

Modeling vs. learning: an experimental comparison of
two approaches for solving Markov decision processes

Michel García, Cinhtia González, Enrique Sucar and Eduardo Morales

Instituto Tecnológico y de Estudios Superiores de Monterrey Campus Cuernavaca,
Paseo de la Reforma 182-A Col. Lomas de Cuernavaca

C.P. 62589 Temixco, Morelos, México. Tel. (777)329-71-00
{garcia.michel,cinhtia.gonzalez}@gmail.com

{esucar, emorales}@itesm.mx

Abstract. There are two basic approaches to solve Markov decision processes
(MDP). One is to build a model of the process and to obtain the optimal policy
using value or policy iteration. The other consists on obtaining the policy by
trial and error using reinforcement learning. Although the two have been used
to solve different decision problems, their merits and limitations have not been
compared experimentally in the same domain. We have used both approaches
to solve a pursuit-evasion problem in mobile robotics. We represent this
problem as relational MDP, considering the distance and position of the evader
in relation to the pursuer; and obtain the optimal policy for the pursuer by: (i)
building a model and solving it with value iteration, and (ii) by using
reinforcement learning. We have implemented both approaches in a simulated
environment and compared them in terms of effectiveness, efficiency and ease
of model construction.

1 Introduction

The persecution-evation activity is one of the fundamental problems of robotics and it
consist in accomplishing the tracking of a robot to another one, considering that the
second one is on the go. The aforementioned problem can be represented like a
Markov decision process and resolved of several forms. A comparative analysis
among two their are made in this document: By means of the iteration value and with
a reinforcement learning approach. Later time both methods are described.

Basically, the problem consists in accomplishing the persecution until the evader
robot is reached. The above can turn out well of various manners, which here are
implemented and compared only two. The first consists in providing the robot a
model of his environment, as from the one that the best politician may obtain
movements as from, depending on the status in the fact that he meet. Second form
consists in accomplishing autonomous movements that the same pursuing robot must
go learning on one's own, unless somebody say it specifically what to do or how to do
it, but only based on the feedback that he is given by means of certain dynamic
rewards, associates to realized actions.

Both forms were implemented under similar conditions, in an simulation
environment on that various tests were performed and are described later.

2 Markov Decision Process

Markov Decision Process (MDP) [12] is a model that it lets to act in a process of
decision in the time, acquaintance 's representation also like process of sequential
decision. By means of this model it is possible to represent problems which one must
drink in decisions be more than enough what action realizing, with the aim of
minimizing the cost correlated to a series of interactions with the environment.

Several methods exist to resolve a MDP, that is, to find the best action asociated
to each status, that in aggregate they will lead to achieving, of optimal manner, the
desired goal. Such methods can be classified in three categories: Dynamic
programming methods, differences temporary methods and reinforcement learning.
The iteration value corresponds to the first their, and along with learning for
reinforcement, are an important part of the development of the present forms work, so
that both describe themselves from now on.

Iteration value

The classical method to resolve a problem formulated as a MDP is known like value
iteration. The basic idea consists in calculating the profits out of every possible status
and at a later time to use them to select the following action to realize. As his name
suggests it, he is an iterative method where the status utility depends in of the
sequence of actions taken to start of this state, according to the established policy.
Este método se emplea cuando se conoce el modelo del ambiente, es decir, la matriz
de probabilidades de transiciones entre estados, y los valores esperados de
recompensas.

Initially, the states utility can be obtained like the utility expected of all the
possible sequences of stock. Once separability's condition was given, the utility of a
status can be obtained in iterative form maximizing the utility of the next state.

Reinforcement learning

Reinforcement learning is a method that permits the autonomous robots learning from
its own surroundings, and besides, learning while they find themselves immersed at
the aforementioned surroundings. This method has had an important heyday of late
years and reaches out for to achieve that an autonomous agent that receives sensorial
information and acts at a surroundings may learn how to elect optimal stock to
achieve his objectives. This generic problem covers up tasks such like learning to
control a movable robot, learning to optimize operations at factories, or learning how
to play board games.

