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Abstract. There are two basic approaches to solve Markov decision processes 
(MDP). One is to build a model of the process and to obtain the optimal policy 
using value or policy iteration. The other consists on obtaining the policy by 
trial and error using reinforcement learning. Although the two have been used 
to solve different decision problems, their merits and limitations have not been 
compared experimentally in the same domain. We have used both approaches 
to solve a pursuit-evasion problem in mobile robotics. We represent this 
problem as relational MDP, considering the distance and position of the evader 
in relation to the pursuer; and obtain the optimal policy for the pursuer by: (i) 
building a model and solving it with value iteration, and (ii) by using 
reinforcement learning. We have implemented both approaches in a simulated 
environment and compared them in terms of effectiveness, efficiency and ease 
of model construction.  

1   Introduction 

The persecution-evation activity is one of the fundamental problems of robotics and it 
consist in accomplishing the tracking of a robot to another one, considering that the 
second one is on the go. The aforementioned problem can be represented like a 
Markov decision process and resolved of several forms. A comparative analysis 
among two their are made in this document: By means of the iteration value and with 
a reinforcement learning approach. Later time both methods are described. 

Basically, the problem consists in accomplishing the persecution until the evader 
robot is reached. The above can turn out well of various manners, which here are 
implemented and compared only two. The first consists in providing the robot a 
model of his environment, as from the one that the best politician may obtain 
movements as from, depending on the status in the fact that he meet. Second form 
consists in accomplishing autonomous movements that the same pursuing robot must 
go learning on one's own, unless somebody say it specifically what to do or how to do 
it, but only based on the feedback that he is  given by means of certain dynamic 
rewards, associates to realized actions. 



 

Both forms were implemented under similar conditions, in an simulation 
environment on that various tests were performed and are described later. 

2   Markov Decision Process 

Markov Decision Process (MDP) [12] is a model that it lets to act in a process of 
decision in the time, acquaintance 's representation also like process of sequential 
decision.  By means of this model it is possible to represent problems which one must 
drink in decisions be more than enough what action realizing, with the aim of 
minimizing the cost correlated to a series of interactions with the environment. 

Several methods exist to resolve a MDP, that is, to find the best action asociated 
to each status, that in aggregate they will lead to achieving, of optimal manner, the 
desired goal. Such methods can be classified in three categories: Dynamic 
programming methods, differences temporary methods and reinforcement learning. 
The iteration value corresponds to the first their, and along with learning for 
reinforcement, are an important part of the development of the present forms work, so 
that both describe  themselves from now on. 

Iteration value 

The classical method to resolve a problem formulated as a MDP is  known like value 
iteration. The basic idea consists in calculating the profits out of every possible status 
and at a later time to use them to select the following action to realize.  As his name 
suggests it, he is an iterative method where the  status utility depends in of the 
sequence of actions taken to start of this state, according to the established policy. 
Este método se emplea cuando se conoce el modelo del ambiente, es decir, la matriz 
de probabilidades de transiciones entre estados, y los valores esperados de 
recompensas.  

Initially, the states utility can be obtained like the utility expected of all the 
possible sequences of stock. Once separability's condition was  given, the utility of a 
status can be obtained in iterative form maximizing the utility of the next state. 

Reinforcement learning 

Reinforcement learning is a method that permits the autonomous robots learning from 
its own surroundings, and besides, learning while they find themselves immersed at 
the aforementioned surroundings. This method has had an important heyday of late 
years and reaches out for to achieve that an autonomous agent that receives sensorial 
information and acts at a surroundings may learn how to elect optimal stock to 
achieve his objectives. This generic problem covers up tasks such like learning to 
control a movable robot, learning to optimize operations at factories, or learning how 
to play board games. 



 

In each moment the agent executes an action, to the one that he is  provided a 
reward or a punishment to indicate the desirable that the new status that the 
aforementioned action led to proves to be . The agent's task is to learn from rewards 
or punishments that he receives when electing sequences of actions that they generate 
a bigger positive reinforcement, and of indirect manner, attaining of efficient manner 
his goals. [9]. 

He has to do with, therefore, a learning supervised system that receives 
information of the external and a "teacher" that produces positive rewards or refusals 
according to the quality of realized actions. The reinforcement or reward is once 
show of the action accomplished, once a previous status was  given was  hit on. That 
is, if it takes place to a status better than the previous, then a positive reward is 
granted, otherwise penalizes him the action that he carried into that state. 

