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Abstract. This work emphasizes testing methods useful to assess the quality of 
computer programs.  In particular presents unit testing based on the computa-
tional graph. Once the algebra for the analysis is specified, the computational 
graph can be traced for a specific analysis using operating overloading, which is 
a feature available in object oriented languages.  In this way, a specific property 
of a program can be obtained.  Then, when the property is compared with the 
expected value, it is possible to assess correctness with the hope of eliminating 
potential problems.   The scheme is illustrated with an analyzer to detect arith-
metic errors. 

Abstract.  Este trabajo enfatiza los métodos de prueba útiles para evaluar la ca-
lidad de programas de computadora.  En particular  presenta métodos de unida-
des que utilizan el grafo computacional.  Una vez que el algebra para el análisis 
ha sido especificada, el grafo computacional puede ser rastreado para un análi-
sis específico mediante la sobrecarga de operadores, lo cual es una característi-
ca de los lenguajes orientados a objetos. De esta forma una propiedad específica 
de un programa puede ser obtenida.  Así cuando la propiedad es compara con el 
comportamiento esperado es posible evaluar que tan correcto es el programa, 
con la posibilidad de eliminar errores potenciales.   El esquema propuesto es 
ilustrado con el análisis para detectar errores aritméticos. 
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Introduction 

 
The demand on reliable computer programs is constantly increasing, as a result of 
awareness of the effects of quality in applications like process control, and world 
wide transactions..  

 

David Juárez Romero, J. Crispín Zavala-Díaz,(eds.). AGECOMP2004, Memorias del 3er Congreso de Cómputo AGECOMP, UAEM, 
México, ISBN(e) 968-878-205-X. 64 - 79 

 



This work is derived from our experience in developing testing programs for dy-
namic simulation; and as designers and users of computer tools for computer program 
analysis [Estrada, 2003]. In particular attention is paid to the automatic algorithmic 
analysis.  

Useful Definitions 

A program state is the minimum information required to restart a program if we tem-
porarily halt an execution. 

A precondition is a predicate that must be true before a transition. 
A postcondition is a predicate that must be true after a transition. 
A test driver is a procedure used to call the testing procedure at different input 

conditions. 
A test stub is an emulator of a procedure called by the test procedure that is more 

reliable than the actual implementation of the called procedure. 
A software component is a semi-independent computer program that contains one 

or more procedures.  A path is a unique sequence of branches from the function entry 
to the exit. 

Type of Tests 

A diligent tester will consider the valid inputs from each of these sources as well as 
invalid, unexpected inputs Whittaker, “What is software testing?, and why is it so 
Hard”. IEEE Software (1998). 

 
We divide the type of tests according to the scope covered, according to the lan-

guage elements analyzed, and according to the form of execution. 

According to the Scope 

 
Unit Testing. Tests individual software components.  
Integration Testing. Tests collectively procedures previously tested individually.  

A recommended strategy is to start with a set of units with common objective or 
layer, then couple all units needed for that objective and after that, proceed to the next 
objective or layer. Finally, integrate all the layers with the units of the next layer up 
[Gonzalez, 1984]. To easy composition among units, they must be compatible, with 
low redundancy in features, and a simple interface, but strict to detect coupling errors. 
A desirable feature in the implementation language is that it does not modify calling 
arguments, for instance in  Matlab (of Mathworks)  
[r1,r2] = procedure(arg1, arg2); 
If they are input-output arguments, they should appear in both sides of the equal 

sign. 



 
System Testing. Tests all components that constitute a deliverable product. Usu-

ally, the entire domain must be considered to satisfy the criteria for a system test. 
Usually this type of tests selects a set of test scenarios, runs and evaluates them, 
measures test progress, and maintains a records of discrepancies with the expected re-
sults. 

 
Functional Testing. It concentrates in what the program is supposed to do and how 

well it does it. 
Boundary testing.  Test the program in their boundaries. Transitions are often the 

more complex and error prone. Since loops introduce an unbounded number of paths, 
boundary testing considers only a limited number of looping possibilities.  

Capacity testing.  It finds the behavior of the system in the limits of its capacity. 
 

Acceptance testing. It verifies readiness for use. It is similar to system testing ex-
cept that it is handled informally by users external to the development process, even 
external to the entire company. The idea behind this testing is to get a critical evalua-
tion of real-world use. 

According to the Language Elements  

After consulting some references of common errors, and record experiences on 
program development [Ghezzi et al, 1991],[Friedman, & Voas, 1995],[IBM],[ Beizer, 
1990]  we considered that the most systematic form is to classify errors according to 
the programming rules are those presented by Hoare and coworkers (1987): 

 
 

Table 1.  Error classification 

UNIT TEST Detects Verification Method 
I/O File access, attributes, and use Relations of Inputs/Outputs 

Variables States 
Variable declaration, initialization, refer-
ence, assignation, range and precision. 