In each moment the agent executes an action, to the one that he is provided a
reward or a punishment to indicate the desirable that the new status that the
aforementioned action led to proves to be . The agent's task is to learn from rewards
or punishments that he receives when electing sequences of actions that they generate
a bigger positive reinforcement, and of indirect manner, attaining of efficient manner
his goals. [9].

He has to do with, therefore, a learning supervised system that receives
information of the external and a "teacher" that produces positive rewards or refusals
according to the quality of realized actions. The reinforcement or reward is once
show of the action accomplished, once a previous status was given was hit on. That
is, if it takes place to a status better than the previous, then a positive reward is
granted, otherwise penalizes him the action that he carried into that state.

4 Implementation

In order to implement both methods described previously, they defined certain
statuses and stock, which describe themselves from now on. At a later time the
procedure used for realized implementation is detailed.

States

In the environment simulated navigational, the robots move for all the space, it as the
place opens into a set of states that the spectator can observe and whose appearance is
similar to the one that shows in the Fig. 1.

Fig. 1. Examples of real states in the environment. Different positions relatives, evader robot
in relation to the persecutor.

However, the sensors are the only one midway for the robots to get information
from his environment, that provide information on the objects that they find
themselves visible in his reach themselves. Due to the above, and with the purpose of
working with a number of states easy to handle, the states to consider are determined
from certain components, applying the concept of abstraction. The said components
look in the Table 1.

Table 1 Description of states components.

Component Description Values
Distance The evasor robot in respect of the pursuing

robot separates the one to which the robot
is found. It is determined according to the
size of the observed image.

Big
Medium
Small
Empty

Direction

Direction that evader robot finds himself.
It is determined according to the position
of the image perceived at the camera.

Left
Right
Center

Distance. Indicates the distance the robot is found, and it is determined taking into
account the size of the image observed at the camera. The Big parameter means that
the image observed at the pursuing robot's chamber is big, which as it means that the
distance that this meets to is short.
Direction. The position of the evader robot in respect of the pursuing robot. The
values Left, Right and Center indicate the position in which the objective is found,
and therefore, the movement that the robot must accomplish to maintain his
contender's image in the center of the camera.

In a environment without obstacles, the observations of the robot are determined
only for distance and direction to which the objective is visualized. The Fig. 2,
illustrate these observations, that the states act for considering resolve the presented
problem.

Fig 2. Basic possible states for the robot. Are 11 states the ones that 9 (of the 1 to the 9)
happen of of distance-direction combinations, an only state (10) for all those positions in
which the objective is not found visible at the camera and that an additional state considers
itself the goal in considers itself additional (11).

Basic states are those were shown in the Figure 2, and they suit their purposes
like base to generate the states endings considered in the problem, that they consist of
a couple of basic states: The previous and the current. Therefore, the number of
considered states is of (11)2 = 121 states.

Actions

Actions are those movements that can be accomplished in each status to go by to
another one. They were considered five actions: Turn left, Partial turn left,
Advancing, partial turn right and Turn right.

Value iteration Implementation

On the value iteration implementation, the probability array of transition got directly
from the simulated environment. In order to accomplish this, allows robot to explore
the the environment of manner pseudo-aleatory during certain time (specified at the
section of experiments and results).

In turn, they generate their arrays of rewards, which create themselves following
the judgement:

• In order to meet the goal: +1
• Toward an obstacle (empty status): -1
• In order to step forward: +0.1

At a later time, the MDP is the algorithm of valuable repetition, whose parameters
resolvedly intervening are : The probability array of transition just described odds,
the matrixes of rewards and a factor of decrement of 0,9, which determined itself on
the basis of experimentation realized previously . Later on the behavior of the robot
using the aforementioned policy can be observed, at the section of comparative
analysis.

Reinforcement learning Implementation

The learning algorithm for reinforcement proposed by Watkins 11 was implemented.
Basically, this algorithm consists in finding all of the possible statuses for certain
stock and to take a their record. For each executed action he grants a reward that can
be positive or negative, with the end of than in following visits to the same statuses
may determine him which one is the best-suited action.

The execution was accomplished during different spans, specified at the section of
experiments. During his performance, the pursuing robot does a journey of the
environment attempting to find the evader robot and all states are registered for the
ones that he transits for, just like the actions that he sells off.