4   Implementation 

In order to implement both methods described previously, they defined certain 
statuses and stock, which describe  themselves from now on. At a later time the 
procedure used for realized implementation is  detailed. 

States 

In the environment simulated navigational, the robots move for all the space, it as the 
place opens into a set of states that the spectator can observe and whose appearance is 
similar to the one that shows in the Fig. 1. 

 
Fig.  1. Examples of real states in the environment. Different positions relatives, evader robot 
in relation to the persecutor. 

However, the sensors are the only one midway for the robots to get information 
from his environment, that provide information on the objects that they find 
themselves visible in his reach themselves. Due to the above, and with the purpose of 
working with a number of states easy to handle, the states to consider  are determined 
from certain components, applying the concept of abstraction. The said components 
look in the Table 1. 



 

Table 1 Description of  states components. 

Component Description Values 
Distance  The evasor robot in respect of the pursuing 

robot separates the one to which the robot 
is  found. It is  determined according to the 
size of the observed image. 

Big 
Medium 
Small 
Empty  

Direction 
 

Direction that evader robot finds himself. 
It is  determined according to the position 
of the image perceived at the camera. 

Left 
Right 
Center 

 
Distance. Indicates the distance the robot is found, and it is  determined taking into 
account the size of the image observed at the camera. The Big parameter means that 
the image observed at the pursuing robot's chamber is big, which as it means that the 
distance that this meets to is short.  
Direction. The position of the evader robot in respect of the pursuing robot. The 
values Left, Right and Center indicate the position in which the objective is  found, 
and therefore, the movement that the robot must accomplish to maintain his 
contender's image in the center of the camera. 

In a environment without obstacles, the observations of the robot are determined 
only for distance and direction to which the objective is visualized. The Fig. 2, 
illustrate these observations, that the states act for considering resolve the presented 
problem.  

 

 
Fig  2.  Basic possible states for the robot. Are 11 states the ones that 9 ( of the 1 to the 9 ) 
happen of of distance-direction combinations, an only state ( 10 ) for all those positions in 
which the objective is not  found visible at the camera and that an additional state considers  
itself the goal in considers itself additional ( 11 ). 

Basic states are those were  shown in the Figure 2, and they suit their purposes 
like base to generate the states endings considered in the problem, that they consist of 
a couple of basic states: The previous and the current. Therefore, the number of 
considered states is of (11)2 = 121 states. 

 



 

Actions 

Actions are those movements that can be accomplished in each status to go by to 
another one. They were considered five actions: Turn left, Partial turn left, 
Advancing, partial turn right and Turn right. 

Value iteration Implementation 

On the value iteration implementation, the probability array of transition  got directly 
from the simulated environment. In order to accomplish this,  allows robot to explore 
the the environment of manner pseudo-aleatory during certain time ( specified at the 
section of experiments and results ).  

In turn, they generate their arrays of rewards, which create themselves following 
the judgement: 

• In order to meet the goal: +1 
• Toward an obstacle ( empty status ): -1 
• In order to step forward: +0.1 

At a later time, the MDP is the algorithm of valuable repetition, whose parameters 
resolvedly intervening are : The probability array of transition just described odds, 
the matrixes of rewards and a factor of decrement of 0,9, which determined  itself on 
the basis of experimentation realized previously . Later on the behavior of the robot 
using the aforementioned policy can be observed, at the section of comparative 
analysis. 

Reinforcement learning Implementation 

The learning algorithm for reinforcement proposed by Watkins 11 was implemented. 
Basically, this algorithm consists in finding all of the possible statuses for certain 
stock and to take a their record. For each executed action he grants a reward that can 
be positive or negative, with the end of than in following visits to the same statuses 
may determine him which one is the best-suited action. 

The execution was accomplished during different spans, specified at the section of 
experiments. During his performance, the pursuing robot does a journey of the 
environment attempting to find the evader robot and all states are registered for the 
ones that he transits for, just like the actions that he sells off. 

The strategy of the evader robot restriction consists to sail at random across the 
environment, with the one and only of than, with help of his chamber, when 
visualizing and identifying his adversary accomplish a spin in the deeply felt 
opponent and where he have bigger space to navigate, with the aim of losing sight of 
it and procuring thus not to be reached. In realized implementation he takes a record 
of actions taken, which step by step they conduct which to an optimal behavior of the 
robot.  



