {FGlo[i],

BGlo}
 }
 EeR[0] = pow(DGlo, gLoc) EeR[0].Dep = {DGlo,

BGlo}
 return(0);
}

When an intermediate variable is referenced, instead of using the dependence of
intermediate variable itself, the dependence of this intermediate variable on the global
variables is substituted. In the conditional clauses, the union of dependence of both
conditional branches was assumed to detect all possible dependencies.

Assertion: A state variable that belongs to the analyzed model should appear at
least in one residual equation.

Input Tests: A set of logical flags that trigger the conditional branches.
Use of Computational Resources: The effort required is similar to the Analysis of

Assignment & Reference.
Results: The dependence matrix with respect to any of the mathematical types (fig

1.1).

For a single unit, the dependence matrix is rectangular. When enough variables are
specified, the matrix becomes square.

 Evaluating Algorithmic Properties of Dynamic Simulation Models 261

3.3. Reliability & Efficiency

The purpose of the analysis of reliability and efficiency is to detect domain values that
causes under/overflow or an undefined value of arithmetic operations in a model.
Code analysis is relevant since two evaluating procedures representing a
mathematical function may have widely varying stability and efficiency. The
combined algebraic-differential equations (eqns. 1.2, 1.3) have more degrees of
freedom to represent an expression, than in ordinary-differential equations since the
algebraic-differential terms need only to equate to zero [16]. In real time simulation,
it is also essential to detect the largest computing effort required in a model.

Attributes of a variable that is a class of this type: Its value, the number sums-
subtractions (Sum) multiplications-divisions (Mul), the number of square roots, the
number of exponential and trigonometric functions (Art): {sqrt(), exp(
),log(),sin(), cos(),tan(),.., etc} required to calculate its value.
The number of faults in divisions, square roots, and trigonometric expressions.

Algebra for reliability and efficiency:
- The result of a detected dangerous operand is forward propagated from the

intermediate variables to the final variables, the vector of residuals.
- The operations required to evaluate intermediate variables are counted only once.
- The analysis reports only the operation count in variables, which are used to

evaluate the final variables (i.e. the algebraic or differential residuals); thus, a
variable, which is only used as a predicate of a conditional clause, is not taken into
account. This is shown in example 3.3.

Table 3. Algebra for analysis of Efficiency

double AGlo, BGlo,
CGlo, DGlo;

double EGlo[2],
FGlo[2];

Results of State & Structure
Start up

 AGlo.Sum=0; AGlo.Mul=0; AGlo.Art=0;
EGlo[1].Sum=0; EGlo[1].Mul=0

EGlo[1].Art=0
EGlo[2].Sum=0,…,etc.

int

Behave(double
tiem, double
EeR[2])
{

When procedure Behave is invoked

 double gLoc,
hLoc;

Operation Count

 CGlo = AGlo +
BGlo;

CGlo.Sum=AGlo.Sum+BGlo.Sum+1;
CGlo.Mul=AGlo.Mul+BGlo.Mul;

 gLoc =
2.*BGlo;

gLoc.Sum=BGlo.Sum;

 if(Bglo > 10){

gLoc.Mul=BGlo.Mul+1;

 262 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

 DGlo = gLoc;

DGlo.Sum=gLoc.Sum;
DGlo.Mul=gLoc.Mul;

 } else {
 DGlo = hLoc; DGlo.Sum=hLoc.Sum;

DGlo.Mul=hLoc.Mul
 }
 for(I = 0;

i<2; i++){

 EGlo[i] =
FGlo[i]*BGlo;

EGlo[i].Sum=FGlo[i].Sum+BGlo.Sum;

 } EGlo[i].Mul=FGlo[i].Mul+BGlo.Mul+1;
 EeR[0] =

pow(DGlo, gLoc)
ErR[0].Sum = DGlo.Sum+gLoc.Sum

 return(0);

ErR[0].Sum = DGlo.Mul+gLoc.Mul

} ErR[0].Art = DGlo.Art+gLoc.Art+1;

Table 4 shows the arithmetic operators and functions whose operands are verified

to be within its valid domain. If a potential error is detected due to a unsafe
arithmetic, the analyzer issues a diagnostic flag, and execution continues using a safe
arithmetic.

