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Abstract. A framework is presented to obtain selective properties of 
computational models for dynamic simulation.  This type of models contains 
conditional clauses, cycles and arithmetic functions contained in procedures.  
This framework considers this algorithmic characteristics of computational 
models, it analyses expressions according to its computational graph, with a 
similar principle to the techniques used for automatic differentiation of an 
algorithm. Since the results of the analysis depends on the conditional clauses 
selected (to limit the equations to specific working regions), a branch testing 
technique is used to cover all the feasible forms of model behavior. 

Three types of model analysis tools are developed: a) to verify that global 
and local variables are properly assigned/referenced in a model, b) to obtain the 
dependence of variables in an equation and c) to detect potential arithmetic 
errors during execution.  This framework is implemented with the C++ 
programming language.  It applied to the analysis of computer models to 
represent the dynamics of power generation cycles.  
 
 
Keywords: Computational Model, Automatic Model Analysis, Model Testing, 
Analysis by operator overloading. 

1. Introduction 

Numerical simulation has become an accepted mean to study the detailed behavior of 
an industrial plant, to design changes in other units or systems, and to resolve plant 
startup and operational problems.  Our experience with the development of training 
simulators based in subsystems (like feed-water, main-steam, air-gas) [1], and the 
demand for new training simulators, allowed us to identify the need of producing 
simulation models which can be assembled to build a given configuration [2].  A 
proposal to meet this need was to build reusable computer models of operating units 
(that is independent pieces of equipment which execute a specific task, for instance, 
heating, pumping, splitting), whose external variables can be measured and validated.  
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To appropriately represent the behavior of these units, their models require: to 
perform in a wide range of working conditions (for instance, a drum boiler should 
work under filling, emptying, heating, boiling, pressurizing and steaming mode); to be 
connected under several configurations (forward-flow, reverse-flow, oscillating-
flow); to be robust under abnormal situations (like pressure-loss, or pipe rupture).  As 
a result, these models contain conditional clauses which limit the validity of an 
equation in specific working regions.  Additionally, these models contain procedures 
to evaluate consistently physical properties of fluids consistently at given working 
conditions.  Their mathematical aspect is presented in fig.1.1. 

Global variables were needed to allow that all the models have the same invoking 
arguments to be ensembled and solved by a numerical solver, but compilers did not 
check some errors in their use.  Local variables are used to evaluate intermediate 
variables used to avoid repeated calculations and enhance clarity of the code. 
Advanced compiler techniques analyze the behavior of local/static variables, but 
analyzing the behavior of global variables is more complicated.  During the 
development of this type of computer models, frequent errors in the model’s code 
were found:  
- Global variables were assigned both by the model and by the solution method 

(this error is as dangerous as changing the control-index inside an iterative cycle),  
- Local variables were referenced without a previous assigned value.  

The following characteristics are useful to assess the quality of a model: 
 A table of assignments and references of variables in an equation.  This table 
is used to verify that every intermediate variable is referenced only after it has been 
assigned a value; otherwise, undefined behavior could result during execution.  This 
table is also used to verify that state variables are not assigned, since they are 
expected to be modified only by the numerical solver.  
 The value of inputs variables, that could generate arithmetic overflow, 
underflow or invalid arguments of arithmetic functions, to prevent the failure of the 
simulation, and to suggest ways to overcome these possible failure conditions. 
 The dependence matrix that is used to detect which variables could cause 
any difficulty in the iteration matrix. 

As we shall see ahead, some of these requirements of the model’s code are not due 
to misuse of the computer language, but such characteristics are needed to ensure the 
quality of a model.   

 

Section 2 presents a computer framework to analyze this type of models.  In 
Section 3, three types of selective analyzers are presented using this framework: a) to 
evaluate assignment and reference of variables, b) to evaluate states and structure of 
the equations, and c) to evaluate measurements of reliability and efficiency; also some 
results obtained by applying this type of analysis to process units are presented.  
Finally, some conclusions are drawn from our experience with this framework.  
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1.1. Mathematical Model Description 

The model equations representing the behavior of a process unit can be grouped in 
mathematical form as:  

v    = a(p, u, x, y ) Intermediate equations                         (1) 

rd   = A(y)  
dt

dy(t)
– f(t, p, u, v, x,y) 

Differential equations   

ra    = g(p, u, v, x, y) Algebraic equations     

 
Where the mathematical type of variables is: 

t   time. p     unit parameters, which do not vary with time. u(t)  input  variables  
v(t)  intermediate variables, which are used to store the value of some 
computations. 
x(t)  algebraic state variables, which do not have accumulation, but change with 
time. 
y(t)  differential state variables.ra    algebraic residuals.,rd    differential 
residuals. 

a, f, g, are real valued functions.,A(y) is a nonsingular real matrix. 