The strategy of the evader robot restriction consists to sail at random across the
environment, with the one and only of than, with help of his chamber, when
visualizing and identifying his adversary accomplish a spin in the deeply felt
opponent and where he have bigger space to navigate, with the aim of losing sight of
it and procuring thus not to be reached. In realized implementation he takes a record
of actions taken, which step by step they conduct which to an optimal behavior of the
robot.

5. Experiments and Results

Preliminary tests were accomplished using a blobfinder, Player's device whose show
is to detect colors with a camera. From now on experiments accomplished, in
environments with obstacles and without them, with each one of implemented
methods are described.

In the implementation of the reinforcement learning algorithm, during the first
minutes of execution the tax evader once has identified it notices that to go after the
robot turns out to be to the pursuing robot difficult to him. However, as the time
passes, the robot is more and more able to accomplish his adversary's tracking and
also navigates of more docile and soft manner.

In the implementation of the algorithm of iteration value, all along it is noticed
that the robot chases its objective, with movements very well defined even to reach it
finally to the evader robot.

Stroke of ball mentioning than, in addition to the policy of given actions the
solution the fact that which generates the algorithm, the same strategy of evasion of
obstacles in the pursuing robot was incorporated, also is present in learning for
reinforcement, so that they consider equitable situations equitable situations.

The Fig. 3 shows the performance of the algorithm in Player/Stage in an
environment with and without obstacles.
.

 a) b)

Fig. 3. The following's image sold off in Player/Stage in an environment with (b) and
whithout (a) obstacles.

6. Comparative analysis

In order to accomplish a comparative analysis of quantitative nature, was proceeded
from the following manner: First it was allowed to navigate the robot during
incremental time intervals with each one of implemented algorithms. At a later time
the policy generated with each method was compared. As it was mentioned
previously, the performance of the algorithm of valuable repetition practically does
not vary once the optimal policy has been generated; However, for effects of equality

of situations, the time was considered that him important it is allowed to navigate the
start to the robot construct his array of transitions probabilities, that will be useful for
like piece of information the obtaining of the policy.

The results obtained when comparing both policies are in the Table 2. The Table
3 shows the average time that the robot spends in achieving your purpose after 60 and
120 minutes delays, learning and exploration, respectively. Was realized 10
executions with each method.

With the iteration value, the average time the fact that the pursuing robot in
catching up the evader robot with a previous inferior exploration to 1 minute delays
becomes of approximately 30 seconds, and with an exploration of 30 minutes delays
24 seconds. That is, the difference is minimal.

Table 2. Similarity in policies obtained after 30, 60, 90 and 120 minutes of
exploration of the environment. The number of states with the same action
with different action, or states visited, in RL in relation to value iteration
are shown (VI). The percentages respect to 121 states are given.

State-action 30' 60' 90' 120’
Same 9.9% 14.1% 15.7% 16.5%

Disctint 10.7% 13.2% 14.9% 16.5%
Not visited 79.4% 72.7% 69.4% 67%

In the previous table it observes an important quantity of statuses visited by the

algorithm RL, it as he proves to be congruent because some states are necessary to
they are practically impossible to visit if it is considered that it is not like base
accomplishing certain transitions, such from state 1 to the goal.

Table 3. Average time that the robot spends in achieving his purpose after 30, 60, 90
and 120 learning minutes (RL) and exploration delays (VI), respectively.
Was executed 10 executions with each method and are reported the times
in seconds.

Approac
h 30' 60' 90' 120’
RL 58.6” 50.5” 47.3” 35.2”
VI 24.2” 23.9” 23.3” 23.2”

7. Conclusions and Future Work

After achieving the objectives initially presented with both methods, it is possible
concluding than reinforcement learning, prove useful because the agent does not call
for specific instructions, rather one is dedicated to learn on the basis of test and error.
To the start the performance, prove little efficient, but step by step he goes improving
in agreement lapses the time and his archives of information go away filling with
information.

In the case of the modeled by means of MDP, it could become verified that to for
to achieve an optimal performance, a good training phase is necessary, as well as a
correct definition of states and actions to realize . With this method it is possible to
accomplish a more efficient following, which observes in Tables 2 and 3 showed
previously.