Table 4. arithmetic operators and functions verified

Arithmetic
Operations and
functions

Condition of risk Safe arithmetic

1/x |x| <  1/(x + *sign(x))
tan(x) x <  tan(x + *sign(x))
x x < 0 |x|
xy x < 0 |x|y
log(x) x < 0 log(|x|)
exp(x) x > xmax exp(xmax)

 is a tolerance
 is a related with machine precision
Copy-constructors were required to transfer the arithmetic statistics/diagnoses to

another variable during its declaration.
Assertion: No diagnostics should appear in the arithmetic operations.
Input Tests: The external real variables.
Use of Computational Resources: This analysis only considers the paths

(combination of branches covered) produced by these inputs. The cost depends on
how many test cases per input variable are required to cover the domain.

For exhaustive testing of the continuous domain in a reduced number of tests, this
analysis requires the careful design of test cases. Offutt, Jin and Pan [17] have
developed a program for reducing testing input domain. Given a set of input variables

 Evaluating Algorithmic Properties of Dynamic Simulation Models 263

with domain umin- umax, symbolic analysis obtains the predicate of conditional clauses
in terms of the input variables. If the predicate has linear dependency on the input
variables, analyzing all the independent or nested conditional clauses, which can
traverse all the arcs, can reduce the input domain.

4. Results

For every test case is produced: a list of operation counts required to evaluate the
vector of residuals, and a list of diagnostics in the evaluation of these variables. With
this information, the model-developer can select alternative forms of coding: factoring
common sub-expressions, or using alternative efficient arithmetic (e.g., x instead of
x0.5). If any diagnostic appears, it is necessary to bound the value of dependent
variables to a given domain, to regroup terms, or to use an equivalent arithmetic of
operators to reduce the possibilities of an arithmetic exception.

We have found convenient first to follow this steps 1)to analyze the models for
adequate Assignment & Reference; then to correct the code as necessary, 2) to
analyze the States & Structures (which will not be upset by unassigned variables), and
finally 3)to analyze Reliability & Efficiency, with the available relation of equations
and variables (to define the test inputs).

4.1. Results of Model Analysis

The analysis was applied to typical models required in energy cycles. The
characteristics of these models are displayed in Table 5. The first three models (Sp,
Bb, Ww) were adapted from a power plant simulator based in subsystems (like
steam-generation, water-feeding). The last two models were built using modeling
guidelines, proposed in this work, and tested during its development with these
analyzers. These models were written in the C programming language.

This section present the results when they analyzers are applied to the modes of
Table 5.

Sp: Gas-Steam Superheater
Bb: Electrical Pump
Ww: WaterWalls
Mi: Induction Engine
Dm :Drum with Single and double phase

These results obtained were validated by code inspection.

 264 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

Table 5. Characteristics of Model Analyzed

Process Unit
Name
filename

Num.
Para-
meters

P

Num.
 States
 x(t), y(t)

Num.
externals
u(t)

Num.
Residual
Equation
s

R

Max. Nesting
level of
conditional
Branches

Num.
Proce
-
dures

Sp

1 15,
4

streams

2 5

0 8

Bb

36 8,
3

streams

2 4

1 8

Ww

1 8,
3

streams

5 4

0 8

Mi

22 2,
4

streams

2
1 logical

2

2 8

Dm 5 8,
4

streams

9

8

1 13
(5 for
physic
al
propert
ies)

.4.2. Results of The Analysis of Assignment & Reference Properties

The results of this analysis are summarized in table 6.

Table 6. Assignment & Reference Properties of Model

 Local Variables Global Variables
Model A declaration

not
referenced

An
assignment

not
referenced

 No
Referenced

Invalid
assignment

Sp 1 -- 2 4
Bb 16 2 -- --
Ww -- -- -- --
Mi -- -- -- --
Dm 12 573 -- --

Sp Model. The analyzer detected 2 global variables without reference, it also

detected that for some conditional branches there are 4 invalid assignments. As more

 Evaluating Algorithmic Properties of Dynamic Simulation Models 265

detailed knowledge was required to correct the first error, the analysis of this model
was stopped at this analysis.

Bb Model. The analyzer diagnosed 2 unnecessarily declaration and assignments,
these are minor faults.