1.1.1. Mathematical Model Solution 
Given: t, u, x* (starting value), and y0 (initial value) , v intermediate variables are 

evaluated (eqn. 1.1), and the balance equations,  expressed as residuals ( eqns. 1.2,1.3) 
are solved iteratively, as a coupled set of differential-algebraic equations for, x(t), and 
y(t).  The procedural form (explicit)  of intermediate equations allows  in mediate 
calculation, while the declarative form (implicit) of the balance equations allows 
flexibility in its working conditions.    

1.1.2. Naming of Procedures of a Model 
Every process unit is composed by a set of  procedures with predefined names: 

 
Scale() Defines geometry and capacity parameters, p 
Starts(Time)  Sets initial values, x*, and starting conditions, y0. 
Behave(Time, 

EeR[]) 
Evaluates the intermediate variables, constraints, and 

evaluates the vector of residuals ra, rd as final variables  
ata given time. 

Operate (Time)  Modifies manipulated (external) variables, u. 
Signal(Time)  Evaluate measured variables, z 
 

 Functions naming delimits which part of the source code to analyze.  The analysis 
is carried only in the Behave(double t, double EeR[])procedure and the 

                           252      D. Juárez, J.M. Molina, J.R. Zamora, R. Leder



 

functions called by it. Other procedures to evaluate physical properties can also be 
coded by the user 

1.1.3. Naming of Variables of a Model 
The names of variables are used not only to clarify the purpose of the variable but 
also to identify the type of a variable required in the algorithmic analysis. The 
variables allowed are of basic type (integer, and floating point) or arrays.  States, 
externals, inputs and signal variables are communicated in the model as global 
variables.  Global variables names are composed by 8 characters (Variables which are 
only used in the model are local, their names do not have the first four characters.  
Example:   

Liquid temperature of a drum coming from port 01. 
Dm––––––––––––The Unit name, (i.e. Dm Drum). 
      01  ––––––––– The port through which this variable is connected: two integers  
          Tm ––––––  The general property, (i.e. Tm Temperature)   
                   L––––– The specific condition of the property,(i.e. L liquid) 
                      A––– The mathematical type: A Algebraic state variables D 

Derivative (cf fig 1.1) 

2. Model Analysis Using the Computational Graph 

Automatic model analysis can be carried out by the computational graph of the 
model.  Iri [3] defined the computational graph as an acyclic graph of which a node 
corresponds to a basic operation, an input variable or a constant, and of which an arc 
corresponds to an operation. A compiler usually translates the sequence of arithmetic 
operations and procedure-calls of elementary functions into an internal representation, 
which is approximated by a composition of elementary arithmetic operations 
(monadic or dyadic), and possibly some functions (in one or two variables) that 
contains the selected branches and the loop unrolled as necessary.  Then, the value of 
each entry depends only on the input variables or previously computed values.  Given 
a set of input values for independent variables, intermediate variables are computed 
by elementary arithmetic operation or intrinsic functions, following the computational 
graph, to arrive to the final values.   

Since the computational graph captures the precise sequence of operations and 
arguments implemented by a particular algorithm or function, it is possible to use this 
graph for a given analysis.  Then for a set of specified values of all the variables in a 
model, the analysis ( , )l mx x  of the variable with respect tom lx x is evaluated as:  

( , )
, ,

( , ) ( , ) ( , )
l m

l m i k k jp P x x
i j k p

x x x x x x




      (2) 

 
Where, P is the set of feasible paths going from vertex lx to vertex mx , p is one 

of these paths, and i, j,k  are nodes in this path.  The elementary analysis of unary or 
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binary operations, and the concatenation (chaining) of operations is denoted by  .  
These operations are evaluated by overloading these operators.  The summation is 
executed following the computational graph which accumulates the properties of the 
analysis. 

To illustrate how the results of model analysis are propagated along the 
computational graph, two examples are presented; the first one shows the analysis of 
the computational graph  

Example 2.1. Computational graph. Consider the equations for an induction engine 
[4]:  

K
S 1

K K


 

 
    

(3) 

2

3 2 1

V
K / S K *S K 

 
 

 

4 5 6if S K then *(K K *S)       .  