 
Memory, arrays and pointes 

State coverage 
Orthogonality of states 
Domain coverage 
allocation/ deallocation of memory. 

Expressions Substituting a constant for a variable.  
Code: redundant or lacking 
Arithmetic: stability, overflow, under-
flow 
Assignation: incompatible assignation; 
Comparison of improper types 
Sequence of operations 
Incorrect Operand or Operator 

Efficiency and accuracy of  
Operations.  
Computational Graph 

 
 



Logic Precondition-condition-postcondition. Branch coverage 
Flow control Cycles: Jumps 

No terminations  
Error by one 

 

Branch coverage 
Path coverage 
Edge coverage 
Boundary testing  

Error handling Label missing 
Errors without description 

Assertion testing 

Style No use of standard language features, 
libraries of working group standards 

Preprocessor 

COUPLING 
TEST 

   

Interface 
Tests between 
procedures 

Formal parameters are not consistent with 
the calling procedure. 
Returned value is not consistent with the 
expected value 
Invalid ending condition 

Procedure state 
Parameter passing 
Returned values 

Modules Interaction among modules State of Module 
Events Timing, serialization Sequence-Event testing 
Efficiency Counting of operations. Memory re-

quired, number of procedure calling. 
Execution profile 
Memory profile 

Semantic Verify module interaction  
Verify operator overloading 

Equivalence testing (class coverage) 

INTEGRATION 
TEST 

  

Composition Composition (balance, complementar-
ity’s, contrast) 

Preprocessor 

Scenario Scenario Tests Modeling working environment. 
Testing execution progress. 

 

Proposed method of analysis 

“Dr Curtis enquired what was known about detecting logical errors in programs, He 
felt hi worst bugs were of this kind, and nothing he had heard would help him” Gen-
telman,  Performance Evaluation of Numerical Software, Fosdick(ed.) IFIP, NordHol-
land Pub (1979) 

 
An ideal program analyzer should give the level of detail as symbolic analysis, 

must trace the path followed by the program, and be easy to implement as a dynamic 
analyzer. 



Algorithmic Analysis 

Algorithmic Analysis use static analysis to generate tables of identifiers.  Then, by 
following the computational graph it is possible to obtain properties related to the 
code. Graphs are a data-structure whose properties match the properties of a computer 
program, which contains conditional branches, loops and function calls. This compu-
tational graph can be obtained by overloading arithmetic (+, *, =,) and logic operators 
(&&, || ), and arithmetic functions used in the computer program. Then, as a by-
product of every expression, information related to the states, unused or unassigned 
variables, or potential arithmetic errors (underflow, overflow) during execution can be 
obtained. The type of information obtained depends on how every operator is over-
loaded (see fig 3.1).  
/* evaluation of a balance for a non-return valve */ 

if (ΔP < ΔPMin) { 
  Vc

} else { 
R[0] =-da/dt + KC*(ΔP - DPMin)*Ar; 

  VcR[0] =-da/dt + KO*(ΔP - DPMin)*(1-Ar); 
} 
/* evaluation of algebraic residual for momentum */ 
if(ΔP > 0){ 
VcR

}else{ 
[1] =-Wm + Kv*sqrt(+ΔP)* Ar; 

VcR[1] =-Wm - Kv*sqrt(-ΔP)* Ar; 
} 
Fig 3.1 Expression to Describe the behaviour of a non return-valve 
 

 
 

Figure 3.2 Computational graph of R[0] for the expression in fig 3.1. 
 

The analysis is accomplished in a similar way as telephone poles hold telephone 
wires and cable television wires simultaneously. Then while the standard arithmetic is 
executed (lower layer in fig 3.2) the selective arithmetic is also executed (upper layer 



in fig 3.2). The data structure R[0] stores the arithmetic values, R[0].v, and the 
number of references  R[0].r .  

This work stems from the work on algorithmic differentiation [Griewank, 1996].  
To analyze a model by algorithmic analysis, it is necessary to:   
• Specify the selective arith-

metic for the analysis. 
• Design a set of classes supporting this algebra through the overloaded arithmetic 

operators and elementary functions, and 
• Specify the asserted behavior for global and local variables, once the execution is 

completed. 
The composed analysis is evaluated automatically calling these functions in the order 
determined by the computational graph, and assembling the results of the analyzed 
terms to compute the final result [Molina et al, 1999].   

 
This type of analysis produces values of properties of what is actually computed.  

If we want to cover all the feasible forms of behavior, a branch testing is needed. 
Branch Testing to trace the Behaviour of the Computational graph 
The elements for this type of testing are [Howden, 1987]:  
• A branch analyzer to produce a branch condition.  The predicates of every 

conditional clause in a model are replaced by a logical flag.  Every time the 
model is called with a set of flags, which produces a branch condition for 
every branch. 