Ww and Mi Models did not present diagnoses.
Model Dm. The analyzer diagnosed unnecessarily declarations and assignments.

The assigned variables are elements of arrays of coefficients used to evaluate physical
properties through polynomial approximation.

4.3. Results of The Analysis of State & Structure Properties

Here, the dependence matrices with respect to algebraic x, and differential states y,
are shown in tables 7-8 Nonzero elements are represented by .

Table 7. Dependence matrices for models for mode Bb

Res
x[0]

x
[1]

x
[2]

x
[3]

x
[4]

X
[5]

y
[0]

BbR
[0]

  

BbR
[1]

  

BbR
[2]

  

BbR
[3]

 

Bb Model has a variable x[0] that does not appear in the residual equations. This
detection avoids a structural singularity during its numerical solution.

Table 8. Dependence matrices for models for mode Ww
Res x[0] x[1] x[2] x[3] x[4] x[5] x[6] u[0] u[1] u[2] u[3] u[4] y[0] y[1]
WwR[
0]

         

WwR[
1]

    

WwR[
2]

   

WwR[
3]

  

Table 9. Dependence matrices for models for mode Mi

Ww, Mi models do not present any diagnoses, but the structure obtained

automatically is useful in the solution of the model.

Res x[
0]

u[
0]

u[
1]

u[
2]

y[
0]

MiR[0]    

MiR[1]  

 266 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

Table 10. Dependence matrices for models for mode Dm
Re

s
x

[0]
x

[1]
x

[2]
x

[3]
u

[0]
u

[2]
u

[3]
u

[4]
u

[6]
u

[9]
y

[0]
y

[1]
y

[2]
y

[3]
Dm

R[0]
    

Dm
R[1]

           

Dm
R[2]

           

Dm
R[3]

 

Dm
R[4]

    

Dm
R[5]

 

Dm
R[6]

   

Dm
R[7]

  

In Dm Model although external variables u[1], u[5], u[7] and u[8] are

not used to evaluate the residuals, its model structure is adequate, (unlike Bb model),
since these external variables could be used elsewhere.

4.4. Results of The Analysis of Reliability & Efficiency

This analyzer checks if a model can handle the variables in the input streams. Some
test inputs caused models to incompletely finish computations. Results of the analysis
at different test cases are shown in figures 3-6. It counts the number of every type of
operation according with the procedures called and the branches taken. Note: Only
two different test cases are shown per residual, they are presented in different color.

Fig. 3. Number of Arithmetic Operations for Bb model.

 Evaluating Algorithmic Properties of Dynamic Simulation Models 267

For some runs, Bb model does not compute any residuals, since a flag of invalid
domain was detected internally, then the model returned without completing
calculations, thus protecting the model.

Fig. 4. Number of Arithmetic Operations for Ww model at two different conditions

Model Ww presents four divisions by zero, these divisions are due an arithmetic
term which evaluates the inverse of the sum of fractions with small denominators:
(1/x1 + 1/x2)-1. To overcome divisions-by-zero this term can be refactorized as x1*
x2/(x1 + x2). In one test case shown, the evaluation of the first residual dominates the
whole computing effort.

Fig. 5. Number of Arithmetic Operations for Mi model at two different conditions

 268 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

The computations in this model of an induction engine vary according to its
operating region: linear, or non linear. In the linear region only requires summations
and multiplications to evaluate the residuals.

Fig. 6. Number of Arithmetic Operations for Dm model at two different conditions

In Dm Model, the computations in this model vary according to its operating region:
in the single phase region (liquid), the model evaluates only summations and
multiplications; in the saturated region, the model evaluates properties in both liquid
and steam, which require a term with square roots.

5. Conclusions

A computer framework for evaluating specific algorithmic properties of computer
models for dynamic simulation was presented. This framework is based on the
definition of the algebra for the analysis, the implementation of a set of classes
supporting this selective algebra by operator overloading, and the specification of the
asserted behavior for the analysis. This framework was applied to the design and
implementation of software tools: to evaluate Assignment & Reference, States &
Structure, and Reliability & Efficiency of simulation models. Every analyzer
diagnosed specific characteristics of the tested models. With these diagnoses, the
models can be corrected to improve their quality, thus becoming correct, efficient and
resilient for steady state or dynamic tests.