As future work, both algorithms will be implemented in real robots.

8. References

1. Isler, V. Kannan, S. Khanna S. “Locating and Capturing an Evader in a Polygonal
Environment”

2. Garía, R. Batlle, J. Magí, Ll. Pacheco, Ll. “Seguimiento de multiples objetos: un enfoque
predictivo” Universidad de Girona, Dep. de Electrónica, Informática y Automática.

3. Pomares, J. Gutiérrez, R. López, J. M. Torres, F. Gil, P. “Seguimiento de trayectorias 3d
mediante control Visual basado en imagen”, Dpto. Física, Ingeniería de Sistemas y Teoría
de la Señal. Universidad de Alicante.

4. Ruckelidge, W. J. “Efficient Computation of the minimum Hausdorff Distance for Visual
Recognition”, Phd thesis, Cornell University, 1995. CS-TR1454.

5. Sánchez, E. Hernández, M. “Seguimiento de Objetos Móviles usando la Distancia de
Hausdorff”, Universidad de Las Palmas de Gran Canaria.

6. Palomares, J. Torres, F. “Control visual basado en flujo de movimiento para el seguimiento
de trayectorias con oclusiones”, Universidad de Alicante, España.

7. Sachs, S. LaValle, S. Rajko, S. “Visibility-Based Pursuit-Evasion in an Unknown Planar
Environment” The International Journal of Robotics Research Vol. 23, No. 1, January 2004,
pp. 3-26.

8. Tovar, B. LaValle, S. Murrieta, R. “Optimal Navigation and Object Finding without
Geometric Maps or Localization”.

9. Mitchell, T. Machine Learning. McGraw-Hill, 1997.
10. Vaughan, R. Gerkey, B. A. Howard. “On device abstractions for portable, reusable robot

code” Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 21212427, Las Vegas, Nevada, October, 2003. Player is freely available
under the GNU General Public License from http://playerstage.sourceforge.net.

11. Watkins, C. Learning from Delayed Rewards,Thesis,University of Cambidge, England.
1989.

12. Puterman, Martin. Markov Decision Processes. John Wiley & Sons. New York, 1994. 672
pp.

13. Morales, Eduardo. Capítulo 11: Aprendizaje por refuerzo. Notas del curso “Búsqueda”.
2004. http://dns1.mor.itesm.mx/~emorales/Cursos/Busqueda04/refuerzo.pdf. Ultimo acceso
realizado el 8 de mayo de 2005.

14. Richard S. Sutton, Andrew G. Barto. Reinforcement Learning: An Introduction (Adaptive
Computation & Machine Learning S.). MIT Press. 1998. 338 pp.

15. Puterman, Martin. Markov Decision Processes. John Wiley & Sons. New York, 1994. 672
pp.

16. Russell, Stuart; Norvig Meter. Inteligencia Artificial, un enfoque moderno. Editorial
Prentice Hall. 1996.

17. Markov Decision Process (MDP) Toolbox v1.0 for MATLAB (INRIA)
http://www.inra.fr/bia/T/MDPtoolbox/

18. T. Mitchell. Machine Learning. McGraw-Hill, 1997.

19. Notas del curso Razonamiento con Incertidumbre, Dr. Enrique Sucar.
http://dns1.mor.itesm.mx/~esucar/incertidumbre.html.

20. Proyecto Player/Stage. http://playerstage.sourceforge.net/

	Texto6: J. Crispín Zavala-Díaz, Marco Antonio Cruz-Chávez (eds.). AGECOMP2005, Memorias del 4to Congreso de Cómputo AGECOMP, ISBN(e) 968-878-250-5, pp. 1-9
	Texto8: Modeling vs. learning 3
	Texto7: 2 M. García, C. González, E. Sucar and E. Morales
	nom1: 4 M. García, C. González, E. Sucar and E. Morales
	Texto1: Modeling vs. learning 5
	Texto2: 6 M. García, C. González, E. Sucar and E. Morales
	Texto3: Modeling vs. learning 7
	Texto4: 8 M. García, C. González, E. Sucar and E. Morales
	Texto5: Modeling vs. learning 9