• A test generator to run the program against a sequence of test cases.  The 
model tester calls the model several times, every time with different set of 
test inputs.  In every set, it is expected that the model presents a different 
form of behavior.  
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Probes to analyze the condition of a branch when it is traversed.  A set of 
classes supporting the algebra for the analysis through the overloaded arith-
metic operators and elementary functions are used as probes.  

• A report generator, which contains the complete picture of branch execu-
tion.  A report generator produces a table of local and global variables with 
their properties extracted during the analysis at different branch conditions. 

• An oracle, which determines correctness of the program’s output for some 
input.  The extracted model properties are compared with the expected prop-
erties for every variable.  Discrepancies are reported as diagnoses 

Since programs are designed to run on a finite machine over finite input sets, it 
is possible to prove the correctness of any program by testing it over its whole 
input domain [Howden, 1987].  Given the fact that every model represents only a 
process unit with only physical streams as external variables (with a discrete or 
continuous domain), the number of evaluations is modest. Once the computa-
tional graph is obtained the following tasks are carried out (fig. 3.3) 

 
- The dependence graph of inputs on outputs can be obtained, eliminating intermedi-
ate variables.  
- Unused variables can be identified with the reachability analysis of output from in-
puts [Chen, 98]. 
- Feasible assignment of variables to equations can be detected with a bipartite graph 
[Westerberg, 1979]. 
- Dynamical models badly posed can be detected by with the structure of a linearized 
system [Soetjahjo, 1998]. 

Results 

The analysis of the program’s computational graph allows a good level of detail in the 
analysis. Object oriented languages facilitate the implementation of this type of analy-
sis.  We exemplify now this scheme with the analysis of efficiency and robustness of 
models for dynamic simulation. 

Analysis of Efficiency & Robustness 

The purpose of the analysis of efficiency and robustness is to detect domain values 
that causes under/overflow or an undefined value of arithmetic operations in a model.  
In real time simulation, it is also essential to detect the largest computing effort re-
quired in a model.   

 

Algebra for efficiency and robustness:  
- The result of a detected dangerous operaction is forward propagated from the in-

termediate variables to the final variables, the vector of residuals. 
- The operations required to evaluate intermediate variables are counted only once. 



- The analysis only reports the operation count in variables, which are used to 
evaluate the final variables; thus, a variable, which is only used as a predicate of a 
conditional clause, is not taken into account.  

Table 2 shows the arithmetic operators and functions whose operands are verified 
to be within its valid domain. If a potential error is detected, the analyzer issues a di-
agnostic flag, and execution continues using a safe arithmetic. 

Table 2.  arithmetic operators and functions verified 

Arithmetic Opera-
tions and func-
tions 

Condition of risk Safe artithmetic 

1/x  |x| < τ  1/(x + ε*sign(x) ) 
tan(x)  x < τ tan(x + ε*sign(x)) 
√x  x < 0  √|x| 
xy  x < 0  |x|y

log(x)  x < 0  log(|x|) 
exp(x)  x > xmax exp(xmax) 
τ is a tolerance 
ε is a related with  machine precision 

Attributes of a variable that is a class of this type:  

- Its value. 
- The number sums-subtractions {+, -} required to calculate its value 
- The number of multiplications-divisions { *, /} required to calculate its value,  
- The number of roots  {√} required to calculate its value,  
- The number of exponential and trigonometric functions { exp( ), log( ), sin( ), 

cos( ), tan( ),.., etc} required to calculate its value. 
- A logical flag that is set true when the value of a variable of an intermediate 

variable is transferred to another variable by an assignment.  Thus, the operation 
count is only taken once, faithfully evaluating the operations count. 

- The number of faults in divisions, square roots, or trigonometric expressions. 
 
Copy-constructors were required to transfer the arithmetic statistics/diagnoses to 

another variable during its declaration. 
Assertion: No diagnostics should appear in the arithmetic operations.     
Input Tests: The external real variables. 
Use of Computational Resources:  This analysis only considers the paths (combina-
tion of branches) produced by these inputs.  The cost depends on how many test cases 
are used to cover the input domain.   
Results: for every test case is produced:  a list of operation counts required to evalu-
ate the vector of residuals, and a list of diagnostics in the evaluation of these vari-
ables. With this information, the model-developer can select alternative forms of cod-
ing: factoring common sub-expressions, or using alternative efficient arithmetic (e.g., 
√x instead of x0.5 ).   If any diagnostic appears, it is necessary to bound the value of 



dependent variables to a given domain, to regroup terms, or to use an equivalent 
arithmetic of operators to reduce the possibilities for a model to fail. 