7 E M
dK
dt

     

 

 
0 7K ,..., K are parameters. S = Slip (which measures the distance from nominal 

speed, K0), , E M  =electrical and mechanical torque, V = voltage. If 4S K the 
evaluation of the slip is given by the following intermediate variables: 

2
1

2 3

3 2

4 2 3

5 4 1

E 1 5

v  = V
v  = K /S
v  = K *S
v  = v +v
v  = v  + K

 = v /v

 

(4) 

 
Observations regarding this evaluation:  

- If 4( ) ,S K the value of E  is “corrected”, but the associated formulation is 
obscure, since the same identifier is reevaluated. 

- For a given values of the parameters the derivative d
dt
 depends essentially on 

MV,   
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- If is expected that S 0 is better to code eqn. (2.1) as
2

E
3 2 1

V S
K (K *S K )*S

 
 

, 

which is more stable. 
Figure (2.1) describes the evaluation graph of eqn. (2.1). The dotted line shows that 

exist two paths from ES to  .  If 4S K then exists three paths from ES to  . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Evaluation graph od eqn 3. 

Example 2.2 Operator overloading. This example shows how operator overloading 
can be used in the analysis of a computer model. 

Consider the expressions described in figure 2, which describes the variation of 
area A, passing through a non return flow valve dAdt, according to the pressure drop, 
P.  In this figure: auxm = (P -  Pmin)*A; auxs = auxm*k0; 
auxe = auxs – da/dt.  

 
  /* evaluation of differential residual for valves area */ 
  if (P < PMin) { 

     VcR[0] = - dAdt + KC*P - PMin)*A;      /* closing */ 
  } else { 

     VcR[0] = - dAdt + KO*(P - PMin)*(1 - A);/* opening */ 
  } 
Code 2.2 Expression which describe the opening of a non return valve  
These instructions are evaluated simultaneously according to the standard 

arithmetic, and with the selective algebra for the analysis. The computational graph of 
VcR[0] is presented in fig 2, for the standard and the selective algebra.  When  P < 
PMin, the area of flow decreases according with  VcR[0] = - dA/dt + KC * 
(P - PMin)*A.    In this figure it is depicted how every operator is used to 
increment  the number of references (e.g. abbreviated as A.r++), and the number of 
assignments (R[0].a++ ) in the ‘=’ operator.  
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Fig. 2. Variation of area A, passing through a non return flow valve dAdt 

 

2.1. Implementation of Automatic Model Analysis 

To analyze a model, the computational graph is followed, this graph contains the 
sequence of instructions taken by the compiler to evaluate model outputs.  The 
implementation was carried out by operator overloading.  Operator overloading 
allows to change the arithmetic operators such as: +, *, and arithmetic functions like: 
sin(), cos(), into operations and functions for the selective analysis [5,6].   

Thus, to analyze a model by operator overloading, it is necessary to:   
 Specify the selective algebra for the analysis. 
 Design a set of classes supporting this algebra of unary and binary 

operations through the overloaded arithmetic operators and elementary 
functions, and the relationship with other classes. 

 Specify the expected behavior for global and local variables, when the 
execution is completed. 

The composed analysis is evaluated automatically calling these functions in the 
order determined by the computational graph. Then the diagnoses of the analyzed 
terms required to compute the final result are assembled.  To relate diagnoses with the 
variables, a list of variables of the different type of variables were build by a lexical 
analyzer. 

This type of analysis produces values of properties of what is actually computed.  
If we want to cover all the feasible forms of behavior, a branch testing is needed.  The 
elements of branch testing are [7]:  
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 A branch analyzer to produce a branch condition.  The predicates of every 
conditional clause in a model are replaced by a logical flag.  Every time the model is 
called with a set of flags, which produces a branch condition for every branch. 
 A tester to run the program against a sequence of test cases.  The model tester 
calls the model several times, every time with different set of test inputs.  In every set 
of test inputs, it is expected that the model presents a different form of behavior.  
 Probes to analyze the condition of a branch when it is traversed.  Probes were 
implemented as a set of classes supporting the algebra for the analysis through the 
overloaded arithmetic operators and elementary functions.  
 A report generator to produce a table of local and global variables, with their 
properties evaluated during the analysis at different branch conditions. 
 An oracle, to determine correctness of the program’s output for some input.  The 
evaluated model properties are compared with the asserted properties for every 
variable by decision tables.  Unexpected behavior are reported as diagnoses. 

Since computational models are designed to run on a finite machine over finite 
input sets, it is possible to prove the correctness of any program by testing it over its 
whole input domain.  Also, since every model represents only a process unit with only 
physical streams as external variables (with a discrete or continuous domain), the 
number of evaluations is modest.   