5.1. Limitations of this Type of Analysis

- No static variables are allowed in the model, since static variables store the
previously computed values of a variable.

 Evaluating Algorithmic Properties of Dynamic Simulation Models 269

- Concatenated loops (disjoint), nested loops (one inside another) can be analyzed,
but not knotted loops (branch in/out in the middle of a loop). But this type of
loops is avoided with the use of structured programming.

- Macros are not permitted in the model source code, since they obstruct model
instrumentation.

5.2. Further Work

More attention is required to analyze models with cycles, thus increasing the range of
application of the available model analyzer.

6. Acknowledgements

The Automatic Differentiation Code ADOL-C developed by A. Grienwank et al [18]
enlightened us about analysis of algorithms. We acknowledge the technical
assistance given by P. Conley on the use of the Abraxas lexical processor. B
Sandoval created a static analyzer to obtain the assignment and references in a model,
which showed us the level of complexity involved with a purely lexical based
analysis. Y. Mendoza, G. Ruiz, G. Porras, and J. A. González tested the performance
of the analyzers developed.

7. References

1. Gonzalez S, Méndez E., Kuhlman F., Castelazo I.:, “Modularization Guidelines in the
Development of Large-Scale System Models for Simulation” , IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-15, No 5, Sep/Oct pp 665-669. (1985)

2. Barrero L., Canales R., Juárez-Romero D., Mendoza Y., Ruiz G. and Santoyo-Gutiérrez S.:
“Systematic Model Building-Testing of Simulation Models for Training Simulator”,
Computers and Chem. Eng. v 27 pp 1421-1430, (2003).

3. Iri M..History of Automatic Differentiation and Rounding Error Esimation”, in Griewank A.
& Corliss F.: Automatic Differentiation of Algorithms theory, Implementation and
applications” SIAM (1992)

4. Guru B.S. And Hiziroglu H.R.:Electric Machinery and Transformers, Oxford Series(2000)
5. Griewank A. “Evaluating Derivatives Principles and Techniques of Algorithmic

Differentiation”, SIAM. (2000)
6. Bücker H.M. “Special section: Automatic differentiation and its applications” Future

Generation Computer Systems, v 21 pp 1322-1323 (2005)
7. Howden W. E.Functional Program Testing and Analysis Mc Graw Hill (1987)
8. Rational Rose, IBM http:// www.ibm.com/software/rational/
9. Codewizard, Parasoft http://www.parasoft.com/jsp/products.jsp
10.PcLex, Abraxas: http://www.abxsoft.com/
11.Lauesen S., Younessi H “Is Software Quality visible in the Code”, IEEE Software Jul pp

69-73. (1994)
12.Gani R. and Toneva R.: Simultaneous Steady State and Dynamic Simulation of Chemical

Processes,Computers and Chemical Engineering, 13 563-570, (1989)

 270 D. Juárez, J.M. Molina, J.R. Zamora, R. Leder

13.Curtis A. R., Powell M. J. D. and Reid J. K. “On the Estimation of Sparse Jacobian
Matrices” J Inst Math Appl. v 13 pp 117-119. (1974)

14 Juárez-Romero D., and Pantelides C. C., Multiprocessor Solution of Nonlinear Equations
for Chemical Process Simulation, Transputer Mailshot pp 43 - 52, Sep(1990)

15 Sloane N. J. A., Dwyner A., Claude Elwood Shannon Collected Papers, IEEE Press pp 584-
587 (1993)

16 Campbell S. L., Hollenbeck R. “Automatic Differentiation and Implicit Differential
Equations” in M. Berz, Bishof C., Corliss G., Griewank A: Computational Differentiation
Techniques, Applications and Tools, SIAM pp 215-227. (1996)

17 Offut A., Jin Z , Pan J.. “The Dynamic Domain Reduction Procedure for Testing Data
Generation”, Software Practice and Experience v 29 (2) 167-193 . (1999)

18 ADOL-C,. http://www.math.tu-dresden.de/wir/project/adolc/ Sep. (2005)

 Evaluating Algorithmic Properties of Dynamic Simulation Models 271

