
Solving Noisy Optimization Problems by a
Quadratic model
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Abstract. We propose a set of safeguards to solve optimization prob-
lems with Derivative-Free optimization when the function has noise. The
safeguards are related to the construction of a quadratic model, and the
tests of acceptance of the step size. These safeguards consider noise in the
measurements, thus as a threshold tolerance criteria to test the model
approximation, and the descendent direction, this threshold considers the
value of the standard deviation was used. Also some indexes to monitor
the iteration progress are suggested. The results are exemplified with a 2
variable application. These results show the improvement in robustness
of the method using a quadratic model.

1 INTRODUCTION

To solve a continuous optimization problem, the derivatives required in the Tay-
lor approximation can be obtained numerically, analytically, or by automatic
differentiation [Griewank91] but when the function is not continuous, the eval-
uation of first and second derivatives causes noise. In some applications there is
inaccuracy in the function evaluation. If a model is not exact, the evaluation of
derivatives worsen. Some types of these applications are:

1. The functions that use nested iterative methods.
2. The functions with smooth and non-smooth parts.
3. The functions which imply noisy measurements
4. The selected norm || · || required in the Objective functions presents a non

smooth derivative, for example max(f(x)), abs(f(x)),min maxf(x)

In many applications the objective function has the form f(x) = h(x) + r(x)
where f(x) is a nonlinear function r(x) has a different value in every evaluation,
or has a random value.

Suitable methods include the simplex-reflection method of Nelder and Mead,
pattern-search methods, conjugate method, and evolutive algorithms[Krink04].
Other types of methods are direct methods [AndeFerri00], and methods which
construct a local (linear or quadratic) model.

when the derivative is obtained by finite differences

5f(x) =
f(x + δxi)− f(x− δxi)

2δxi
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if the noise dominates in the difference interval [−δx, +δx], the evaluation of
5f(x) presents little accuracy.

2 MODEL BASED METHODS

Most of the methods compute steps by minimizing a quadratic model of the
objective function, f(x). When derivatives are not available, we may construct
a quadratic model of the objective function that interpolates f(x) at a set of
appropriately chosen sample points. Since such a model is usually non-convex,
model-based methods use a trust region to compute the step [Nocedal00].

Suppose that at current iterate xk we have a table of sample points xl, yl.
We assume that xk is an element of this set and that no point in this set has
a lower function value than xk. We wish to construct a quadratic model of the
form

mk(xk + δx) = c + gT δx +
1
2
δxT Gδx.

where
δxl = xl − x0

We evaluate the scalar c, the vector g, and the symmetric matrix G by imposing
the interpolation conditions

mk(xl) = f(xl), l = 1, 2, .., q interpolation
Gij = Gji symmetry
Since there are q = 1

2 (n+1)(n+2) coefficients in this model the interpolation
conditions determine mk uniquely when q points are used

Once mk has been formed, we compute a step ∆x by approximately solving
the trust region problem.

min
∆x

mk(xk + ∆x)

subject to||s∆x|| ≤ D

where s is a scaling vector.
When the new point is obtained x = x0+∆x, then the worst point is replaced

mmaxl = max(yl)

The coordinates and the value of this point are replaced by (x0, y0)

2.1 Improvements

In the development of the model we assume that function f(x) can be described
by a noisy quadratic model where the noise is small compared with the function
value.
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Recursive Least Squares Since the information contained in the g vector and
G matrix is not fully reliable, to assure convergence we use several safeguards:

0. We can use a a larger number of points to reduce the effect of noise. Thus
a linear model can be constructed with p > q points to fit n parameters, θ as
XT Xθ = XT y. The sample points were selected randomly.