Once the model has been successfully produced, it  runs for simulation with basic 
variables of the C language, without the burden of operator overloading, so it can be 
efficiently executed. 

2.2. Step by Step Model Testing 

To analyze a model using the computational graph, by operator overloading, the 
following stages should be carried out by the user (see fig 2.3): 

1) Codify the model with the name of identifiers as described in fig 1.2.  Variable 
naming is used to determine the type of variable, its purpose and how to analyze it.  

2) Apply Model Analysis with the model-name as argument.   
The following tasks are executed by a batch file:  
2.1 Model Instrumentation: Performs a lexical analysis on the source program to 

produce tokens, parsing the tokens to translate declarations of types into declaration 
of types required for the analysis (active or non-active variables).  Thus an internal 
form of the model, compatible with ANSI C, is generated.  In this internal form: 

- Local and global declarations of types are translated in declarations of types 
(active or non-active variables) required for the analysis according with variable 
naming, 

- Variables of procedure calls are translated in compatible abstract types. 
- Branch predicates are substituted by logical flag which triggers the branching 
- Sequential statements are tagged. 
- An executable program is built to test the model. 
This parser also a) builds a table of local and global variables, and b) constructs a 
model tester 

2.2 Model binding with its model tester and their classes (which define the selective 
algebra) to produce an executable.   
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2.3Model Execution. The model is invoked several times with a different set of test 
inputs. A report is produced with the model output.  This report presents a table of the 
local and global variables with their properties evaluated during the analysis at 
different branches. 

2.4 Model diagnosing.  Comparing the model properties obtained during the 
execution with the asserted behavior for every variable, a linked list is used to store 
and to display the diagnoses. 

 3. Correct the Model. The diagnoses (faults and warnings) generated by the 
analyzer serve the model-developer to correct the code.  A model is considered 
acceptable if no severe errors are detected. 

 

 

 

 
 

Figure 3 Sequences in the Analysis 

2.4 Supporting tools 

The classes for the state & structure analyzer were designed with Rational Rose [8.  
The code analyzer Codewizard [9]was used to review the implementation of classes.    
To build the lexical analyzers for model instrumentation we used the lexical analyzer 
Pclex [10].  

The next section details the characteristics of three types of analyzers to evaluate 
properties of models of process units.  

 

3. Characteristics of Model Analyzers 

This section details the characteristics of analyzers developed.  
 
 

Classes for 
the Analysis 

Comparison 
Results vs. 
Assertions 

Linker 
Run 
Test 

Cases 
Pre-procesor 

Assertions for 
the Analysis 

Instrumented 
Source code+ 

CVV 

Executable Table of 
Local and Global 

variables Model  
Diagnoses 

User’s 
model 

Results 

       

Model                                  
Tester 
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3.1. Assignment & Reference Properties  

The purpose of the analysis of Assignment and Reference is to detect the 
inappropriate use of variables.  Reassignment of a variable obscures the code, which 
sometimes is due to careless code re-editing. Lauesen and Younessi [11] mention the 
following properties for visible quality in software:  A variable should be assigned 
before it is used.  A variable should have only one purpose in a procedure.  A variable 
that is referenced (i.e. that appears in the RHS of an equation) without an assigned 
value can produce an undefined model behavior. Gani and Toneva [12] indicate that 
explicitly computed variables require an adequate precedence ordering to avoid 
referencing a variable without an assigned value.   

Attributes of a variable that is a class of this type: Its value, Number of 
assignments (Assg), Number of references (Ref), List of line number(s) where a 
value was assigned.  

Algebra for Assignment & Reference. A global variable has an initial value at 
the beginning of the execution.  A local variable does not have an initial value. For 
this analyzer we define the algebra displayed in Example 3.1. 

Table 1. Assumed Algebra for Arithmetic for assignment analysis 

Model’s code Evaluation of  assignment & reference 
Assignment                 Reference 

                                          Start up of global variables 
double AGlo, BGlo, 
CGlo, Dglo; 
double EGlo[2], 

FGlo[2];                                     

AGlo.Assg = 0  AGlo.Ref = 0  

                                          BGlo.Assg = 0   BGlo.Ref = 0  
                                          CGlo.Assg = 0   CGlo.Ref = 0  
                                          DGlo.Assg = 0   DGlo.Ref = 0  
                        EGlo[0].Assg = 0   EGlo[0].Ref=0  
                                          EGlo[1].Assg = 0   EGlo[1].Ref=0  
                                          FGlo[0].Assg = 0   FGlo[0].Ref=0  
                                          FGlo[1].Assg = 0   FGlo[1].Ref=0  
int Behave(double 

tiem, double 
EeR[2]) 