 

5. Experiments and Results 

Preliminary tests were accomplished using a blobfinder, Player's device whose show 
is to detect colors with a camera. From now on experiments accomplished, in 
environments with obstacles and without them, with each one of implemented 
methods are described. 

In the implementation of the reinforcement learning algorithm, during the first 
minutes of execution the tax evader once has identified it notices that to go after the 
robot turns out to be to the pursuing robot difficult to him. However, as the time 
passes, the robot is more and more able to accomplish his adversary's tracking and 
also navigates of more docile and soft manner. 

In the implementation of the algorithm of iteration value, all along it is  noticed 
that the robot chases its objective, with movements very well defined even to reach it 
finally to the evader robot. 

Stroke of ball mentioning than, in addition to the policy of given actions the 
solution the fact that which generates the algorithm, the same strategy of evasion of 
obstacles in the pursuing robot was incorporated, also is present in learning for 
reinforcement, so that they consider equitable situations equitable situations. 

The Fig. 3 shows the performance of the algorithm in Player/Stage in an 
environment with and without obstacles. 
. 

 
                               a)         b) 

Fig. 3. The following's image sold off in Player/Stage in an environment with (b) and 
whithout (a) obstacles. 

6. Comparative analysis 

In order to accomplish a comparative analysis of quantitative nature, was proceeded 
from the following manner: First it was allowed to navigate the robot during 
incremental time intervals with each one of implemented algorithms. At a later time 
the policy generated with each method was compared. As it was  mentioned 
previously, the performance of the algorithm of valuable repetition practically does 
not vary once the optimal policy has been  generated; However, for effects of equality 



of situations, the time was considered that him important it is  allowed to navigate the 
start to the robot construct his array of transitions probabilities, that will be useful for 
like piece of information the obtaining of the policy. 

The results obtained when comparing both policies are in the Table 2.  The Table 
3 shows the average time that the robot spends in achieving your purpose after 60 and 
120 minutes delays, learning and exploration, respectively. Was realized 10 
executions with each method.  

With the iteration value, the average time the fact that the pursuing robot in 
catching up the evader  robot with a previous inferior exploration to 1 minute delays 
becomes of approximately 30 seconds, and with an exploration of 30 minutes delays 
24 seconds. That is, the difference is minimal. 

Table 2.  Similarity in policies obtained after 30, 60, 90 and 120 minutes of 
exploration of the environment. The number of states with the same action 
with different action, or states visited, in RL in relation to value iteration 
are  shown ( VI ). The percentages respect to 121 states are given. 

State-action 30' 60' 90' 120’ 
Same 9.9% 14.1% 15.7% 16.5% 

Disctint 10.7% 13.2% 14.9% 16.5% 
Not visited 79.4% 72.7% 69.4% 67% 

 
In the previous table it observes an important quantity of statuses visited by the 

algorithm RL, it as he proves to be congruent because some states are necessary to 
they are practically impossible to visit if it is considered that it is not like base 
accomplishing certain transitions, such from state 1 to the goal. 

Table  3.   Average time that the robot spends in achieving his purpose after 30, 60, 90 
and 120 learning minutes ( RL ) and exploration delays ( VI ), respectively. 
Was executed 10 executions with each method and are reported the times 
in seconds. 

Approac
h 30' 60' 90' 120’ 
RL 58.6” 50.5” 47.3” 35.2” 
VI 24.2” 23.9” 23.3” 23.2” 

7. Conclusions and Future Work 

After achieving the objectives initially presented with both methods, it is possible 
concluding than reinforcement learning, prove useful because the agent does not call 
for specific instructions, rather one is dedicated to learn on the basis of test and error. 
To the start the performance, prove little efficient, but step by step he goes improving 
in agreement lapses the time and his archives of information go away filling with 
information. 



 

In the case of the modeled by means of MDP, it could become verified that to for 
to achieve an optimal performance, a good training phase is necessary, as well as a 
correct definition of states and actions to realize  . With this method it is possible to 
accomplish a more efficient following, which observes in Tables 2 and 3 showed 
previously. 

As future work, both algorithms will be implemented in real robots. 
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