Also for new observations wT θ = y, the updated value of the parameters can
be obtained using recursive least squares [Bjorck96] :

(AT A + wwT )(θ − θ) = (y − wT θ)w

Evaluation of Trust Region When the constrains are imposed on the opti-
mization, the equations produced by the Lagrage multipliers are:

∂L

∂∆x
= g + ∆xT G + λs∆xT I = 0

and for the Eucledian norm:

∂L

∂λ
= (s∆x)2 −D = 0

for nonzero values of λ (when the constraint is active) the solution for ∆x is

∆x = (G + 2λs2I)−1g

1. We test the eigenvalues of the matrix G

eig(H) = λi > 0∀i
2. We test the curvature

∆xT G∆x < 0

3. We test the prediction capability of the model, which now considers noise

ρ− =
f(xk)− f(xk −∆x)− τ

mk(xk)−mk(xk + ∆x)

ρ+ =
f(xk)− f(xk + ∆x) + τ

mk(xk)−mk(xk + ∆x)

also ρSmall = min(ρ+, ρ−), ρBig = max(ρ+, ρ−)
if ρmin < ρsmall, and ρBig < ρmax the model approximation is accepted

otherwise the ∆x is truncated.
τ is a threshold value which depends on the standard deviation of the model,

σ(x), this variable can be approximated from analysis of the quality of the cor-
relation used:

σ2(x) =
yT y −m(x)T m(x)

p− n

4. We also test the descent condition.
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gT δx +
1
2
δxT Gδx < 0

The descent direction is maintained, except for the prescence of noise

f(x + ∆x) ≤ f(x) + τ

6. As the iteration progresses, the neighboring nodes are closer, but the overall
knowledge of the function is poorer. Thus as a updating strategy for the replaced
node xl, considers to retain some knowledge about the previous points.

xl = x0φ + xl ∗ (1.− φ)

here 0 ≤ φ ≤ 1 Then yl(xl) is evaluated
parameters of the quadratic model: ρmax = 0.7ρmax = 1.2 ∆ = 0.1 φ = 0.9

X0 = [0.953.86]
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Fig. 1. Surface of the optimization

3 RESULTS

We present the results for the test function:
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Fig. 2. Surface response of the test function
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Φ0(ξ) =





1− ξ if ξ < (1− β)
ξ − 1 if ξ > (1 + β)
0.5 (ξ−1)(ξ−1)

β + 0.5 ∗ β otherwise

also

ΦN (ξ) =
2.(1.− β)sin(α2πξ)

α ∗ π

then

Φ(ξ) = Φ0(ξ) + ΦN (ξ);

For two variables Φ(x1, x2) = Φ(x1)+ωx2Φ(x2)+ωx12Φ(x1)∗Φ(x2). The contour
of this function appears in figure 1.
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Fig. 3. Function value vs. iterations
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Figure 2 shows the monitoring variables. The index of Trust region (upper
plot) shows that initially the trust criteria was not satisfied, thus the trust re-
gion iteratio was carried out. The index of model approximation (middle plot)
indicates that most of the iterations the model approximation was inaccurate
thus the step was truncated twice every iteration. Without this reduction the
descent condition could not be achieved. The index of descent indicates that in
most of the iterations the descent direction was obtained.

Figure 3 shows that initially the reduction is fast, but as the iteration point
has decreased its value, the noise dominates and the progress becomes slow
and oscillatory. However the safeguards used assure the convergence close to the
optimum in about 60 iterations. After that there is little improvement. If Matlab
function fminunc was used the effectiveness depends on the starting value.

q = 18 Data points were selected randomly.

4 CONCLUSIONS

A derivative-free derivative method was build to solve noisy functions. The
method consider several type of monitors and safeguards to improve convergence.
This model considers the standard deviation of the model to test the iteration
progress. From initial set of coordinates and function values is constructed this
model and the standard deviation. As the iteration progress the worst values
are replaced, then the model becomes a local approximation when the number
of iterations is grater than the number of samples, thus more sensitive to noise,
thus it is recommended to re-sample.

– Quadratic model requires suitable starting points. The quality of the solution
depends on the and criteria used to construct the model, and the positions
of the starting points. As an alternative we use random sampling.

– A set of testing step have been used to improve convergence of this method.
The advantage of this set of test is that some of them can be exchanged to
improve the robustness of the methodology.

– We have used some indices to diagnose progress of the solution
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