When procedure is Behave is invoked 

{   
  double gLoc, 

hLoc;        
gLoc.Assg = 0 gLoc.Ref= 0 

                                             hLoc.Assg = 0 hLoc.Ref = 0 
                                             LHS RHS 
  CGlo = AGlo + 

BGlo;       
CGlo.Assg++ AGlo.Ref++ 

BGlo.Ref++ 
  gLoc = 2.*BGlo;                       gLoc.Assg++  BGlo.Ref++ 
  if(Bglo > 10){ 

   
            BGlo.Ref++ 

    DGlo = gLoc; DGlo.Assg++  gLoc.Ref++ 
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  } else {   
    DGlo = hLoc;                        DGlo.Assg++ hLoc.Ref++ 
  }   
  for(I = 0; i>2; 

i++){                  
  

    EGlo[i] = 
FGlo[i]*BGlo;    

EGlo[i].Assg++ FGlo[i].Ref++ 

  }   BGlo.Ref++ 
  EeR[0] = 

pow(DGlo, gLoc)    
EeR[0].Assg++    DGlo.Ref++ 

gLoc.Ref++ 
  return(0);           
}   

 
We observe in example 3.1 that since local variable hLoc does not have an initial 

assigned value, it could produce an assignment error when it is referenced in the 
second branch of the conditional expression, and propagate the error to the evaluation 
of EeR[0]. 

Assertions: Local Variables. A local variable should have an assigned value before 
it is referenced.  A local variable can be recomputed only after it has been referenced 
at least once. The vector of residuals should be assigned exactly once.  The other 
global variables that belong to a model should not be assigned, but they should be 
referenced in the model at least once. 

Input Tests: A set of logical flags that trigger the conditional branches. 
Use of Computational Resources.  For m conditional clauses computation 

requirements grow as 2m function evaluations, since the clauses are considered as 
independent.   

Results: List of assignments and references of local and global variables at a given 
line number. 

3.2. State & Structure Properties 

The purpose of the analysis of states and structure is to obtain the dependence matrix.  
This matrix has the residuals in the rows and the independent variables in the 
columns.  A nonzero element appears in position [i, j] of this matrix if a residual 
i depends on variable j. This matrix is useful to isolate errors, and to evaluate 
economically partial derivatives numerically [13].  It is also useful to detect sets of 
equations whose variables do not interact, thus they can be executed independently 
for parallel processing [14].  Since Shannon proved that the minimum set is limited by 
the maximum number of variables in an equation [15], the saving of computing effort 
in the numerical evaluation of partial derivatives is substantial in large systems of 
equations. The structural analysis displays the global variables used in an expression.   

Attributes of a variable that is a class of this type: Its value, an integer value to 
identify the variable, a list of identifiers of global variables used to evaluate it (Dep).  
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Algebra for Structure. The preprocessor assigns a tag to every variable to identify 
it. For this analyzer, the algebra shown in example 3.2 is assumed: 

Table 2. Assumed Algebra for structural analysis 

double AGlo, BGlo, CGlo, DGlo; 
double EGlo[2], FGlo[2]; 

Results of  State & Structure 
Start up 

                                          AGlo.Dep = {},…,etc. 
EGlo[1].Dep = { } 
EGlo[2].Dep = { },…,etc. 

                                        
int Behave(double tiem, 

double EeR[2]) 
{ 

When procedure Behave is 
invoked 

  double gLoc, hLoc;       Dependence 
  CGlo = AGlo + BGlo;      CGlo.Dep = {AGlo, BGlo} 
  gLoc = 2.*BGlo;                       gLoc.Dep = {BGlo} 
  if(Bglo > 10){     
    DGlo = gLoc;   DGlo.Dep = {BGlo} 
  } else {  
    DGlo = hLoc;                        DGlo.Dep = {} 
  }  
  for(I = 0; i<2; i++){                   
    EGlo[i] = FGlo[i]*BGlo;

    
EGlo[i].Dep = {FGlo[i], 

BGlo} 
  }     
  EeR[0] = pow(DGlo, gLoc)   EeR[0].Dep = {DGlo, 

BGlo} 
  return(0);          
}  
 

When an intermediate variable is referenced, instead of using the dependence of 
intermediate variable itself, the dependence of this intermediate variable on the global 
variables is substituted.  In the conditional clauses, the union of dependence of both 
conditional branches was assumed to detect all possible dependencies. 

Assertion: A state variable that belongs to the analyzed model should appear at 
least in one residual equation.   