For exhaustive testing in a reduced number of tests, this analysis requires the care-
ful design of test cases.  Offutt, Jin and Pan [Offut, 1999] have developed a program 
for reducing testing input domain.  Given a set of input variables with domain umin- 
umax, symbolic analysis obtains the predicate of conditional clauses in terms of the 
input variables.  If the predicate has linear dependency on the input variables, analyz-
ing all the independent or nested conditional clauses, which can traverse all the edges, 
can reduce the input domain.   

Offutt, Jin and Pan [Offut, 1999] have developed a program for reducing testing 
input domain.  Given a set of input variables with domain umin- umax, symbolic analy-
sis obtains the predicate of conditional clauses in terms of the input variables.  If the 
predicate has linear dependency on the input variables, analyzing all the independent 
or nested conditional clauses, which can traverse all the edges, can reduce the input 
domain.   

This section presents the results of the analysis of dynamic models.  The character-
istics of these models are displayed in Table 3.  The first three models (SpEquipo, 
BbEquipo, WwEquipo) were adapted from a power plant simulator based in subsys-
tems (steam-generation, water-feeding, etc).  Model, MiEquipo, has been designed 
and improved by colleagues with detailed knowledge of this process unit.  Model 
DmEquipo evaluates detailed physical properties for the liquid, steam and two-phase 
regions.   

Table 3. Characteristics of Model Analyzed 

Process Unit 
Name 
filename 
 

Number 
of States 
 x(t), y(t) 

 Number  
of 
Parameters 
p 

Number of 
externals 
u(t) 

Number of  
Residual  
Equations 
R 

Max Nest-
ing level of 
conditional 
Branches 

Num of 
proce-
dures 

Electrical 
Pump 
BbEquipo.c 

8, 
3 streams 

36 2  4 
energy, mass 
momentum 

1 8 

Water 
Walls 

WwEquipo.
c 
 

8, 
3 streams 

1 5  4 
Energy of Metal,  
Energy, momentum and 
mass of steam 

0 8 

Induction 
Engine 
MiEquipo.c 

2, 
4 streams 

22 2  
1 logical 

2 Torque 
Angular Speed 

2 8 

Drum with 
Single and 
double phase 
DmEquipo.c 
 

8, 
4 streams 

5 9  
 

8 Mass, energy of liquid 
Mass, energy of steam 
Momentum 
Mass, energy 
Momentum of output steam 

1 8 + 5 for 
physical 
properties 

 



This analyzer checks if a model can handle the input streams.  Results of the analy-
sis from different test cases is shown in figures 4.1, 4.2, 4.3,4.4.   

Notes:  
Two different test cases are shown per residual. 
Some test inputs caused models to incompletely finish computations. 
The residuals are the r.h.s. of algebraic or differential equations. 
 
 
 
Fig. 4.1 Number of Arithmetic Operations for model Bb at two different runs 
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For some runs model Bb does not compute any residuals, since an invalid domain 

was detected internally, then the model returned without completing calculations. 



 
Fig. 4.2 Number of Arithmetic Operations for model  Ww at two different 

runs 
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Model Ww presents four divisions by zero, which are due an arithmetic term 

which evaluates the inverse of the sum of fractions with small denominators : (1/x1 + 
1/x2)-1.  To overcome divisions-by-zero this term can be refactored. 
 



Fig. 4.3 Number of Arithmetic Operations for model  Mi at two different runs 
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The computations in this model of an induction engine vary according to its operat-

ing region: linear, or non linear.  In the linear region only requires summations to 
evaluate the residuals. 



Fig. 4.4 Number of Arithmetic Operations  Dm at two runs 
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The computations in this model vary according to its operating region: in the single 
phase region (liquid), the model evaluates only summations and multiplications, in the 
saturated region; the model evaluates properties in both liquid and steam. 

Conclusions And Further Work 

Testing plays a key role in both assessing and achieving quality (Friedman, Voas, 
Software Assessment: reliability safety, testability, 1995) 

Approaches to testing are becoming more systematic. In particular, algorithmic 
analysis allows us to extract code properties that can be used to verity output correct-
ness. The computational graph matches adequately the algorithmic properties of 
common computer programs, and since it can be obtained with the help of operator 
overloading, then graph-based testing methods are effective to extract relevant fea-
tures of computer programs.  

Derived from this work we can also emphasize the relevance of an adequate testing 
plan combined with available mathematical techniques for program testing to improve 
computer programs.  

Offut, Liu, Abdurazik and Ammann [Offutt, 2003] presented criteria for generating 
test inputs from state-based specifications. The  test inputs include tests at transition 
predicates, pairs of transitions and sequences of transitions that contain inputs neces-
sary to modify the software into the appropriate state for the test values. This work 
has some useful similarities with control theory which advocates to analyze model 
behavior by analyzing its states. 
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