Input Tests: A set of logical flags that trigger the conditional branches. 
Use of Computational Resources: The effort required is similar to the Analysis of 

Assignment & Reference. 
Results: The dependence matrix with respect to any of the mathematical types (fig 

1.1). 

For a single unit, the dependence matrix is rectangular.  When enough variables are 
specified, the matrix becomes square. 
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3.3. Reliability & Efficiency  

The purpose of the analysis of reliability and efficiency is to detect domain values that 
causes under/overflow or an undefined value of arithmetic operations in a model.  
Code analysis is relevant since two evaluating procedures representing a 
mathematical function may have widely varying stability and efficiency. The 
combined algebraic-differential equations (eqns. 1.2, 1.3) have more degrees of 
freedom to represent an expression,  than in ordinary-differential equations  since the 
algebraic-differential terms need only to equate to zero [16].  In real time simulation, 
it is also essential to detect the largest computing effort required in a model.   

Attributes of a variable that is a class of this type: Its value, the number sums-
subtractions (Sum) multiplications-divisions (Mul), the number of square roots, the 
number of exponential and trigonometric functions (Art): {sqrt(), exp( 
),log( ),sin( ), cos( ),tan( ),.., etc}  required to calculate its value. 
The number of faults in divisions, square roots, and trigonometric expressions. 

Algebra for reliability and efficiency:  
- The result of a detected dangerous operand is forward propagated from the 

intermediate variables to the final variables, the vector of residuals. 
- The operations required to evaluate intermediate variables are counted only once. 
- The analysis reports only the operation count in variables, which are used to 

evaluate the final variables (i.e. the algebraic or differential residuals); thus, a 
variable, which is only used as a predicate of a conditional clause, is not taken into 
account.   This is shown in example 3.3. 

Table 3. Algebra for analysis of Efficiency 

double AGlo, BGlo, 
CGlo, DGlo; 

double EGlo[2], 
FGlo[2]; 

Results of  State & Structure 
Start up 

                                          AGlo.Sum=0; AGlo.Mul=0; AGlo.Art=0; 
EGlo[1].Sum=0; EGlo[1].Mul=0 

EGlo[1].Art=0 
EGlo[2].Sum=0,…,etc. 

                                           
int 

Behave(double 
tiem, double 
EeR[2]) 
{ 

When procedure Behave is invoked 

  double gLoc, 
hLoc;        

Operation Count 

  CGlo = AGlo + 
BGlo;       

CGlo.Sum=AGlo.Sum+BGlo.Sum+1; 
CGlo.Mul=AGlo.Mul+BGlo.Mul; 

  gLoc = 
2.*BGlo;                       

gLoc.Sum=BGlo.Sum; 

  if(Bglo > 10){
    

gLoc.Mul=BGlo.Mul+1; 
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    DGlo = gLoc;
   

DGlo.Sum=gLoc.Sum; 
DGlo.Mul=gLoc.Mul; 
 

  } else {  
    DGlo = hLoc;                        DGlo.Sum=hLoc.Sum; 

DGlo.Mul=hLoc.Mul 
  }  
  for(I = 0; 

i<2; i++){                  
 

    EGlo[i] = 
FGlo[i]*BGlo;    

EGlo[i].Sum=FGlo[i].Sum+BGlo.Sum; 

  }  EGlo[i].Mul=FGlo[i].Mul+BGlo.Mul+1; 
  EeR[0] = 

pow(DGlo, gLoc)    
ErR[0].Sum = DGlo.Sum+gLoc.Sum 

  return(0);  
  

ErR[0].Sum = DGlo.Mul+gLoc.Mul      

} ErR[0].Art = DGlo.Art+gLoc.Art+1; 
 
Table 4 shows the arithmetic operators and functions whose operands are verified 

to be within its valid domain. If a potential error is detected due to a unsafe 
arithmetic, the analyzer issues a diagnostic flag, and execution continues using a safe 
arithmetic. 

Table 4.  arithmetic operators and functions verified 

Arithmetic 
Operations and 
functions 

Condition of risk Safe arithmetic 

1/x  |x| <   1/(x + *sign(x) ) 
tan(x)  x <  tan(x + *sign(x)) 
x  x < 0  |x| 
xy  x < 0  |x|y 
log(x)  x < 0  log(|x|) 
exp(x)  x > xmax exp(xmax) 

 
 is a tolerance 
 is a related with  machine precision 
Copy-constructors were required to transfer the arithmetic statistics/diagnoses to 

another variable during its declaration. 
Assertion: No diagnostics should appear in the arithmetic operations.     
Input Tests: The external real variables.  
Use of Computational Resources:  This analysis only considers the paths 

(combination of branches covered) produced by these inputs.  The cost depends on 
how many test cases per input variable are required to cover the domain.  

For exhaustive testing of the continuous domain in a reduced number of tests, this 
analysis requires the careful design of test cases.  Offutt, Jin and Pan [17] have 
developed a program for reducing testing input domain.  Given a set of input variables 
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with domain umin- umax, symbolic analysis obtains the predicate of conditional clauses 
in terms of the input variables.  If the predicate has linear dependency on the input 
variables, analyzing all the independent or nested conditional clauses, which can 
traverse all the arcs, can reduce the input domain.   

4. Results  

For every test case is produced:  a list of operation counts required to evaluate the 
vector of residuals, and a list of diagnostics in the evaluation of these variables. With 
this information, the model-developer can select alternative forms of coding: factoring 
common sub-expressions, or using alternative efficient arithmetic (e.g., x instead of 
x0.5 ).   If any diagnostic appears, it is necessary to bound the value of dependent 
variables to a given domain, to regroup terms, or to use an equivalent arithmetic of 
operators to reduce the possibilities of an arithmetic exception. 

We have found convenient first to follow this steps 1)to analyze the models for 
adequate Assignment & Reference; then to correct the code as necessary, 2) to 
analyze the States & Structures (which will not be upset by unassigned variables), and 
finally 3)to analyze Reliability & Efficiency, with the available relation of equations 
and variables (to define the test inputs).  

4.1. Results of Model Analysis 

The analysis was applied to typical models required in energy cycles.  The 
characteristics of these models are displayed in Table 5.  The first three models (Sp, 
Bb, Ww) were adapted from a power plant simulator based in subsystems (like 
steam-generation, water-feeding).  The last two models were built using modeling 
guidelines, proposed in this work, and tested during its development with these 
analyzers.  These models were written in the C programming language. 

This section present  the results when they analyzers are applied to the modes of 
Table 5. 

Sp: Gas-Steam Superheater 
Bb: Electrical Pump 
Ww: WaterWalls 
Mi: Induction Engine 
Dm :Drum with Single and double phase 
 
These results obtained were validated by code inspection. 
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Table 5. Characteristics of Model Analyzed 

Process Unit 
Name 
filename 

 

Num.  
Para-
meters 

P 

Num. 
 States 
 x(t), y(t) 

Num. 
externals 
u(t) 

Num.  
Residual  
Equation
s  

R 

Max. Nesting  
level of  
conditional 
Branches 

Num. 
Proce
-
dures 

Sp 
 

1 15, 
4 

streams 

2  5 
 

0 8 

Bb 
 

36 8, 
3 

streams 

2  4 
 

1 8 

Ww 
 

1 8, 
3 

streams 

5  4 
 

0 8 

Mi 
 

22 2, 
4 

streams 

2  
1 logical 

2 
 

2 8 

Dm 5 8, 
4 

streams 

9  
 

8 
 

1 13 
(5 for 
physic
al 
propert
ies) 

.4.2. Results of The Analysis of Assignment & Reference Properties 

The results of this analysis are summarized in table 6.  
 

Table 6. Assignment & Reference Properties of Model 

 Local Variables Global Variables 
Model A declaration 

not 
referenced 

An 
assignment  

not 
referenced 

 No  
Referenced 

Invalid 
assignment  

Sp 1 --  2 4 
Bb 16 2 -- -- 
Ww -- -- -- -- 
Mi -- -- -- -- 
Dm 12 573 -- -- 
 
Sp Model.  The analyzer detected 2 global variables without reference, it also 

detected that for some conditional branches there are 4 invalid assignments. As more 
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detailed knowledge was required to correct the first error, the analysis of this model 
was stopped at this analysis.  

Bb Model.  The analyzer diagnosed 2 unnecessarily declaration and assignments, 
these are minor faults.  

Ww and Mi Models did not present diagnoses. 
Model Dm. The analyzer diagnosed unnecessarily declarations and assignments. 

The assigned variables are elements of arrays of coefficients used to evaluate physical 
properties through polynomial approximation.  

4.3.  Results of The Analysis of State & Structure Properties 

Here, the dependence matrices with respect to algebraic x, and differential states y, 
are shown  in tables 7-8 Nonzero elements are represented by . 

Table 7. Dependence matrices for models for mode Bb 

Res  
x[0] 

x
[1]    

x
[2]    

x
[3] 

x
[4] 

X
[5] 

y
[0] 

BbR
[0] 

            

BbR
[1] 

         

BbR
[2] 

                    

BbR
[3] 

                              

Bb Model has a variable x[0] that does not appear in the residual equations.  This 
detection avoids a structural singularity during its numerical solution.  

Table 8. Dependence matrices for models for mode Ww 
Res x[0] x[1] x[2] x[3] x[4] x[5] x[6] u[0] u[1] u[2] u[3] u[4] y[0] y[1] 
WwR[
0] 

              

WwR[
1] 

              

WwR[
2] 

              

WwR[
3] 

              

Table 9. Dependence matrices for models for mode Mi 

 
 
 
 
 
Ww, Mi models do not present any diagnoses, but the structure obtained 

automatically is useful in the solution of the model. 
 
 

Res x[
0] 

u[
0] 

u[
1] 

u[
2]    

y[
0] 

MiR[0]           

MiR[1]      
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Table 10. Dependence matrices for models for mode Dm 
Re

s 
x

[0]   
x

[1]       
x

[2]       
x

[3]   
u

[0] 
u

[2] 
u

[3]     
u

[4]   
u

[6] 
u

[9] 
y

[0]    
y

[1]    
y

[2]    
y

[3]     
Dm

R[0] 
                                                

Dm
R[1] 

                    

Dm
R[2] 

                    

Dm
R[3] 

                                                     

Dm
R[4] 

                                            

Dm
R[5] 

                          

Dm
R[6] 

                                                  

Dm
R[7] 

                                                     

 
In Dm Model although external variables u[1], u[5], u[7] and u[8] are 

not used to evaluate the residuals, its model structure is adequate, (unlike Bb model), 
since these external variables could be used elsewhere. 

4.4. Results of The Analysis of Reliability & Efficiency 

This analyzer checks if a model can handle the variables in the input streams.  Some 
test inputs caused models to incompletely finish computations. Results of the analysis 
at different test cases are shown in figures 3-6.  It counts the number of every type of 
operation according with the procedures called and the branches taken.  Note:  Only 
two different test cases are shown per residual, they are presented in different color. 

 

Fig. 3. Number of Arithmetic Operations for Bb model. 
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For some runs, Bb model does not compute any residuals, since a flag of invalid 
domain was detected internally, then the model returned without completing 
calculations, thus protecting the model. 

 

 
Fig. 4. Number of Arithmetic Operations for Ww model  at two different conditions 

Model Ww presents four divisions by zero, these divisions are due an arithmetic 
term which evaluates the inverse of the sum of fractions with small denominators: 
(1/x1 + 1/x2)-1.  To overcome divisions-by-zero this term can be refactorized as x1* 
x2/(x1 + x2).  In one test case shown, the evaluation of the first residual dominates the 
whole computing effort. 

 

Fig. 5. Number of Arithmetic Operations for  Mi model at two different conditions 
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The computations in this model of an induction engine vary according to its 
operating region: linear, or non linear.  In the linear region only requires summations 
and multiplications to evaluate the residuals. 

 

Fig. 6. Number of Arithmetic Operations for Dm model at two different conditions 

In Dm Model, the computations in this model vary according to its operating region: 
in the single phase region (liquid), the model evaluates only summations and 
multiplications; in the saturated region, the model evaluates properties in both liquid 
and steam, which require a term with square roots. 

5. Conclusions 

A computer framework for evaluating specific algorithmic properties of computer 
models for dynamic simulation was presented.  This framework is based on the 
definition of the algebra for the analysis, the implementation of a set of classes 
supporting this selective algebra by operator overloading, and the specification of the 
asserted behavior for the analysis.  This framework was applied to the design and 
implementation of software tools: to evaluate Assignment & Reference, States & 
Structure, and Reliability & Efficiency of simulation models.  Every analyzer 
diagnosed specific characteristics of the tested models.  With these diagnoses, the 
models can be corrected to improve their quality, thus becoming correct, efficient and 
resilient for steady state or dynamic tests.  

5.1. Limitations of this Type of Analysis 

- No static variables are allowed in the model, since static variables store the 
previously computed values of a variable. 
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- Concatenated loops (disjoint), nested loops (one inside another) can be analyzed, 
but not knotted loops (branch in/out in the middle of a loop).  But this type of 
loops is avoided with the use of structured programming. 

- Macros are not permitted in the model source code, since they obstruct model 
instrumentation. 

5.2. Further Work 

More attention is required to analyze models with cycles, thus increasing the range of 
application of the available model analyzer. 
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